Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 174 Sayı: 174, 37 - 53, 13.08.2024
https://doi.org/10.19111/bulletinofmre.1394073

Öz

Kaynakça

  • Adamia, S. A., Chkhotua, T., Kekelia, M., Lordkipanidze, M., Zakariadze, G. 1981. Tectonics of the Caucasus and adjoining regions: implications for the evolution of the Tethys ocean. Journal of Structural Geology, 3, 437-447.
  • Adamia, S., Zakariadze, G., Chkhotua, T., Sadradze, N., Tsereteli, N., Chabukiani, A., Gventsadze, A. 2011. Geology of the Caucasus: a review. Turkish Journal of Earth Sciences, 20 (5), 489-544.
  • Aghazadeh, M., Hou, Z., Badrzadeh, Z., Zhou, L. 2015. Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 70 (4), 385-406.
  • Aluç, A., Kuşcu I, Peytcheva I., Cihan, M., von Quadt , A. 2020. The late Miocene Öksüt high sulfidation epithermal Au-Cu deposit, Central Anatolia, Turkey: Geology, geochronology, and geochemistry. Ore Geology Reviews, 126, 103795.
  • Arribas Jr., A. 1995. Characteristics of high sulfidation epithermal deposits, and their relation to magmatic fluid. Thompson, J.F.H. (ed.) Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada Short Course, 23, 419-454.
  • Berberian, M., King, G.C.P. 1981. Toward a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Science, 18, 210–265.
  • Berger, B.R., Ayuso, R.A., Wynn, J.C., Seal, R.R. 2008. Preliminary model of porphyry copper deposits. Open-File Report 2008- 1321. U.S. Department of the Interior, U.S. Geological Survey. Reston, 62.
  • Bogdanov, K., Musaev, S., Ahmedov, A., Salmanli, R. 2013. High-sulphidation (HS) epithermal gold mineralisation in the Chovdar deposit, Lesser Caucasus, Azerbaijan. Proceedings of Bulgarian Geological Society National Conference with international participation “GEOSCIENCES 2013”. Sofia, 15-16.
  • Boomeri, M., Nakashima, K., Lentz, D.R. 2010. The Sarcheshmeh porphyry copper deposit, Kerman, Iran: A mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes. Ore Geology Reviews, 38 (4), 367-381.
  • Cas, R., Giordano, G., Balsamo, F., Esposito, A., Lo Mastro, S. 2011. Hydrothermal Breccia Textures and Processes: Lisca Bianca Islet, Panarea Volcano, Aeolian Islands, Italy. Economic Geology, 106, 437-450.
  • Diarra, K., Sangu, E., Çiftçi. E. 2019. Ore mineralogy of high sulfidation Çorak-Taç epimesothermal gold deposit (Yusufeli-Artvin- Turkey). Glagolev, S. (ed.) Proceedings of 14th International Congress for Applied Mineralogy (ICAM2019), Springer Nature Switzerland AG. Cham, 53–58.
  • Einaudi, M. T., Hedenquist, J., Inan, E.E. 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Volcanic, Geothermal and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth. Special Publication 10. Society of Economic Geologists. Ottawa, 285-311.
  • Engin, T. 2003. Mineral Deposits of Turkey. Tvalchrelidze, A.G., Morizot, G. (eds). Mineral Resource Base of the Southern Caucasus and Systems for its Management in XXI Century. Kluwer Academic Publishers. Dordrecht-Boston-London, 81-104.
  • Ersoy, A. 2022. The current status of gold mining in Turkey: An overview. NOHU Journal of Engineering Sciences, 11(4), 1103- 1114.
  • Ghaderi, M., Narges, Y., Mina, B.K. 2018. Porphyry copper deposits of Iran. Tarbiat Modarres University Press. Tehran, 668. Goldfarb, R.J., Groves, D.I., Gardoll, S. 2001. Orogenic gold and geologic time: a global synthesis. Ore Geology Reviews, 18 (1-2), 1-75.
  • Gülyüz, N., Gülyüz, E., Shipton, Z.K., Kuşcu, İ., Lord, L.A. 2020. Geological and mineralization characteristics of the Kestanelik epithermal Au-Ag deposit in the Tethyan Metallogenic Belt, NW Turkey. Geoscience Journal, 24, 407–424.
  • Hajalilou, B., Aghazadeh, M. 2016. Geological, alteration and mineralization characteristics of Ali Javad Porphyry Cu-Au deposit, Arasbaran Zone, NW Iran. Open Journal of Geology, 6, 859-874.
  • Hastorun, S. 2022. The mineral industry of Turkey. 2019 Minerals Yearbook. Turkey. U.S. Department of the Interior, U.S. Geological Survey. Manto Park, 47.1-47.19. Hedenquist, J.W. 2000. Exploration for epithermal gold deposits. SEG Reviews, 13, 245-277.
  • Heidari, S.M., Daliran, F., Paquette, J.-L., Gasquet, D. 2015. Geology, timing, and genesis of the high sulfidation Au (-Cu) deposit of Touzlar, NW Iran. Ore Geology Reviews, 65, 460–486.
  • Hosseini, S.A., Asghari, O., Emery, X. 2017. Direct block-support simulation of grades in multi-element deposits: application to recoverable mineral resource estimation at Sungun porphyry copper-molybdenum deposit. The Journal of the South African Institute of Mining and Metallurgy, 117, 577-585.
  • Imamverdiyev, N.A., Baba-zadeh, V.M., Mursalov, S.S., Valiyev, A.A., Mansurov, M.I., Abdullayeva, S.F. 2021. New perspective Reza gold deposit (Gedabek ore district, Lesser Caucasus, Azerbaijan). Journal of Geology, Geography and Geoecology. 30 (1), 53-64.
  • John, D.A. (Ed.). 2010. Porphyry copper deposit model. Scientific Investigations Report 2010-5070-B. U.S. Department of the Interior, U.S. Geological Survey, Reston, 170.
  • John, D.A., Vikre, P.G., du Bray, E.A, Blakely, R.J., Fey, D.L., Rockwell, B.W., Mauk, J.L., Anderson, E.D., Graybeal, F.T. 2018. Descriptive models for epithermal gold-silver deposits. Mineral Deposit Models for Resource Assessment. Scientific Investigations Report 2010–5070–Q. U.S. Department of the Interior, U.S. Geological Survey. Reston, 264.
  • Kaviani, A., Hatzfeld, D., Paul, A., Tatar, M., Priestley. K. 2009. Shear-wave splitting, lithospheric anisotropy, and mantle deformation beneath the Arabia-Eurasia collision zone in Iran. Earth and Planetary Science Letters, 286 (3-4), 371–378.
  • Kolonin, G.R. 1983. Acidity & alkalinity evolution character in ore-forming fluid based on experimental data. Dobretsov, N.L. (ed.) Dynamic and Physical-Chemical Models of Magmatic Systems.: Nauka Publisher. Novosibirsk, 57-70 (in Russian).
  • Kuşcu I., Tosdal, Richard M., Gençalioğlu-Kuşcu, G. 2019. Chapter 8. Porphyry-Cu Deposits of Turkey. Pirajno, F., Ünlü, T., Dönmez, C., Şahin, B.M. (eds): Mineral Resources of Turkey. Springer Nature Switzerland AG. Cham, 337-425.
  • Marakushev, A.A., Bezmen, N.I. 1970. Thermodynamics of sulfides and oxides related to ore formation problems. Nauka Publisher.Moscow, 215 (in Russian).
  • Marutani, M. 2003. Study on mining sector development master plan in the Republic of Armenia. Final report. Japan International Cooperation Agency (JICA), Steering Committee of Study on Mining Sector Development Master Plan of Government of the Republic of Armenia. Yerevan-Tokyo, 46.
  • Mederer, J., Moritz, R., Ulianov, A., Chiaradia. M. 2013. Middle Jurassic to Cenozoic evolution of arc magmatism during Neotethys subduction and arc-continent collision in the Kapan Zone, southern Armenia. Lithos, 177, 61-78.
  • Mehrabi, B., Chaghaneh, N., Fazel, E.T. 2008. Intermediate sulfidation epithermal mineralization of No. 4 anomaly of Golojeh deposit (N. Zanjan) based on mineralography, alteration and ore fluid geochemistry features. Journal of Economic Geology, 6 (1), 1-22.
  • Mehrabi, B., Sianib, M.G., Azizic, H. 2014. The genesis of the epithermal gold mineralization at North Glojeh Veins, NW Iran.International Journal of Sciences: Basic and Applied Research (IJSBAR), 15 (1), 479-497.
  • Moritz, R., Rezeau, H., Ovtcharova, M., Tayan, R., Melkonyan, R., Hovakimyan, S., Ramazanov, V., Selby, D., Ulianov, A., Chiaradia, M., Putlitz, B. 2016. Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan. Gondwana Research, 37, 465-503.
  • Moritz, R., Reseau, H., Mederer, J., Gialli, S., Hemon, P., Lavoie, J., Calder, M., Hovakimyan, S., Melkonyan,, R., Tayan, R., Popkhadze, N., GuGushvili, V., Ramazanov, V. 2017. Gold deposits of the Lesser Caucasus: products of successive Mesozoic and Cenozoic geodynamic settings. Mineral Resources to Discover – Proceedings of the 14th SGA Biennial Meeting, 1. Society for Geology Applied to Mineral Deposits. Geneve, 67-70.
  • Oyman, T., Minareci, F., Pişkin, Ö. 2003. Efemçukuru B-rich epithermal gold deposit (İzmir, Turkey). Ore Geology Reviews, 23, (1-2), 35-53.
  • Payot, B.D., Maglambayan, V.B., Dimalanta, C.B., Yumul Jr., G.P., Tamayo Jr., R.A., Matsuda, T., Suzuki, S., Bellon, H. 2005. Geology and hydrothermal alteration of the low sulfidation Pantingan Gold System, Mount Mariveles, Bataan (Luzon), Philippines. Resource Geology, 55 (3), 155-162.
  • Richards, J.P. 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70, 323-345.
  • Shafiei, B., Shahabpour, J. 2008. Gold distribution in porphyry copper deposits of Kerman Region, southeastern Iran. Journal of Sciences, 19 (3), 247-260.
  • Sholeh, A., Rastad, E., Huston, D., Gemmell, J.B., Taylor, R.D. 2016. The Chahnaly low-sulfidation epithermal gold deposit, Western Makran volcanic arc, southeast Iran. Economic Geology, 111, 619–639.
  • Sillitoe, R.H. 2000. Styles of high-sulphidation gold, silver and copper mineralisation in porphyry and epithermal environments.Proceedings of the Australasian Institute of Mining and Metallurgy, 305, 19-34.
  • Sinclair, W.D. 2007. Porphyry Deposits. Goodfellow, W.D. (ed.) Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, 223-243.
  • Taylor, B.E. 2007. Epithermal gold deposits. Goodfellow, W.D. (ed.) Mineral Deposits of Canada: A Synthesis of Major Deposit- Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, 113-139.
  • Tvalchrelidze, A.G. 1986. Physico-chemical conditions of base metal sulphide ore formation. Friedrich, G.H., Genkin, A.D., Naldrett, A.J. Ridge, J.D., Sillitoe, R.H. Vokes, F.M. (eds.) Geology and Metallogeny of Copper Deposits. Springer- Verlag. Berlin-Heidelberg-New York-London-Paris-Tokyo, 358-369.
  • Tvalchrelidze, A.G. 1987. Geochemical conditions of base metal sulfide deposit formation. Nedra Press. Moscow, 188 (in Russian).
  • Tvalchrelidze, A.G. 1993. Quantitative models of vein type ore deposits and theory of rhythmical zoning. Geological Association of Canada Special Papers, 40, 751-760.
  • Tvalchrelidze, A.G. 2003. Mineral resource base of Georgia in XXI century. Tvalchrelidze, A.G., Morizot, G. (eds.) Mineral Resource Base of the Southern Caucasus and Systems for its Management in the XXI Century. Kluwer Academic Publisher. Dordrecht-Boston-London, 19-70.
  • Tvalchrelidze, A.G. 2006. Mineral resources and mineral resource base of Georgia. Rudy I Metally Publishing House. Moscow, 320 (in Russian).
  • Tvalchrelidze, G.A. 1980. Copper metallogeny of the Caucasus. Jankovic, S. (ed.) European Copper Deposits. Belgrade, 191-196.
  • Tvalchrelidze, G.A. 1984. Main features of metallogeny of the Caucasus, Janelidze, T.V., Tvalchrelidze, A.G. (eds): Proceedings of the Sixth Quadrennial IAGOD Symposium. Vol. 1. E. Schweizerbat’sche Verlagbuchhandlung. Stuttgart, 1-5.
  • Veliyev, A., Bayramov, A., Ibrahimov, J., Mammadov, S., Alizhadeh, G. 2018. Geological setting and ore perspective of the new discovered Gadir low sulfidation epithermal deposit, Gedabek NW flank, Lesser Caucasus, Azerbaijan. Universal Journal of Geoscience, 6 (3), 78-101.
  • Wang, L., Qin, K., Song, G., Li, G. 2019. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews 107, 434-456.
  • Yigit, O. 2006. Gold in Turkey – a missing link in Tethyan metallogeny. Ore Geology Reviews, 28 (2), 147-179.
  • Yigit, O. 2009. Mineral deposits of Turkey in relation to Tethyan metallogeny: Implications for future mineral exploration. Economic Geology, 104 (1), 19-51.
  • Zolotarev, V.G. 1985. Spatial-temporal dynamics of processes related to granite consolidations and their role in ore formation.Sciences de Terre. Série Information géologique, 23, 27-48.

Porphyry and Epithermal Au-Cu Systems of the Southern Caucasus and Northern Iran

Yıl 2024, Cilt: 174 Sayı: 174, 37 - 53, 13.08.2024
https://doi.org/10.19111/bulletinofmre.1394073

Öz

This article presents tangible geological evidence for coexistence of porphyry copper and epithermal gold systems within single polygenic deposits and provides a paleothermophysical model for their origins. Brief metallogenic analysis of the Southern Caucasus and Northern Iran has shown that such deposits are confined to long-living calc-alkaline island arcs and were formed during their orogenesis. Examples of complex Sonajil (Iran), Gharta, and Merisi (Georgia) deposits are considered. Investigation has shown that for combined porphyry and epithermal ore formation some preconditions are suggested to exist: (i) Source of anomalous energy, which exceeds thermodynamics of the enclosing environment; (ii) Existence of temperature gradient, which determines conventional flows of fluids composed of endogenous and meteoric constituents (proven by rhythmical zoning of ore lodes); (iii) Stability of such conditions for a period of sulfide ore formation. However, such a process of sulfide ore formation cannot explain formation of high sulfidation gold deposits. Mass precipitation of free gold requires phreatic collapse in the ore conduit channel already after formation of hydrothermally altered rocks, and this event results in creation of either hydrothermal breccias, often with jigsaw-fit texture or brecciated vuggy silica where host rocks and hydrothermally altered rocks are cemented by a gold-bearing quartz matrix.

Teşekkür

It is my pleasure to acknowledge the international team of economic geologists with whom I am successfully working and performing research for decades, and namely Dr Zurab Kutelia, Dr Revaz Kvatashidze, and Dr Irakli Narozauli (Georgia); Dr. Dmitry Pertel and Dr Paul Hanzl (Australia); Dr. Andrei Kharlashin (Russia), and many others. It is my sad duty to remember my late colleagues the friendships and llaboration with whom passed through my entire professional life, and namely: Prof. Dr Veniamin Gogishvili, Dr Tina Gogishvili (Georgia); Prof. Dr Bogdan Bogdanov (Bulgaria); Prof. Dr Mirko Vanĕček, Prof. Dr Zdenek Pouba (Czech Republic); Prof. Dr Valentin Naumenko, Dr Yuri Koptyukh (Ukraine); Dr Emin Suleymanov, Prof. Dr Vagif Ramazanov (Azerbaijan Republic); Dr Vladimir G. Zolotarev (Russia).

Kaynakça

  • Adamia, S. A., Chkhotua, T., Kekelia, M., Lordkipanidze, M., Zakariadze, G. 1981. Tectonics of the Caucasus and adjoining regions: implications for the evolution of the Tethys ocean. Journal of Structural Geology, 3, 437-447.
  • Adamia, S., Zakariadze, G., Chkhotua, T., Sadradze, N., Tsereteli, N., Chabukiani, A., Gventsadze, A. 2011. Geology of the Caucasus: a review. Turkish Journal of Earth Sciences, 20 (5), 489-544.
  • Aghazadeh, M., Hou, Z., Badrzadeh, Z., Zhou, L. 2015. Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 70 (4), 385-406.
  • Aluç, A., Kuşcu I, Peytcheva I., Cihan, M., von Quadt , A. 2020. The late Miocene Öksüt high sulfidation epithermal Au-Cu deposit, Central Anatolia, Turkey: Geology, geochronology, and geochemistry. Ore Geology Reviews, 126, 103795.
  • Arribas Jr., A. 1995. Characteristics of high sulfidation epithermal deposits, and their relation to magmatic fluid. Thompson, J.F.H. (ed.) Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada Short Course, 23, 419-454.
  • Berberian, M., King, G.C.P. 1981. Toward a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Science, 18, 210–265.
  • Berger, B.R., Ayuso, R.A., Wynn, J.C., Seal, R.R. 2008. Preliminary model of porphyry copper deposits. Open-File Report 2008- 1321. U.S. Department of the Interior, U.S. Geological Survey. Reston, 62.
  • Bogdanov, K., Musaev, S., Ahmedov, A., Salmanli, R. 2013. High-sulphidation (HS) epithermal gold mineralisation in the Chovdar deposit, Lesser Caucasus, Azerbaijan. Proceedings of Bulgarian Geological Society National Conference with international participation “GEOSCIENCES 2013”. Sofia, 15-16.
  • Boomeri, M., Nakashima, K., Lentz, D.R. 2010. The Sarcheshmeh porphyry copper deposit, Kerman, Iran: A mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes. Ore Geology Reviews, 38 (4), 367-381.
  • Cas, R., Giordano, G., Balsamo, F., Esposito, A., Lo Mastro, S. 2011. Hydrothermal Breccia Textures and Processes: Lisca Bianca Islet, Panarea Volcano, Aeolian Islands, Italy. Economic Geology, 106, 437-450.
  • Diarra, K., Sangu, E., Çiftçi. E. 2019. Ore mineralogy of high sulfidation Çorak-Taç epimesothermal gold deposit (Yusufeli-Artvin- Turkey). Glagolev, S. (ed.) Proceedings of 14th International Congress for Applied Mineralogy (ICAM2019), Springer Nature Switzerland AG. Cham, 53–58.
  • Einaudi, M. T., Hedenquist, J., Inan, E.E. 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Volcanic, Geothermal and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth. Special Publication 10. Society of Economic Geologists. Ottawa, 285-311.
  • Engin, T. 2003. Mineral Deposits of Turkey. Tvalchrelidze, A.G., Morizot, G. (eds). Mineral Resource Base of the Southern Caucasus and Systems for its Management in XXI Century. Kluwer Academic Publishers. Dordrecht-Boston-London, 81-104.
  • Ersoy, A. 2022. The current status of gold mining in Turkey: An overview. NOHU Journal of Engineering Sciences, 11(4), 1103- 1114.
  • Ghaderi, M., Narges, Y., Mina, B.K. 2018. Porphyry copper deposits of Iran. Tarbiat Modarres University Press. Tehran, 668. Goldfarb, R.J., Groves, D.I., Gardoll, S. 2001. Orogenic gold and geologic time: a global synthesis. Ore Geology Reviews, 18 (1-2), 1-75.
  • Gülyüz, N., Gülyüz, E., Shipton, Z.K., Kuşcu, İ., Lord, L.A. 2020. Geological and mineralization characteristics of the Kestanelik epithermal Au-Ag deposit in the Tethyan Metallogenic Belt, NW Turkey. Geoscience Journal, 24, 407–424.
  • Hajalilou, B., Aghazadeh, M. 2016. Geological, alteration and mineralization characteristics of Ali Javad Porphyry Cu-Au deposit, Arasbaran Zone, NW Iran. Open Journal of Geology, 6, 859-874.
  • Hastorun, S. 2022. The mineral industry of Turkey. 2019 Minerals Yearbook. Turkey. U.S. Department of the Interior, U.S. Geological Survey. Manto Park, 47.1-47.19. Hedenquist, J.W. 2000. Exploration for epithermal gold deposits. SEG Reviews, 13, 245-277.
  • Heidari, S.M., Daliran, F., Paquette, J.-L., Gasquet, D. 2015. Geology, timing, and genesis of the high sulfidation Au (-Cu) deposit of Touzlar, NW Iran. Ore Geology Reviews, 65, 460–486.
  • Hosseini, S.A., Asghari, O., Emery, X. 2017. Direct block-support simulation of grades in multi-element deposits: application to recoverable mineral resource estimation at Sungun porphyry copper-molybdenum deposit. The Journal of the South African Institute of Mining and Metallurgy, 117, 577-585.
  • Imamverdiyev, N.A., Baba-zadeh, V.M., Mursalov, S.S., Valiyev, A.A., Mansurov, M.I., Abdullayeva, S.F. 2021. New perspective Reza gold deposit (Gedabek ore district, Lesser Caucasus, Azerbaijan). Journal of Geology, Geography and Geoecology. 30 (1), 53-64.
  • John, D.A. (Ed.). 2010. Porphyry copper deposit model. Scientific Investigations Report 2010-5070-B. U.S. Department of the Interior, U.S. Geological Survey, Reston, 170.
  • John, D.A., Vikre, P.G., du Bray, E.A, Blakely, R.J., Fey, D.L., Rockwell, B.W., Mauk, J.L., Anderson, E.D., Graybeal, F.T. 2018. Descriptive models for epithermal gold-silver deposits. Mineral Deposit Models for Resource Assessment. Scientific Investigations Report 2010–5070–Q. U.S. Department of the Interior, U.S. Geological Survey. Reston, 264.
  • Kaviani, A., Hatzfeld, D., Paul, A., Tatar, M., Priestley. K. 2009. Shear-wave splitting, lithospheric anisotropy, and mantle deformation beneath the Arabia-Eurasia collision zone in Iran. Earth and Planetary Science Letters, 286 (3-4), 371–378.
  • Kolonin, G.R. 1983. Acidity & alkalinity evolution character in ore-forming fluid based on experimental data. Dobretsov, N.L. (ed.) Dynamic and Physical-Chemical Models of Magmatic Systems.: Nauka Publisher. Novosibirsk, 57-70 (in Russian).
  • Kuşcu I., Tosdal, Richard M., Gençalioğlu-Kuşcu, G. 2019. Chapter 8. Porphyry-Cu Deposits of Turkey. Pirajno, F., Ünlü, T., Dönmez, C., Şahin, B.M. (eds): Mineral Resources of Turkey. Springer Nature Switzerland AG. Cham, 337-425.
  • Marakushev, A.A., Bezmen, N.I. 1970. Thermodynamics of sulfides and oxides related to ore formation problems. Nauka Publisher.Moscow, 215 (in Russian).
  • Marutani, M. 2003. Study on mining sector development master plan in the Republic of Armenia. Final report. Japan International Cooperation Agency (JICA), Steering Committee of Study on Mining Sector Development Master Plan of Government of the Republic of Armenia. Yerevan-Tokyo, 46.
  • Mederer, J., Moritz, R., Ulianov, A., Chiaradia. M. 2013. Middle Jurassic to Cenozoic evolution of arc magmatism during Neotethys subduction and arc-continent collision in the Kapan Zone, southern Armenia. Lithos, 177, 61-78.
  • Mehrabi, B., Chaghaneh, N., Fazel, E.T. 2008. Intermediate sulfidation epithermal mineralization of No. 4 anomaly of Golojeh deposit (N. Zanjan) based on mineralography, alteration and ore fluid geochemistry features. Journal of Economic Geology, 6 (1), 1-22.
  • Mehrabi, B., Sianib, M.G., Azizic, H. 2014. The genesis of the epithermal gold mineralization at North Glojeh Veins, NW Iran.International Journal of Sciences: Basic and Applied Research (IJSBAR), 15 (1), 479-497.
  • Moritz, R., Rezeau, H., Ovtcharova, M., Tayan, R., Melkonyan, R., Hovakimyan, S., Ramazanov, V., Selby, D., Ulianov, A., Chiaradia, M., Putlitz, B. 2016. Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan. Gondwana Research, 37, 465-503.
  • Moritz, R., Reseau, H., Mederer, J., Gialli, S., Hemon, P., Lavoie, J., Calder, M., Hovakimyan, S., Melkonyan,, R., Tayan, R., Popkhadze, N., GuGushvili, V., Ramazanov, V. 2017. Gold deposits of the Lesser Caucasus: products of successive Mesozoic and Cenozoic geodynamic settings. Mineral Resources to Discover – Proceedings of the 14th SGA Biennial Meeting, 1. Society for Geology Applied to Mineral Deposits. Geneve, 67-70.
  • Oyman, T., Minareci, F., Pişkin, Ö. 2003. Efemçukuru B-rich epithermal gold deposit (İzmir, Turkey). Ore Geology Reviews, 23, (1-2), 35-53.
  • Payot, B.D., Maglambayan, V.B., Dimalanta, C.B., Yumul Jr., G.P., Tamayo Jr., R.A., Matsuda, T., Suzuki, S., Bellon, H. 2005. Geology and hydrothermal alteration of the low sulfidation Pantingan Gold System, Mount Mariveles, Bataan (Luzon), Philippines. Resource Geology, 55 (3), 155-162.
  • Richards, J.P. 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70, 323-345.
  • Shafiei, B., Shahabpour, J. 2008. Gold distribution in porphyry copper deposits of Kerman Region, southeastern Iran. Journal of Sciences, 19 (3), 247-260.
  • Sholeh, A., Rastad, E., Huston, D., Gemmell, J.B., Taylor, R.D. 2016. The Chahnaly low-sulfidation epithermal gold deposit, Western Makran volcanic arc, southeast Iran. Economic Geology, 111, 619–639.
  • Sillitoe, R.H. 2000. Styles of high-sulphidation gold, silver and copper mineralisation in porphyry and epithermal environments.Proceedings of the Australasian Institute of Mining and Metallurgy, 305, 19-34.
  • Sinclair, W.D. 2007. Porphyry Deposits. Goodfellow, W.D. (ed.) Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, 223-243.
  • Taylor, B.E. 2007. Epithermal gold deposits. Goodfellow, W.D. (ed.) Mineral Deposits of Canada: A Synthesis of Major Deposit- Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, 113-139.
  • Tvalchrelidze, A.G. 1986. Physico-chemical conditions of base metal sulphide ore formation. Friedrich, G.H., Genkin, A.D., Naldrett, A.J. Ridge, J.D., Sillitoe, R.H. Vokes, F.M. (eds.) Geology and Metallogeny of Copper Deposits. Springer- Verlag. Berlin-Heidelberg-New York-London-Paris-Tokyo, 358-369.
  • Tvalchrelidze, A.G. 1987. Geochemical conditions of base metal sulfide deposit formation. Nedra Press. Moscow, 188 (in Russian).
  • Tvalchrelidze, A.G. 1993. Quantitative models of vein type ore deposits and theory of rhythmical zoning. Geological Association of Canada Special Papers, 40, 751-760.
  • Tvalchrelidze, A.G. 2003. Mineral resource base of Georgia in XXI century. Tvalchrelidze, A.G., Morizot, G. (eds.) Mineral Resource Base of the Southern Caucasus and Systems for its Management in the XXI Century. Kluwer Academic Publisher. Dordrecht-Boston-London, 19-70.
  • Tvalchrelidze, A.G. 2006. Mineral resources and mineral resource base of Georgia. Rudy I Metally Publishing House. Moscow, 320 (in Russian).
  • Tvalchrelidze, G.A. 1980. Copper metallogeny of the Caucasus. Jankovic, S. (ed.) European Copper Deposits. Belgrade, 191-196.
  • Tvalchrelidze, G.A. 1984. Main features of metallogeny of the Caucasus, Janelidze, T.V., Tvalchrelidze, A.G. (eds): Proceedings of the Sixth Quadrennial IAGOD Symposium. Vol. 1. E. Schweizerbat’sche Verlagbuchhandlung. Stuttgart, 1-5.
  • Veliyev, A., Bayramov, A., Ibrahimov, J., Mammadov, S., Alizhadeh, G. 2018. Geological setting and ore perspective of the new discovered Gadir low sulfidation epithermal deposit, Gedabek NW flank, Lesser Caucasus, Azerbaijan. Universal Journal of Geoscience, 6 (3), 78-101.
  • Wang, L., Qin, K., Song, G., Li, G. 2019. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews 107, 434-456.
  • Yigit, O. 2006. Gold in Turkey – a missing link in Tethyan metallogeny. Ore Geology Reviews, 28 (2), 147-179.
  • Yigit, O. 2009. Mineral deposits of Turkey in relation to Tethyan metallogeny: Implications for future mineral exploration. Economic Geology, 104 (1), 19-51.
  • Zolotarev, V.G. 1985. Spatial-temporal dynamics of processes related to granite consolidations and their role in ore formation.Sciences de Terre. Série Information géologique, 23, 27-48.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Maden Yatakları ve Jeokimya
Bölüm Makaleler
Yazarlar

Alexander G. Tvalchrelidze Bu kişi benim 0000-0002-7383-6947

Yayımlanma Tarihi 13 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 174 Sayı: 174

Kaynak Göster

APA Tvalchrelidze, A. G. (2024). Porphyry and Epithermal Au-Cu Systems of the Southern Caucasus and Northern Iran. Bulletin of the Mineral Research and Exploration, 174(174), 37-53. https://doi.org/10.19111/bulletinofmre.1394073
AMA Tvalchrelidze AG. Porphyry and Epithermal Au-Cu Systems of the Southern Caucasus and Northern Iran. Bull.Min.Res.Exp. Ağustos 2024;174(174):37-53. doi:10.19111/bulletinofmre.1394073
Chicago Tvalchrelidze, Alexander G. “Porphyry and Epithermal Au-Cu Systems of the Southern Caucasus and Northern Iran”. Bulletin of the Mineral Research and Exploration 174, sy. 174 (Ağustos 2024): 37-53. https://doi.org/10.19111/bulletinofmre.1394073.
EndNote Tvalchrelidze AG (01 Ağustos 2024) Porphyry and Epithermal Au-Cu Systems of the Southern Caucasus and Northern Iran. Bulletin of the Mineral Research and Exploration 174 174 37–53.
IEEE A. G. Tvalchrelidze, “Porphyry and Epithermal Au-Cu Systems of the Southern Caucasus and Northern Iran”, Bull.Min.Res.Exp., c. 174, sy. 174, ss. 37–53, 2024, doi: 10.19111/bulletinofmre.1394073.
ISNAD Tvalchrelidze, Alexander G. “Porphyry and Epithermal Au-Cu Systems of the Southern Caucasus and Northern Iran”. Bulletin of the Mineral Research and Exploration 174/174 (Ağustos 2024), 37-53. https://doi.org/10.19111/bulletinofmre.1394073.
JAMA Tvalchrelidze AG. Porphyry and Epithermal Au-Cu Systems of the Southern Caucasus and Northern Iran. Bull.Min.Res.Exp. 2024;174:37–53.
MLA Tvalchrelidze, Alexander G. “Porphyry and Epithermal Au-Cu Systems of the Southern Caucasus and Northern Iran”. Bulletin of the Mineral Research and Exploration, c. 174, sy. 174, 2024, ss. 37-53, doi:10.19111/bulletinofmre.1394073.
Vancouver Tvalchrelidze AG. Porphyry and Epithermal Au-Cu Systems of the Southern Caucasus and Northern Iran. Bull.Min.Res.Exp. 2024;174(174):37-53.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en