Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 175 Sayı: 175, 19 - 40, 05.12.2024
https://doi.org/10.19111/bulletinofmre.1411403

Öz

Proje Numarası

2003K120360

Kaynakça

  • Andreassen, K., Mienert, J., Bryn, P., Singh, S. C. 2000. A Double gas-hydrate related bottom simulating reflector at the Norwegian continental margin. Annals of the New York Academy of Sciences, 912(1), 126–135.
  • Andreassen, K., Nilssen, E. G., Ødegaard, C. M. 2007. Analysis of shallow gas and fluid migration within the Plio-Pleistocene sedimentary succession of the SW Barents Sea continental margin using 3D seismic data. Geo-Marine Letters, 27(2–4), 155–171.
  • Ashi, J., Tokuyama, H., Taira, A. 2002. Distribution of methane hydrate BSRs and its implication for the prism growth in the Nankai Trough. Marine Geology, 187(1–2), 177–191.
  • Baba, K., Yamada, Y. 2004. BSRs and Associated Reflections as an Indicator of Gas Hydrate and Free Gas Accumulation: An Example of Accretionary Prism and Forearc Basin System along the Nankai Trough, off Central Japan. Resource Geology, 54(1), 11–24.
  • Bangs, N. L. B. 2005. Upward shifts in the southern Hydrate Ridge gas hydrate stability zone following postglacial warming, offshore Oregon. Journal of Geophysical Research, 110(B3).
  • Bangs, N. L., Hornbach, M. J., Berndt, C. 2011. The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying. Earth and Planetary Science Letters, 310(1–2), 105–112.
  • Belousov, V. V., Volvovsky, B. S. 1989. Structure and Evolution of the Earths’s Crust and Upper Mantle of the Black Sea, Nauka, Moscow (in Russian).
  • Bialas, J., Klaucke, I., Haeckel, M. 2014. Fs Maria S. Merian Fahrtbericht / Cruise ReportMSM34/1 & 2 - SUGAR Site; Varna – Varna.
  • Chazallon, B., Rodriguez, C., Ruffine, L., Carpentier, Y., Donval, J. P., Ker, S., Riboulot, V. 2021. Characterizing the variability of natural gas hydrate composition from a selected site of the Western Black Sea, off Romania. Marine and Petroleum Geology, 124, 104785.
  • Cook, A. E., Goldberg, D. S., Malinverno, A. 2014. Natural gas hydrates occupying fractures: A focus on non- vent sites on the Indian continental margin and the northern Gulf of Mexico. Marine and Petroleum Geology, 58, 278–291.
  • Çifci, G. 2020. Gas hydrates: The energy source of the near future. Belt and Road Initiative Quarterly, 2(1), 63-76.
  • Dondurur, D. 2021. Gaz Hidratlar ve Çevre Denizlerimizde Gaz Hidrat Potansiyeli, Türkiye’nin Ekstrem Deniz Araştırmaları Ortamları. Türk Deniz Araştırmaları Vakfı (TÜDAV), 2021, 52-75.
  • Du Fornel, E. 1999. Architecture du cône profond du Danube ensismique reflexion 2D. MSc dissertation Université Montpellier II: 46 pp.
  • Dugan, B. 2012. Petrophysical and consolidation behavior of mass transport deposits from the northern Gulf of Mexico, IODP Expedition 308. Marine Geology, 315–318, 98–107.
  • Finetti, I., Bricchi, G., Del Ben, A., Pipan, M., Xuan, Z. 1988. Geophysical study of the Black Sea. Bolletino Di Geofisica Teorica Ed Applicata, 30, 197–324.
  • Foucher, J. P., Nouzé, H., Henry, P. 2002. Observation and tentative interpretation of a double BSR on the Nankai slope. Marine Geology, 187(1–2), 161–175.
  • Ginsburg, G. D. 1998. Submarine Gas Hydrates. VNIIOkeangeologia.
  • Haacke, R. R., Westbrook, G. K., Hyndman, R. D. 2007. Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector. Earth and Planetary Science Letters, 261(3–4), 407–420.
  • Hillman, J. I., Klaucke, I., Bialas, J., Feldman, H., Drexler, T., Awwiller, D., Atgin, O., Çifçi, G., Badhani, S. 2018. Gas migration pathways and slope failures in the Danube Fan, Black Sea. Marine and Petroleum Geology, 92, 1069–1084.
  • Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A., Lizarralde, D. 1996. Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling. Science, 273(5283), 1840–1843.
  • Hornbach, M. J., Manga, M., Genecov, M., Valdez, R., Miller, P., Saffer, D., Adelstein, E., Lafuerza, S., Adachi, T., Breitkreuz, C., Jutzeler, M., Le Friant, A., Ishizuka, O., Morgan, S., Slagle, A., Talling, P. J., Fraass, A., Watt, S. F. L., Stroncik, N. A., Wang, F. 2015. Permeability and pressure measurements in Lesser Antilles submarine slides: Evidence for pressure-driven slow-slip failure. Journal of Geophysical Research: Solid Earth, 120(12), 7986–8011.
  • Horozal, Ş., Lee, G. H., Yi, B. Y., Yoo, D. G., Park, K. P., Lee, H. Y., Kim, W., Kim, H. J., Lee, K. 2009. Seismic indicators of gas hydrate and associated gas in the Ulleung Basin, East Sea (Japan Sea) and implications of heat flows derived from depths of the bottom-simulating reflector. Marine Geology, 258(1–4), 126–138.
  • Hyndman, R. D., Davis, E. E. 1992. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. Journal of Geophysical Research: Solid Earth, 97(B5), 7025–7041.
  • Ivanov, M., Limonov, A., van Weering, T. 1996. Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes. Marine Geology, 132(1–4), 253–271.
  • Kazmin, V. G., Schreider, A. A., Bulychev, A. A. 2000. Early stages of evolution of the Black Sea. Geological Society, London, Special Publications, 173(1), 235-249.
  • Küçük, H. M. 2016. Batı Karadeniz Zonguldak-Amasra açıklarında gaz ve gaz hidratların jeolojik ve jeofizik yöntemlerle araştırılması, Doktora Tezi. Dokuz Eylül Üniversitesi.
  • Kvenvolden, K. A. 1995. A review of the geochemistry of methane in natural gas hydrate. Organic Geochemistry, 23(11–12), 997–1008.
  • Lee, J. Y., Ryu, B. J., Yun, T. S., Lee, J., Cho, G. C. 2011. Review on the gas hydrate development and production as a new energy resource. KSCE Journal of Civil Engineering, 15(4), 689–696.
  • Lerche, I., Bagirov, E. 1998. Guide to gas hydrate stability in various geological settings. Marine and Petroleum Geology, 15 (1), 427-437.
  • Lericolais, G., Bourget, J., Popescu, I., Jermannaud, P., Mulder, T., Jorry, S., Panin, N. 2013. Late Quaternary deep-sea sedimentation in the western Black Sea: New insights from recent coring and seismic data in the deep basin. Global and Planetary Change, 103, 232–247.
  • Milkov, A., Sassen, R. 2000. Thickness of the gas hydrate stability zone, Gulf of Mexico continental slope. Marine and Petroleum Geology, 17(9), 981–991.
  • Minshull, T. A., Marín-Moreno, H., Betlem, P., Bialas, J., Bünz, S., Burwicz, E., Cameselle, A. L., Çifçi, G., Giustiniani, M., Hillman, J., Hölz, S., Hopper, J. R., Ion, G., León, R., Magalhães, V., Makovsky, Y., Mata, P., Max, M. D., Nielsen, T., Vázquez, J. 2020. Hydrate occurrence in Europe: A review of available evidence. Marine and Petroleum Geology, 111, 735–764.
  • Nasıf, A., Özel, E., Dondurur, D. 2020. Seismic identification of gas hydrates: a case study from Sakarya Canyon, western Black Sea. Turkish Journal of Earth Sciences, 29(3), 434-454.
  • Nikishin, A. M., Okay, A. I., Tüysüz, O., Demirer, A., Amelin, N., Petrov, E. 2015. The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Marine and Petroleum Geology, 59, 638–655.
  • Özel, Z., Dondurur, D., Klaucke, I. 2022. Seismic and geoacoustic evidence for subsurface fluid flow and seepage offshore Akçakoca, Southwestern Black Sea, Turkey. Geo-Marine Letters, 42(4).
  • Pape, T., Bahr, A., Klapp, S. A., Abegg, F., Bohrmann, G. 2011. High-intensity gas seepage causes rafting of shallow gas hydrates in the southeastern Black Sea. Earth and Planetary Science Letters, 307(1– 2), 35–46.
  • Pape, T., Haeckel, M., Riedel, M., Kölling, M., Schmidt, M., Wallmann, K., Bohrmann, G. 2020. Formation pathways of light hydrocarbons in deep sediments of the Danube deep-sea fan, Western Black Sea. Marine and Petroleum Geology, 122, 104627.
  • Poort, J., Vassilev, A., Dimitrov, L. 2005. Did postglacial catastrophic flooding trigger massive changes in the Black Sea gas hydrate reservoir? Terra Nova, 17(2), 135–140.
  • Popescu, I., Lericolais, G., Panin, N., Wong, H., Droz, L. 2001. Late Quaternary channel avulsions on the Danube deep-sea fan, Black Sea. Marine Geology, 179(1–2), 25–37.
  • Popescu, I., De Batist, M., Lericolais, G., Nouzé, H., Poort, J., Panin, N., Versteeg, W., Gillet, H. 2006. Multiple bottom-simulating reflections in the Black Sea: Potential proxies of past climate conditions. Marine Geology, 227(3–4), 163–176.
  • Posewang, J., Mienert, J. 1999. The enigma of double BSRs: indicators for changes in the hydrate stability field? Geo-Marine Letters, 19(1–2), 157–163.
  • Reece, J. S., Flemings, P. B., Dugan, B., Long, H., Germaine, J. T. 2012. Permeability-porosity relationships of shallow mudstones in the Ursa Basin, northern deepwater Gulf of Mexico. Journal of Geophysical Research: Solid Earth, 117(B12), n/a-n/a.
  • Riedel, M., Bahk, J. J., Scholz, N., Ryu, B. J., Yoo, D. G., Kim, W., Kim, G. 2012. Mass-transport deposits and gas hydrate occurrences in the Ulleung Basin, East Sea – Part 2: Gas hydrate content and fracture-induced anisotropy. Marine and Petroleum Geology, 35(1), 75–90.
  • Robinson, A., Rudat, J., Banks, C., Wiles, R. 1996. Petroleum geology of the Black Sea. Marine and Petroleum Geology, 13(2), 195–223.
  • Römer, M., Sahling, H., Pape, T., Bahr, A., Feseker, T., Wintersteller, P., Bohrmann, G. 2012. Geological control and magnitude of methane ebullition from a high-flow seep area in the Black Sea—the Kerch seep area. Marine Geology, 319–322, 57–74.
  • Sloan, E. D., Koh, C. A. 2007. Clathrate Hydrates of Natural Gases. CRC Press.
  • Starostenko, V., Buryanov, V., Makarenko, I., Rusakov, O., Stephenson, R., Nikishin, A., Georgiev, G., Gerasimov, M., Dimitriu, R., Legostaeva, O., Pchelarov, V., Sava, C. 2004. Topography of the crust–mantle boundary beneath the Black Sea Basin. Tectonophysics, 381(1–4), 211–233.
  • Sun, Q., Alves, T. 2020. Petrophysics of fine-grained mass- transport deposits: A critical review. Journal of Asian Earth Sciences, 192, 104291.
  • Sun, Q., Alves, T. M., Lu, X., Chen, C., Xie, X. 2018. True Volumes of Slope Failure Estimated From a Quaternary Mass-Transport Deposit in the Northern South China Sea. Geophysical Research Letters, 45(6), 2642–2651.
  • Thakur, N. K., Rajput, S. 2010. Exploration of Gas Hydrates. Springer Science and Business Media.
  • Tréhu, A., Long, P., Torres, M., Bohrmann, G., Rack, F., Collett, T., Goldberg, D., Milkov, A., Riedel, M., Schultheiss, P., Bangs, N., Barr, S., Borowski, W., Claypool, G., Delwiche, M., Dickens, G., Gracia, E., Guerin, G., Holland, M., Weinberger, J. 2004. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth and Planetary Science Letters, 222(3–4), 845–862.
  • Tugolesov, D. A., Gorshkov, A. S., Meysner, L. B., Soloviov, V. V., Khakhalev, E. M., Akilova, Yu. V., Akentieva, G. P., Gabidulina, T. I., Kolomeytseva, S. A., Kochneva, T. Yu., Pereturina, I. G., Plashihina, I. N. 1985. Tectonics of the Mesozoic Sediments of the Black Sea Basin. Moscow, Nedra [in Russian].
  • Vassiliev, A., Dimitrov, L. 2003. Model Evaluation of the Black Sea Gas Hydrates. Geophysique Ocenologie.
  • Winguth, C., Wong, H., Panin, N., Dinu, C., Georgescu, P., Ungureanu, G., Krugliakov, V., Podshuveit, V. 2000. Upper Quaternary water level history and sedimentation in the northwestern Black Sea. Marine Geology, 167(1–2), 127–146.
  • Wong, H. K., Winguth, C., Panin, N., Dinu, C., Wollschläger, M., Georgescu, P., Ungereanu, G., Krugliakov, V. V., Podshuveit, V. 1997. The Danube and Dniepr fans, morphostructure, and evolution. GeoEcoMarina, 2, 77–102.
  • Woodside, J. M., Ivanov, M. K. Limonov, A. F. 1997. Neotectonics and Fluid Flow Through Seafloor Sediments in the Eastern Mediterranean and Black Seas: Eastern Mediterranean Sea.
  • Yefremova, A. G., Zhizhchenko, B. P. 1974. Occurrence of crystal hydrates of gas in sediments of modern marine basins. Doklady Akademii Nauk SSSR, 214, 1179–1181.
  • Yoo, D. G., Kang, N. K., Yi, B. Y., Kim, G. Y., Ryu, B. J., Lee, K., Lee, G. H., Riedel, M. 2013. Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea. Marine and Petroleum Geology, 47, 236–247.
  • Zander, T., Haeckel, M., Berndt, C., Chi, W. C., Klaucke, I., Bialas, J., Klaeschen, D., Koch, S., Atgın, O. 2017. On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea. Earth and Planetary Science Letters, 462, 15–25.
  • Zhang, X., Kong, G., Li, H., Wang, L., Yang, Q. 2022. Thermal conductivity of marine sediments influenced by porosity and temperature in the South China Sea. Ocean Engineering, 260, 111992.

Investigation of gas and gas hydrate accumulations along the continental margin of the Danube Delta (Romania and Bulgaria offshore) using seismic reflection data

Yıl 2024, Cilt: 175 Sayı: 175, 19 - 40, 05.12.2024
https://doi.org/10.19111/bulletinofmre.1411403

Öz

In 2012, a comprehensive study of the Danube River’s submarine channels continental slope was conducted, employing multi-beam bathymetry and over 2300 km of high-resolution two-dimensional seismic reflection data. The investigation aimed to delve into the area’s morphology, potential for gas hydrate presence, and the correlation between stratigraphic units and gas hydrates. Three distinct zones, revealed Bottom Simulating Reflectors (BSRs) indicating the base of gas hydrate accumulations in the seismic data. These BSR areas exhibited Type-1 reflections, characterized by continuous cuts across layers. Notably, five discrete levels of BSRs were detected, suggesting a consistent gas composition across them. The multiple BSR formations are attributed to higher sedimentation rates relative to gas hydrate dissolution rates. Mass transport deposits (MTDs) within the gas hydrate stability zone (6 in total) were identified; their highly consolidated nature could account for the absence of gas hydrates within them. Additionally, one MTD displayed elevated heat flow measurements, indicating a higher geothermal gradient, likely due to its relatively high thermal conductivity. This disparity in thermal properties explains the deeper-than-expected BSR in this specific region, as it forms at a lower temperature equilibrium level due to efficient heat conduction.

Etik Beyan

We would like to express our gratitude to the GEOMAR Helmholtz Centre for Ocean Research Kiel Institute for their contributions in data collection under the SUGAR Project. Special thanks to the SeisLab geophysics laboratory team within the Institute of Marine Sciences and Technology. We also extend our appreciation to the scientific team aboard the R/V MARIA S. MERIAN research vessel and the ship’s crew for their dedicated efforts during the data collection process. We would like to acknowledge SEAMAP Inc. for their technical support in providing the equipment used in the laboratory during data collection. Additionally, we are grateful to the State Planning Organization for their support under project code “2003K120360,” which was instrumental in procuring the equipment and establishing the data processing laboratory. We also want to express our thanks to Landmark Graphics for providing the SeisSpace/Promax seismic data processing software. Lastly, we extend my appreciation to IHS Markit for generously providing the Kingdom Suite software for the interpretation of seismic data.

Destekleyen Kurum

We would like to express our gratitude to the GEOMAR Helmholtz Centre for Ocean Research Kiel Institute for their contributions in data collection under the SUGAR Project. Special thanks to the SeisLab geophysics laboratory team within the Institute of Marine Sciences and Technology. We also extend our appreciation to the scientific team aboard the R/V MARIA S. MERIAN research vessel and the ship’s crew for their dedicated efforts during the data collection process.

Proje Numarası

2003K120360

Teşekkür

We would like to express our gratitude to the GEOMAR Helmholtz Centre for Ocean Research Kiel Institute for their contributions in data collection under the SUGAR Project. Special thanks to the SeisLab geophysics laboratory team within the Institute of Marine Sciences and Technology. We also extend our appreciation to the scientific team aboard the R/V MARIA S. MERIAN research vessel and the ship’s crew for their dedicated efforts during the data collection process. We would like to acknowledge SEAMAP Inc. for their technical support in providing the equipment used in the laboratory during data collection. Additionally, we are grateful to the State Planning Organization for their support under project code “2003K120360,” which was instrumental in procuring the equipment and establishing the data processing laboratory. We also want to express our thanks to Landmark Graphics for providing the SeisSpace/Promax seismic data processing software. Lastly, we extend my appreciation to IHS Markit for generously providing the Kingdom Suite software for the interpretation of seismic data.

Kaynakça

  • Andreassen, K., Mienert, J., Bryn, P., Singh, S. C. 2000. A Double gas-hydrate related bottom simulating reflector at the Norwegian continental margin. Annals of the New York Academy of Sciences, 912(1), 126–135.
  • Andreassen, K., Nilssen, E. G., Ødegaard, C. M. 2007. Analysis of shallow gas and fluid migration within the Plio-Pleistocene sedimentary succession of the SW Barents Sea continental margin using 3D seismic data. Geo-Marine Letters, 27(2–4), 155–171.
  • Ashi, J., Tokuyama, H., Taira, A. 2002. Distribution of methane hydrate BSRs and its implication for the prism growth in the Nankai Trough. Marine Geology, 187(1–2), 177–191.
  • Baba, K., Yamada, Y. 2004. BSRs and Associated Reflections as an Indicator of Gas Hydrate and Free Gas Accumulation: An Example of Accretionary Prism and Forearc Basin System along the Nankai Trough, off Central Japan. Resource Geology, 54(1), 11–24.
  • Bangs, N. L. B. 2005. Upward shifts in the southern Hydrate Ridge gas hydrate stability zone following postglacial warming, offshore Oregon. Journal of Geophysical Research, 110(B3).
  • Bangs, N. L., Hornbach, M. J., Berndt, C. 2011. The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying. Earth and Planetary Science Letters, 310(1–2), 105–112.
  • Belousov, V. V., Volvovsky, B. S. 1989. Structure and Evolution of the Earths’s Crust and Upper Mantle of the Black Sea, Nauka, Moscow (in Russian).
  • Bialas, J., Klaucke, I., Haeckel, M. 2014. Fs Maria S. Merian Fahrtbericht / Cruise ReportMSM34/1 & 2 - SUGAR Site; Varna – Varna.
  • Chazallon, B., Rodriguez, C., Ruffine, L., Carpentier, Y., Donval, J. P., Ker, S., Riboulot, V. 2021. Characterizing the variability of natural gas hydrate composition from a selected site of the Western Black Sea, off Romania. Marine and Petroleum Geology, 124, 104785.
  • Cook, A. E., Goldberg, D. S., Malinverno, A. 2014. Natural gas hydrates occupying fractures: A focus on non- vent sites on the Indian continental margin and the northern Gulf of Mexico. Marine and Petroleum Geology, 58, 278–291.
  • Çifci, G. 2020. Gas hydrates: The energy source of the near future. Belt and Road Initiative Quarterly, 2(1), 63-76.
  • Dondurur, D. 2021. Gaz Hidratlar ve Çevre Denizlerimizde Gaz Hidrat Potansiyeli, Türkiye’nin Ekstrem Deniz Araştırmaları Ortamları. Türk Deniz Araştırmaları Vakfı (TÜDAV), 2021, 52-75.
  • Du Fornel, E. 1999. Architecture du cône profond du Danube ensismique reflexion 2D. MSc dissertation Université Montpellier II: 46 pp.
  • Dugan, B. 2012. Petrophysical and consolidation behavior of mass transport deposits from the northern Gulf of Mexico, IODP Expedition 308. Marine Geology, 315–318, 98–107.
  • Finetti, I., Bricchi, G., Del Ben, A., Pipan, M., Xuan, Z. 1988. Geophysical study of the Black Sea. Bolletino Di Geofisica Teorica Ed Applicata, 30, 197–324.
  • Foucher, J. P., Nouzé, H., Henry, P. 2002. Observation and tentative interpretation of a double BSR on the Nankai slope. Marine Geology, 187(1–2), 161–175.
  • Ginsburg, G. D. 1998. Submarine Gas Hydrates. VNIIOkeangeologia.
  • Haacke, R. R., Westbrook, G. K., Hyndman, R. D. 2007. Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector. Earth and Planetary Science Letters, 261(3–4), 407–420.
  • Hillman, J. I., Klaucke, I., Bialas, J., Feldman, H., Drexler, T., Awwiller, D., Atgin, O., Çifçi, G., Badhani, S. 2018. Gas migration pathways and slope failures in the Danube Fan, Black Sea. Marine and Petroleum Geology, 92, 1069–1084.
  • Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A., Lizarralde, D. 1996. Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling. Science, 273(5283), 1840–1843.
  • Hornbach, M. J., Manga, M., Genecov, M., Valdez, R., Miller, P., Saffer, D., Adelstein, E., Lafuerza, S., Adachi, T., Breitkreuz, C., Jutzeler, M., Le Friant, A., Ishizuka, O., Morgan, S., Slagle, A., Talling, P. J., Fraass, A., Watt, S. F. L., Stroncik, N. A., Wang, F. 2015. Permeability and pressure measurements in Lesser Antilles submarine slides: Evidence for pressure-driven slow-slip failure. Journal of Geophysical Research: Solid Earth, 120(12), 7986–8011.
  • Horozal, Ş., Lee, G. H., Yi, B. Y., Yoo, D. G., Park, K. P., Lee, H. Y., Kim, W., Kim, H. J., Lee, K. 2009. Seismic indicators of gas hydrate and associated gas in the Ulleung Basin, East Sea (Japan Sea) and implications of heat flows derived from depths of the bottom-simulating reflector. Marine Geology, 258(1–4), 126–138.
  • Hyndman, R. D., Davis, E. E. 1992. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. Journal of Geophysical Research: Solid Earth, 97(B5), 7025–7041.
  • Ivanov, M., Limonov, A., van Weering, T. 1996. Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes. Marine Geology, 132(1–4), 253–271.
  • Kazmin, V. G., Schreider, A. A., Bulychev, A. A. 2000. Early stages of evolution of the Black Sea. Geological Society, London, Special Publications, 173(1), 235-249.
  • Küçük, H. M. 2016. Batı Karadeniz Zonguldak-Amasra açıklarında gaz ve gaz hidratların jeolojik ve jeofizik yöntemlerle araştırılması, Doktora Tezi. Dokuz Eylül Üniversitesi.
  • Kvenvolden, K. A. 1995. A review of the geochemistry of methane in natural gas hydrate. Organic Geochemistry, 23(11–12), 997–1008.
  • Lee, J. Y., Ryu, B. J., Yun, T. S., Lee, J., Cho, G. C. 2011. Review on the gas hydrate development and production as a new energy resource. KSCE Journal of Civil Engineering, 15(4), 689–696.
  • Lerche, I., Bagirov, E. 1998. Guide to gas hydrate stability in various geological settings. Marine and Petroleum Geology, 15 (1), 427-437.
  • Lericolais, G., Bourget, J., Popescu, I., Jermannaud, P., Mulder, T., Jorry, S., Panin, N. 2013. Late Quaternary deep-sea sedimentation in the western Black Sea: New insights from recent coring and seismic data in the deep basin. Global and Planetary Change, 103, 232–247.
  • Milkov, A., Sassen, R. 2000. Thickness of the gas hydrate stability zone, Gulf of Mexico continental slope. Marine and Petroleum Geology, 17(9), 981–991.
  • Minshull, T. A., Marín-Moreno, H., Betlem, P., Bialas, J., Bünz, S., Burwicz, E., Cameselle, A. L., Çifçi, G., Giustiniani, M., Hillman, J., Hölz, S., Hopper, J. R., Ion, G., León, R., Magalhães, V., Makovsky, Y., Mata, P., Max, M. D., Nielsen, T., Vázquez, J. 2020. Hydrate occurrence in Europe: A review of available evidence. Marine and Petroleum Geology, 111, 735–764.
  • Nasıf, A., Özel, E., Dondurur, D. 2020. Seismic identification of gas hydrates: a case study from Sakarya Canyon, western Black Sea. Turkish Journal of Earth Sciences, 29(3), 434-454.
  • Nikishin, A. M., Okay, A. I., Tüysüz, O., Demirer, A., Amelin, N., Petrov, E. 2015. The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Marine and Petroleum Geology, 59, 638–655.
  • Özel, Z., Dondurur, D., Klaucke, I. 2022. Seismic and geoacoustic evidence for subsurface fluid flow and seepage offshore Akçakoca, Southwestern Black Sea, Turkey. Geo-Marine Letters, 42(4).
  • Pape, T., Bahr, A., Klapp, S. A., Abegg, F., Bohrmann, G. 2011. High-intensity gas seepage causes rafting of shallow gas hydrates in the southeastern Black Sea. Earth and Planetary Science Letters, 307(1– 2), 35–46.
  • Pape, T., Haeckel, M., Riedel, M., Kölling, M., Schmidt, M., Wallmann, K., Bohrmann, G. 2020. Formation pathways of light hydrocarbons in deep sediments of the Danube deep-sea fan, Western Black Sea. Marine and Petroleum Geology, 122, 104627.
  • Poort, J., Vassilev, A., Dimitrov, L. 2005. Did postglacial catastrophic flooding trigger massive changes in the Black Sea gas hydrate reservoir? Terra Nova, 17(2), 135–140.
  • Popescu, I., Lericolais, G., Panin, N., Wong, H., Droz, L. 2001. Late Quaternary channel avulsions on the Danube deep-sea fan, Black Sea. Marine Geology, 179(1–2), 25–37.
  • Popescu, I., De Batist, M., Lericolais, G., Nouzé, H., Poort, J., Panin, N., Versteeg, W., Gillet, H. 2006. Multiple bottom-simulating reflections in the Black Sea: Potential proxies of past climate conditions. Marine Geology, 227(3–4), 163–176.
  • Posewang, J., Mienert, J. 1999. The enigma of double BSRs: indicators for changes in the hydrate stability field? Geo-Marine Letters, 19(1–2), 157–163.
  • Reece, J. S., Flemings, P. B., Dugan, B., Long, H., Germaine, J. T. 2012. Permeability-porosity relationships of shallow mudstones in the Ursa Basin, northern deepwater Gulf of Mexico. Journal of Geophysical Research: Solid Earth, 117(B12), n/a-n/a.
  • Riedel, M., Bahk, J. J., Scholz, N., Ryu, B. J., Yoo, D. G., Kim, W., Kim, G. 2012. Mass-transport deposits and gas hydrate occurrences in the Ulleung Basin, East Sea – Part 2: Gas hydrate content and fracture-induced anisotropy. Marine and Petroleum Geology, 35(1), 75–90.
  • Robinson, A., Rudat, J., Banks, C., Wiles, R. 1996. Petroleum geology of the Black Sea. Marine and Petroleum Geology, 13(2), 195–223.
  • Römer, M., Sahling, H., Pape, T., Bahr, A., Feseker, T., Wintersteller, P., Bohrmann, G. 2012. Geological control and magnitude of methane ebullition from a high-flow seep area in the Black Sea—the Kerch seep area. Marine Geology, 319–322, 57–74.
  • Sloan, E. D., Koh, C. A. 2007. Clathrate Hydrates of Natural Gases. CRC Press.
  • Starostenko, V., Buryanov, V., Makarenko, I., Rusakov, O., Stephenson, R., Nikishin, A., Georgiev, G., Gerasimov, M., Dimitriu, R., Legostaeva, O., Pchelarov, V., Sava, C. 2004. Topography of the crust–mantle boundary beneath the Black Sea Basin. Tectonophysics, 381(1–4), 211–233.
  • Sun, Q., Alves, T. 2020. Petrophysics of fine-grained mass- transport deposits: A critical review. Journal of Asian Earth Sciences, 192, 104291.
  • Sun, Q., Alves, T. M., Lu, X., Chen, C., Xie, X. 2018. True Volumes of Slope Failure Estimated From a Quaternary Mass-Transport Deposit in the Northern South China Sea. Geophysical Research Letters, 45(6), 2642–2651.
  • Thakur, N. K., Rajput, S. 2010. Exploration of Gas Hydrates. Springer Science and Business Media.
  • Tréhu, A., Long, P., Torres, M., Bohrmann, G., Rack, F., Collett, T., Goldberg, D., Milkov, A., Riedel, M., Schultheiss, P., Bangs, N., Barr, S., Borowski, W., Claypool, G., Delwiche, M., Dickens, G., Gracia, E., Guerin, G., Holland, M., Weinberger, J. 2004. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth and Planetary Science Letters, 222(3–4), 845–862.
  • Tugolesov, D. A., Gorshkov, A. S., Meysner, L. B., Soloviov, V. V., Khakhalev, E. M., Akilova, Yu. V., Akentieva, G. P., Gabidulina, T. I., Kolomeytseva, S. A., Kochneva, T. Yu., Pereturina, I. G., Plashihina, I. N. 1985. Tectonics of the Mesozoic Sediments of the Black Sea Basin. Moscow, Nedra [in Russian].
  • Vassiliev, A., Dimitrov, L. 2003. Model Evaluation of the Black Sea Gas Hydrates. Geophysique Ocenologie.
  • Winguth, C., Wong, H., Panin, N., Dinu, C., Georgescu, P., Ungureanu, G., Krugliakov, V., Podshuveit, V. 2000. Upper Quaternary water level history and sedimentation in the northwestern Black Sea. Marine Geology, 167(1–2), 127–146.
  • Wong, H. K., Winguth, C., Panin, N., Dinu, C., Wollschläger, M., Georgescu, P., Ungereanu, G., Krugliakov, V. V., Podshuveit, V. 1997. The Danube and Dniepr fans, morphostructure, and evolution. GeoEcoMarina, 2, 77–102.
  • Woodside, J. M., Ivanov, M. K. Limonov, A. F. 1997. Neotectonics and Fluid Flow Through Seafloor Sediments in the Eastern Mediterranean and Black Seas: Eastern Mediterranean Sea.
  • Yefremova, A. G., Zhizhchenko, B. P. 1974. Occurrence of crystal hydrates of gas in sediments of modern marine basins. Doklady Akademii Nauk SSSR, 214, 1179–1181.
  • Yoo, D. G., Kang, N. K., Yi, B. Y., Kim, G. Y., Ryu, B. J., Lee, K., Lee, G. H., Riedel, M. 2013. Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea. Marine and Petroleum Geology, 47, 236–247.
  • Zander, T., Haeckel, M., Berndt, C., Chi, W. C., Klaucke, I., Bialas, J., Klaeschen, D., Koch, S., Atgın, O. 2017. On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea. Earth and Planetary Science Letters, 462, 15–25.
  • Zhang, X., Kong, G., Li, H., Wang, L., Yang, Q. 2022. Thermal conductivity of marine sediments influenced by porosity and temperature in the South China Sea. Ocean Engineering, 260, 111992.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genel Jeoloji
Bölüm Makaleler
Yazarlar

Orhan Atgın Bu kişi benim 0000-0002-5668-2106

Günay Çifçi 0000-0002-4380-8056

Proje Numarası 2003K120360
Yayımlanma Tarihi 5 Aralık 2024
Gönderilme Tarihi 11 Kasım 2023
Kabul Tarihi 28 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 175 Sayı: 175

Kaynak Göster

APA Atgın, O., & Çifçi, G. (2024). Investigation of gas and gas hydrate accumulations along the continental margin of the Danube Delta (Romania and Bulgaria offshore) using seismic reflection data. Bulletin of the Mineral Research and Exploration, 175(175), 19-40. https://doi.org/10.19111/bulletinofmre.1411403
AMA Atgın O, Çifçi G. Investigation of gas and gas hydrate accumulations along the continental margin of the Danube Delta (Romania and Bulgaria offshore) using seismic reflection data. Bull.Min.Res.Exp. Aralık 2024;175(175):19-40. doi:10.19111/bulletinofmre.1411403
Chicago Atgın, Orhan, ve Günay Çifçi. “Investigation of Gas and Gas Hydrate Accumulations Along the Continental Margin of the Danube Delta (Romania and Bulgaria Offshore) Using Seismic Reflection Data”. Bulletin of the Mineral Research and Exploration 175, sy. 175 (Aralık 2024): 19-40. https://doi.org/10.19111/bulletinofmre.1411403.
EndNote Atgın O, Çifçi G (01 Aralık 2024) Investigation of gas and gas hydrate accumulations along the continental margin of the Danube Delta (Romania and Bulgaria offshore) using seismic reflection data. Bulletin of the Mineral Research and Exploration 175 175 19–40.
IEEE O. Atgın ve G. Çifçi, “Investigation of gas and gas hydrate accumulations along the continental margin of the Danube Delta (Romania and Bulgaria offshore) using seismic reflection data”, Bull.Min.Res.Exp., c. 175, sy. 175, ss. 19–40, 2024, doi: 10.19111/bulletinofmre.1411403.
ISNAD Atgın, Orhan - Çifçi, Günay. “Investigation of Gas and Gas Hydrate Accumulations Along the Continental Margin of the Danube Delta (Romania and Bulgaria Offshore) Using Seismic Reflection Data”. Bulletin of the Mineral Research and Exploration 175/175 (Aralık 2024), 19-40. https://doi.org/10.19111/bulletinofmre.1411403.
JAMA Atgın O, Çifçi G. Investigation of gas and gas hydrate accumulations along the continental margin of the Danube Delta (Romania and Bulgaria offshore) using seismic reflection data. Bull.Min.Res.Exp. 2024;175:19–40.
MLA Atgın, Orhan ve Günay Çifçi. “Investigation of Gas and Gas Hydrate Accumulations Along the Continental Margin of the Danube Delta (Romania and Bulgaria Offshore) Using Seismic Reflection Data”. Bulletin of the Mineral Research and Exploration, c. 175, sy. 175, 2024, ss. 19-40, doi:10.19111/bulletinofmre.1411403.
Vancouver Atgın O, Çifçi G. Investigation of gas and gas hydrate accumulations along the continental margin of the Danube Delta (Romania and Bulgaria offshore) using seismic reflection data. Bull.Min.Res.Exp. 2024;175(175):19-40.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en