Araştırma Makalesi
BibTex RIS Kaynak Göster

Origin of the mineralizing fluids involved in the formation of the scheelite skarn in the Beleleita area (Edough NE, Algeria): Fluid inclusion and stable S, O and C isotope study

Yıl 2024, Cilt: 175 Sayı: 175, 41 - 63, 05.12.2024
https://doi.org/10.19111/bulletinofmre.1543523

Öz

This study investigates the first stable S-, O- and C-isotopes data on the Beleleita scheelite skarn deposit to assess the origin of the mineralising fluids involved in the formation of the skarn and
related W-As-Bi-(Au) mineralisation. Two skarn bodies are embedded within the Neoproterozoic gneisses, south of the Edough metamorphic complex, NE Algeria. They show subparallel,
discontinuous slabs (F1 and F2) approximately 700 m long and 10 m wide, striking NE–SW. The slabs were cross-cut by bore-hole drilling at a depth of 130 m during ORGM (Office de Recherche
Géologique et Minière) mining exploration in the 1980s. Textural observations reveal two main cycles. Cycle I displays early classical zoned skarn assemblage, including clinopyroxene, garnet,
plagioclase, pyrite, pyrrhotite, and chalcopyrite. Cycle II shows late lithiniferous and fluorinated skarn assemblage that corresponds to greisenised secant skarns, with fluorite, scheelite, lollingite,
allanite, zinnwaldite series, sphene, wolframite, arsenopyrite, native bismuth, and quartz. Stable O-isotope analyses were carried out on both whole-rock samples and clinopyroxene, quartz, and
garnet mineral separates, whereas C- and O-isotope analyses were conducted on gangue calcite. S-isotopes were carried out on sulphides (pyrite, chalcopyrite, lollingite and pyrrhotite). All the
results display relatively narrow ranges (δ18OSMOW varying from +8.4 to +9.9‰; δ13CPDB ranging between -6.9 to -4.2‰ and δ34SCDT between -0.3 to +5.3‰), indicating a homogeneous source of fluids with significant magmatic signatures that contribute to skarn formation and ore deposition. Accordingly, the involved mineralising fluids most likely originated from the I-type magmatic event that prevailed during Burdigalian times in the Edough massif, similar to many other ore deposits in the area. Moreover, previous fluid inclusion studies carried out on fluorite, scheelite, and quartz of Cycle II show that the ores were deposited from hot (Th = 500°-520°C), highly saline magmatic fluids under low pressure (0.5–0.6 kb), and this complies well with the present stable isotope data.

Etik Beyan

Abdelmalek LEKOUI and co-authors are grateful for the anonymous reviewers, including editors, whose comments contributed to the improvement of the manuscript.

Kaynakça

  • Abbassene, F., Chazot, G., Bellon, H., Bruguier, O., Ouabadi, A., Maury, R. C., Déverchère, J., Bosch, D., Monié, P. 2016. A 17 Ma onset for the postcollisional K-rich calc-alkaline magmatism in the Maghrebides, evidence from Bougaroun (northeastern Algeria) and geodynamic implications. Tectonophysics 674, 114–134.
  • Abbassene, F., Chazot, G., Bellon, H., Maury, R. C., Courme, M., Ouabadi, A., Coutelle, A. 2019. New chronostratigraphic constraints on the emplacement of Miocene high-K calc-alkaline igneous rocks from West Edough-Cap de Fer, NE Algeria. Arabian Journal of Geosciences, 12 (2), 1-19.
  • Ahmed-Said, Y., Leake, B. E., Rogers, G. 1993. The petrology, geochemistry and petrogenesis of the Edough igneous rocks, Annaba, NE Algeria. Journal of African Earth Sciences (and the Middle East), 17(1), 111–123.
  • Aissa, D. E. 1996. Etude géologique, géochimique et métallogénique du massif de l’Edough (Annaba, NE Algérie). Thèse Doctorat Etat, 500. USTHB, Alger, Algeria (unpublished).
  • Aissa, D. E. 1997. Les minéralisations tertiaires de l’Edough (NE, Algérie) : métallogénie d’un ‘metamorphic core complex’ miocène. Doctorat thesis. Institute polytechnic of Lorraine 283, France. (unpublished).
  • Aissa, D. E., Cheilletz, A., Gasquet, D., Marignac, Ch. 1995. Alpine metamorphic core complexes and metallogenesis: The Edough case (NE Algeria). In: Pasava, J., Kribek, B., Zak, K. (Eds.), Mineral deposits: from their origin to their environmental impacts. Balkema, Rotterdam, 23–26.
  • Aissa, D. E, Marignac, Ch, Cheilletz A, Gasquet, D. 1998. Géologie et métallogénie sommaire du massif de l’Edough (NE Algérie). Mémoires Du Service Géologique d’Algérie, 9,7–55.
  • Aissa, D. E., Marignac Ch., Cheilletz, A., Gasquet, D. 1999. Le skarn à scheelite de Karezas (Annaba, Nord-Est Algérie): un skarn polycyclique d’âge burdigalien. Bulletin de Service Géologique d’Algérie, 10 (1), 3–53.
  • Aissa, D. E., Cheilletz, A., Marignac, Ch. 2001. Magmatic fluids and skarn mineralization: the Burdigalian W-As skarn at Karézas (Edough massif, NE Algeria). In: Piestrzyñski et al (Ed.) Mineral deposits at the beginning of the 21st Century. In: Proceedings of 6th Biennial SGA Meeting, Krakow, A.A. Balkema, Rotterdam, 877–880.
  • Audétat, A. 2019. The metal content of magmatic- hydrothermal fluids and its relationship to mineralization potential. Economic Geology, 114(6), 1033-1056.
  • Auzende, J. M., Bonnin, J., Olivet, J. L. 1975. La marge nordafricaine considérée comme marge active. Bulletin de la Société Géologique de France, 7(4), 486–495.
  • Baker, T., Lang, J. R. 2003. Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: an example from the Bismark Deposit, Mexico. Mineralium Deposita 38 (4), 474–495.
  • Berger, W. H., Vincent, E. 1986. Deep-sea carbonates: reading the carbon-isotope signal. Geologische Rundschau, 75 (1), 249-269.
  • Bodnar, R. J., Reynolds, T. J., Kuehn, C. A. 1985. Fluid- inclusion systematics in epithermal systems. Berger, B.R., and Bethker, P.m. (Eds.), Geology and Geochemistry of Epithermal Systems, Society of Economic Geologists. Littleton, USA, 73–97.
  • Bolfa, J. 1948. Contribution à l’étude des gites métallifères de la Kabylie de Collo et de la région de Bône. Bulletin du Service de la Carte Géologique de l’Algérie 6, 216.
  • Borthwick, J., Harmon, R. S. 1982. A note regarding CIF3 as an alternative to BrF5 for oxygen isotope analysis. Geochimica et Cosmochimica Acta, 46(9), 1665-1668.
  • Bosch, D., Hammor, D., Mechati, M., Fernandez, L., Bruguier, O., Caby, R., Verdoux, P. 2014. Geochemical study (major, trace elements and Pb–Sr–Nd isotopes) of mantle material obducted onto the North African margin (Edough Massif, North Eastern Algeria): Tethys fragments or lost remnants of the Liguro-Provençal basin? Tectonophysics, 626, 53–68.
  • Bouguerra, A. 1990. Etude des skarns et de la minéralisation associée dans le massif de l’Edough (cas du gisement As-W de Karésas comparée à l’indice de Bouzizi). These de Magister, Université de Constantine, 260, Constantine (Unpublished).
  • Bouillin, J. P. 1986. Le ‘‘bassin maghrébin’’: une ancienne limite entre l’Europe et l’Afrique à l’ouest des Alpes. Bulletin de la Société Géologique de France 8, II (4) 547–558.
  • Bowman, J. R. 1998. Stable-isotope systematics of skarn. In: Lentz, D.R. (Ed.), Mineralized Intrusion-Related Skarn Systems. Mineralogical Association of Canada. Short Course, Ottawa, 99-145.
  • Bruguier, O., Bosch, D., Caby, R., Vitale-Brovarone, A., Fernandez, L., Hammor, D., Laouar, R., Ouabadi, A., Abdallah, N., Mechati, M. 2017. Age of UHP metamorphism in the Western Mediterranean: insight from rutile and minute zircon inclusions in a diamond-bearing garnet megacryst (Edough Massif, NE Algeria). Earth and Planetary Science Letters, 474, 215-225.
  • Caby, R., Bruguier, O., Fernandez, L., Hammor, D., Bosch, D., Mechati, M., Laouar, R., Ouabadi, A., Abdallah, N., Douchet, C. 2014. Metamorphic diamonds in a garnet megacryst from the Edough Massif (Northeastern Algeria): recognition and geodynamic consequences. Tectonophysics, 637, 341-353.
  • Cai, Z., Yi, H., You, H. 2023. Carbon isotope stratigraphy across the Devonian–Carboniferous boundary in the east Paleo-Tethys realm, Tibet, China. Minerals, 13(9): 1144.
  • Caldevilla, P., González-Menéndez, L., Martín-Crespo, T., Vindel, E., Guedes, A., Berrezueta, E., Gómez- Fernández, F. 2023. The Peña do Seo W-Sn deposit, NW Iberia: Petrology, fluid inclusions and OHS isotopes. Ore Geology Reviews, 155(19), 105361.
  • Carminati, E., Lustrino, M., Doglioni, C. 2012. Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints: Tectonophysics, 579, 173-192.
  • Carminati, E., Wortel, M. J., Meijer, P. T., Sabadini, R. 1998. The two-stage opening of the western– central Mediterranean basins: a forward modeling test to a new evolutionary model. Earth and Planetary Science Letters, 160(3-4), 667–679.
  • Chowdhury S., Lentz, D. R. 2011. Mineralogical and geochemical characteristics of scheelite-bearing skarns, and genetic relations between skarn mineralization and petrogenesis of the associated granitoid pluton at Sargipali, Sundergarh District, Eastern India. Journal of Geochemical Exploration, 108 (1), 39-61.
  • Clayton, R. N., Mayeda, T. K. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et cosmochimica acta, 27(1), 43-52.
  • Cohen, C. R. 1980. Plate tectonic model for the Oligo- Miocene evolution of the western Mediterranean. Tectonophysics, 68(3-4), 283– 311.
  • Coleman, M. L. 1977. Sulphur isotopes in petrology. Journal of the Geological Society of London, 133(6), 593–608.
  • Craig, H. 1961. Isotopic variations in meteoric waters. Science, 133 (3465), 1702–1703.
  • Durand-Delga, M. 1980. La méditerranée occidentale : Etapes de sa genèse et problèmes structuraux liés à celles-ci. Société Géologique de France, (10), 203- 224.
  • Einaudi, M. T., Burt, D. M. 1982. Introduction, terminology, classification, and composition of skarn deposits. Economic geology, 77(4), 745-754.
  • E.RE.M. 1969. Travaux de réévaluation du gisement à Sn-W de Beleleita. Rapport interne, (Inédit.).
  • Gibert, F., Moine, B., Schott, J., Dandurand, J. L. 1992. Modeling of the transport and deposition of tungsten in the scheelite-bearing calc-silicate gneisses of the Montagne Noire, France. Contributions to Mineralogy and Petrology, 112 (2-3), 371-384.
  • Giuliani, G., Cheilletz, A., Mechiche, M. 1987. Behaviour of REE during thermal metamorphism and hydrothermal infiltration associated with skarn and vein-type tungsten ore bodies in central Morocco. Chemical Geology. 64 (3-4), 279–294.
  • Hadj-Zobir, S., Oberhansli, R. 2013. The Sidi Mohamed peridotites (Edough massif, NE Algeria): evidence for an upper mantle origin. Journal of Earth System Science, 122 (6), 1455–1465.
  • Hammor, D. 1992. Du Panafricain au Miocene: 600 Ma d’évolution polycyclique dans le massif de l’Edough (Algerie nord-orientale) retracée par la pétrologie, la tectonique et la géochronologie (U/Pb, Rb/Sr, Sm/Nd,39Ar/40Ar). Nouvelle thèse, Université de Montpellier II, 205, France (unpublished).
  • Hoefs, J. 2009. Stable Isotope Geochemistry. Springer Verlag, Berlin, 286.
  • Horn, R. A., Wickman, F. E. 1973. The Na/K ratio of fluid inclusions in pegmatitic quartz and its genetic implications. A study by neutron activation analysis. Lithos, 6(4), 373-387.
  • Huang, X. D., Lu, J. J., Zhang, R. Q., Sizaret, S., Ma, D. S., Wang, R. C., Zhu, X., He, Z. Y. 2022. Garnet and scheelite chemistry of the Weijia tungsten deposit, South China: Implications for fluid evolution and W skarn mineralization in F-rich ore system. Ore Geology Reviews, 142, 1-18.
  • Ilavsky, J., Snopkova, P. 1987. Découverte d’Acritarches paléozoïques dans les terrains métamorphiques de l’Edough (Willaya d’Annaba, Algérie). Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre, 305(10), 881-884.
  • Jiang, W., Li, H., Evans, N. J., Wu, J., Cao, J. 2018. Metal Sources of World-Class Polymetallic W–Sn Skarns in the Nanling Range, South China: Granites versus Sedimentary Rocks. Minerals, 8(7), 265.
  • Kretschmar, U., Scott, S. D. 1976. Phase relations involving arsenopyrite in the system Fe-As-S and their application. Canadian mineralogist, 14 (3), 364-386.
  • Kwak, T. A. P. 1987. W-Sn skarn deposits and related metamorphic and granitoids. Elsevier, Amsterdam, 451.
  • Kwak, T. A. P. 1994. Hydrothermal alteration in carbonate- replacement deposits, Ore skarns and distal equivalents, in alteration and alteration processes associated with ore-forming systems. Lentz, D. R. (Ed.). Geological Association of Canada, short course notes, Ottawa, 381-402.
  • Kyser, T. K., Cameron, W. E., Nisbet, E. G. 1986. Boninite petrogenesis and alteration history: constraints from stable isotope compositions of boninites from Cape Vogel, New Caledonia and Cyprus. Contributions to Mineralogy and Petrology, 93(2), 222-226.
  • Labidi, J., Cartigny, P., Hamelin, C., Moreira, M., Dosso, L. 2014. Sulfur isotope budget (32S, 33S, 34S and 36S) in Pacific-Antarctic ridge basalts: A record of mantle source heterogeneity and hydrothermal sulfide assimilation. Geochimica et Cosmochimica Acta, 133, 47-67.
  • Laouar, R. 2002. Petrogenetic and metallogenetic studies of the Tertiary igneous complexes of northeast Algeria: a stable isotope study. Doctorat d’Etat thesis, University Badji Mokhtar Annaba 171, Algeria.
  • Laouar, R., Boyce, A. J., Ahmed-Said, Y., Ouabadi, A., Fallick, A. E., Toubal, A. 2002. Stable isotope study of the igneous, metamorphic and mineralized rocks of the Edough complex, Annaba, Northeast Algeria. Journal of African Earth Sciences, 35(2), 271–283.
  • Laouar, R., Boyce, A. J., Arafa, M., Ouabadi, A., Fallick, A. E. 2005. Petrological, geochemical, and stable isotope constraints on the genesis of the Miocene igneous rocks of Chetaibi and Cap de Fer (NE Algeria). Journal of African Earth Sciences, 41(5), 445-465.
  • Li, J., Li, X., Xiao, R. 2019. Multiple-stage tungsten mineralization in the Silurian Jiepai W skarn deposit, South China: Insights from cathodoluminescence images, trace elements, and fluid inclusions of scheelite. Journal of Asian Earth Sciences, 181, 103898.
  • Li, X. F., Huang, C., Wang, C., Wang, L. 2016. Genesis of the Huangshaping W-Mo–Cu–Pb–Zn polymetallic deposit in Southeastern Hunan Province, Phina: constraints from fluid inclusions, trace elements, and isotopes. Ore Geology Reviews, 79, 1–25.
  • Marignac, Ch., Zimmermann, J. L. 1983. Âges K-Ar de l’évènement Hydrothermal et des Intrusions Associées dans le District Minéralisé Miocène d’Ain-Barbar (Est Constantinois, Algérie). Mineralium Deposita, 18 (3), 457–467.
  • Marignac, Ch., Aissa, D. E., Cheilletz, A., Gasquet, D. 2016. Edough-Cap de Fer Polymetallic District, Northeast Algeria: II. Metallogenic Evolution of a Late Miocene Metamorphic Core Complex in the Alpine Maghrebide Belt. M. Bouabdellah and J.F. Slack (eds.), Springer International Publishing Switzerland. Mineral Deposits of North Africa, 167-199.
  • Marignac, Ch., Cuney, M., Cathelineau, M., Lecomte, A., Carocci, E., Pinto, F. 2020. The Panasqueira rare metal granite suites and their involvement in the genesis of the world-class Panasqueira W–Sn–Cu vein deposit: a petrographic, mineralogical, and geochemical study. Minerals, 10(6), 1-47.
  • Mattey, D., Lowry, D., Macpherson, C. 1994. Oxygen isotope composition of mantle peridotite. Earth and Planetary Science Letters, 128 (3-4), 231– 241.
  • Meinert, L. D. 1992. Skarns and Skarn Deposits. Geoscience Canada, 19 (4), 145-162.
  • Meinert, L. D., Hedenquist, J. W., Satoh, H., Matsuhisa, Y. 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Economic Geology, 98 (1), 147-156.
  • Meinert, L. D., Dipple, G. M., Nicolescu, S. 2005. World skarn deposits. In: Hedenquist, J. W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (Eds.), Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, CO, 299–336.
  • Miranda, A. C. R., Beaudoin, G., Rottier, B. 2022. Scheelite chemistry from skarn systems: implications for ore-forming processes and mineral exploration. Mineralium Deposita, 57 (8), 1469-1497.
  • Newberry, R. J. 1998. W-and Sn-skarn deposits: a 1998 status report. Mineralized intrusion-related skarn systems, 289-335.
  • Oehlert, A., Swart, P. 2014. Interpreting carbonate and organic carbon isotope covariance in the sedimentary record. Nature Communications, 19 (5), 4672.
  • Ohmoto, H. 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy 16, 491–559.
  • Ohmoto, H., Goldhaber, M. B., 1997. Geochemistry of Hydrothermal Ore Deposits, third edition, 509– 567.
  • Orhan, A. 2017. Evolution of the Mo-rich scheelite skarn mineralization at Kozbudaklar, Western Anatolia, Turkey: Evidence from mineral chemistry and fluid inclusions. Ore Geology Reviews, 80, 141– 165.
  • Paytan, A., Kastner, M., Campbell, D., Thiemens, M. H. 1998. Sulfur isotopic composition of Cenozoic seawater sulfate. Science, 282, 1459-1462.
  • Prasanna, K., Ghosh, P., Eagle, R. A., Tripati, A., Kapur, V. V. Feeney, R. F., Fosu, B. R., Mishra, D. 2021. Temperature estimates of lower Miocene (Burdigalian) coastal water of Southern India using a revised otolith “clumped” isotope paleothermometer. Geochemistry, Geophysics, Geosystems, 22.
  • Present, T. M., Adkins, J. F., Fischer, W. W. 2020. Variability in sulfur isotope records of Phanerozoic seawater sulfate. Geophysical Research Letters 47 (18), 1-17.
  • Roedder, E. 1984. The fluids in salt. American Mineralogist, 69 (5-6), 413-439.
  • Schoell, M. 1984. Recent advances in petroleum isotope geochemistry. Organic Geochemistry, 6, 645-663.
  • Singoyi, B., Zaw, K. 2001. A petrological and fluid inclusion study of magnetite–scheelite skarn mineralization at Kara, Northwestern Tasmania: implications for ore genesis. Chemical Geology. 173 (1-3), 239–253.
  • Soloviev, S. G., Kryazhev, S. G. 2018. Magmatic- hydrothermal evolution at the Lyangar redox- intermediate tungsten-molybdenum skarn deposit, western Uzbekistan, Tien Shan: Insights from igneous petrology, hydrothermal alteration, and fluid inclusion study, Lithos, 316, 154-177.
  • SO.NA.RE.M, 1975. Travaux d’exploration sur les minéralisations ferrifères du sud du massif de l’Edough. Rapport interne (unpublished).
  • Sterner, S. M., Hall, D. L., Bodnar, R. J. 1988. Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochimica et Cosmochimica Acta, 52 (5), 989-1005.
  • Taylor J. R., H. P., Sheppard, S. M. F. 1986. Igneous rocks: I. Processes of isotopic fractionation and isotopic systematics. Reviews in Mineralogy 16, 227–271.
  • Taylor, P., Larter, S., Jones, M., Dale, J., Horstad, I. 1997. The effect of oil-water-rock partitioning on the occurrence of alkylphenols in petroleum systems. Geochimica et cosmochimica acta, 61 (9), 1899-1910.
  • Tornos, F., Galindo, C., Crespo, J. L., Spiro, B. F. 2008. Geochemistry and origin of calcic tungsten- bearing skarns, Los Santos, Central Iberian zone, Spain. The Canadian Mineralogist, 46 (1), 87-109.
  • Wang, J., Zhao, L., Li, Q., Zhang, X., Wang, Y., Shao, Y., Li, Y. 2023. Ore-forming process of the W–Sn and Cu skarn mineralization in the Huangshaping deposit (Nanling Range): Constraints from scheelite geochemistry and cassiterite U–Pb geochronology. Ore Geology Reviews, 105354.
  • Wei, B., Wang C. Y., Lahaye Y., Xie L. H., Cao Y. H. 2019. S and C isotope constraints for mantle-derived sulfur source and organic carbon-induced sulfide saturation of magmatic Ni-Cu sulfide deposits in the Central Asian Orogenic Belt, North China. Economic Geology, 114 (4), 787-806.
  • Xu, J. Y., Giuliani, A., Li, Q. L., Lu, K., Melgarejo, J. C., Griffin, W. L. 2021. Light oxygen isotopes in mantle-derived magmas reflect assimilation of sub-continental lithospheric mantle material. Nature Communications, 12, 6295.
  • Xue, L., Wang, G., Tang, L., Cao, Y., Du, J., Du, Y., Cheng, H. 2021. Genesis and hydrothermal evolution of the Zhazigou skarn W (Mo) deposit, East Qinling, China: Constraints from fluid inclusions and H–O–S–Pb isotopes. Ore Geology Reviews, 138, 1-20.
  • Yeh, H. W., Epstein, S. 1981. Hydrogen and carbon isotopes of petroleum and related organic matter. Geochimica et Cosmochimica Acta, 45 (5), 753-762.
  • Zhang, Y., Chen, H. Y., Cheng, J. M., Tian, J., Zhang, L. J., Olin, P. 2022a. Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: An example from the Jiguanzui deposit, Eastern China. American Mineralogy, 107 (10), 1910- 1925.
  • Zhang, Y., Song, S. L., Hollings, P., Li, D. F., Shao, Y. J., Chen, H. Y., Zhao, L. J., Kamo, S., Jin, T. T., Yuan, L. L., Liu, Q. Q., Chen, S.C. 2022b. In-situ U-Pb geochronology of vesuvianite in skarn deposits. Chemical Geology, 612, 121-136.
Yıl 2024, Cilt: 175 Sayı: 175, 41 - 63, 05.12.2024
https://doi.org/10.19111/bulletinofmre.1543523

Öz

Kaynakça

  • Abbassene, F., Chazot, G., Bellon, H., Bruguier, O., Ouabadi, A., Maury, R. C., Déverchère, J., Bosch, D., Monié, P. 2016. A 17 Ma onset for the postcollisional K-rich calc-alkaline magmatism in the Maghrebides, evidence from Bougaroun (northeastern Algeria) and geodynamic implications. Tectonophysics 674, 114–134.
  • Abbassene, F., Chazot, G., Bellon, H., Maury, R. C., Courme, M., Ouabadi, A., Coutelle, A. 2019. New chronostratigraphic constraints on the emplacement of Miocene high-K calc-alkaline igneous rocks from West Edough-Cap de Fer, NE Algeria. Arabian Journal of Geosciences, 12 (2), 1-19.
  • Ahmed-Said, Y., Leake, B. E., Rogers, G. 1993. The petrology, geochemistry and petrogenesis of the Edough igneous rocks, Annaba, NE Algeria. Journal of African Earth Sciences (and the Middle East), 17(1), 111–123.
  • Aissa, D. E. 1996. Etude géologique, géochimique et métallogénique du massif de l’Edough (Annaba, NE Algérie). Thèse Doctorat Etat, 500. USTHB, Alger, Algeria (unpublished).
  • Aissa, D. E. 1997. Les minéralisations tertiaires de l’Edough (NE, Algérie) : métallogénie d’un ‘metamorphic core complex’ miocène. Doctorat thesis. Institute polytechnic of Lorraine 283, France. (unpublished).
  • Aissa, D. E., Cheilletz, A., Gasquet, D., Marignac, Ch. 1995. Alpine metamorphic core complexes and metallogenesis: The Edough case (NE Algeria). In: Pasava, J., Kribek, B., Zak, K. (Eds.), Mineral deposits: from their origin to their environmental impacts. Balkema, Rotterdam, 23–26.
  • Aissa, D. E, Marignac, Ch, Cheilletz A, Gasquet, D. 1998. Géologie et métallogénie sommaire du massif de l’Edough (NE Algérie). Mémoires Du Service Géologique d’Algérie, 9,7–55.
  • Aissa, D. E., Marignac Ch., Cheilletz, A., Gasquet, D. 1999. Le skarn à scheelite de Karezas (Annaba, Nord-Est Algérie): un skarn polycyclique d’âge burdigalien. Bulletin de Service Géologique d’Algérie, 10 (1), 3–53.
  • Aissa, D. E., Cheilletz, A., Marignac, Ch. 2001. Magmatic fluids and skarn mineralization: the Burdigalian W-As skarn at Karézas (Edough massif, NE Algeria). In: Piestrzyñski et al (Ed.) Mineral deposits at the beginning of the 21st Century. In: Proceedings of 6th Biennial SGA Meeting, Krakow, A.A. Balkema, Rotterdam, 877–880.
  • Audétat, A. 2019. The metal content of magmatic- hydrothermal fluids and its relationship to mineralization potential. Economic Geology, 114(6), 1033-1056.
  • Auzende, J. M., Bonnin, J., Olivet, J. L. 1975. La marge nordafricaine considérée comme marge active. Bulletin de la Société Géologique de France, 7(4), 486–495.
  • Baker, T., Lang, J. R. 2003. Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: an example from the Bismark Deposit, Mexico. Mineralium Deposita 38 (4), 474–495.
  • Berger, W. H., Vincent, E. 1986. Deep-sea carbonates: reading the carbon-isotope signal. Geologische Rundschau, 75 (1), 249-269.
  • Bodnar, R. J., Reynolds, T. J., Kuehn, C. A. 1985. Fluid- inclusion systematics in epithermal systems. Berger, B.R., and Bethker, P.m. (Eds.), Geology and Geochemistry of Epithermal Systems, Society of Economic Geologists. Littleton, USA, 73–97.
  • Bolfa, J. 1948. Contribution à l’étude des gites métallifères de la Kabylie de Collo et de la région de Bône. Bulletin du Service de la Carte Géologique de l’Algérie 6, 216.
  • Borthwick, J., Harmon, R. S. 1982. A note regarding CIF3 as an alternative to BrF5 for oxygen isotope analysis. Geochimica et Cosmochimica Acta, 46(9), 1665-1668.
  • Bosch, D., Hammor, D., Mechati, M., Fernandez, L., Bruguier, O., Caby, R., Verdoux, P. 2014. Geochemical study (major, trace elements and Pb–Sr–Nd isotopes) of mantle material obducted onto the North African margin (Edough Massif, North Eastern Algeria): Tethys fragments or lost remnants of the Liguro-Provençal basin? Tectonophysics, 626, 53–68.
  • Bouguerra, A. 1990. Etude des skarns et de la minéralisation associée dans le massif de l’Edough (cas du gisement As-W de Karésas comparée à l’indice de Bouzizi). These de Magister, Université de Constantine, 260, Constantine (Unpublished).
  • Bouillin, J. P. 1986. Le ‘‘bassin maghrébin’’: une ancienne limite entre l’Europe et l’Afrique à l’ouest des Alpes. Bulletin de la Société Géologique de France 8, II (4) 547–558.
  • Bowman, J. R. 1998. Stable-isotope systematics of skarn. In: Lentz, D.R. (Ed.), Mineralized Intrusion-Related Skarn Systems. Mineralogical Association of Canada. Short Course, Ottawa, 99-145.
  • Bruguier, O., Bosch, D., Caby, R., Vitale-Brovarone, A., Fernandez, L., Hammor, D., Laouar, R., Ouabadi, A., Abdallah, N., Mechati, M. 2017. Age of UHP metamorphism in the Western Mediterranean: insight from rutile and minute zircon inclusions in a diamond-bearing garnet megacryst (Edough Massif, NE Algeria). Earth and Planetary Science Letters, 474, 215-225.
  • Caby, R., Bruguier, O., Fernandez, L., Hammor, D., Bosch, D., Mechati, M., Laouar, R., Ouabadi, A., Abdallah, N., Douchet, C. 2014. Metamorphic diamonds in a garnet megacryst from the Edough Massif (Northeastern Algeria): recognition and geodynamic consequences. Tectonophysics, 637, 341-353.
  • Cai, Z., Yi, H., You, H. 2023. Carbon isotope stratigraphy across the Devonian–Carboniferous boundary in the east Paleo-Tethys realm, Tibet, China. Minerals, 13(9): 1144.
  • Caldevilla, P., González-Menéndez, L., Martín-Crespo, T., Vindel, E., Guedes, A., Berrezueta, E., Gómez- Fernández, F. 2023. The Peña do Seo W-Sn deposit, NW Iberia: Petrology, fluid inclusions and OHS isotopes. Ore Geology Reviews, 155(19), 105361.
  • Carminati, E., Lustrino, M., Doglioni, C. 2012. Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints: Tectonophysics, 579, 173-192.
  • Carminati, E., Wortel, M. J., Meijer, P. T., Sabadini, R. 1998. The two-stage opening of the western– central Mediterranean basins: a forward modeling test to a new evolutionary model. Earth and Planetary Science Letters, 160(3-4), 667–679.
  • Chowdhury S., Lentz, D. R. 2011. Mineralogical and geochemical characteristics of scheelite-bearing skarns, and genetic relations between skarn mineralization and petrogenesis of the associated granitoid pluton at Sargipali, Sundergarh District, Eastern India. Journal of Geochemical Exploration, 108 (1), 39-61.
  • Clayton, R. N., Mayeda, T. K. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et cosmochimica acta, 27(1), 43-52.
  • Cohen, C. R. 1980. Plate tectonic model for the Oligo- Miocene evolution of the western Mediterranean. Tectonophysics, 68(3-4), 283– 311.
  • Coleman, M. L. 1977. Sulphur isotopes in petrology. Journal of the Geological Society of London, 133(6), 593–608.
  • Craig, H. 1961. Isotopic variations in meteoric waters. Science, 133 (3465), 1702–1703.
  • Durand-Delga, M. 1980. La méditerranée occidentale : Etapes de sa genèse et problèmes structuraux liés à celles-ci. Société Géologique de France, (10), 203- 224.
  • Einaudi, M. T., Burt, D. M. 1982. Introduction, terminology, classification, and composition of skarn deposits. Economic geology, 77(4), 745-754.
  • E.RE.M. 1969. Travaux de réévaluation du gisement à Sn-W de Beleleita. Rapport interne, (Inédit.).
  • Gibert, F., Moine, B., Schott, J., Dandurand, J. L. 1992. Modeling of the transport and deposition of tungsten in the scheelite-bearing calc-silicate gneisses of the Montagne Noire, France. Contributions to Mineralogy and Petrology, 112 (2-3), 371-384.
  • Giuliani, G., Cheilletz, A., Mechiche, M. 1987. Behaviour of REE during thermal metamorphism and hydrothermal infiltration associated with skarn and vein-type tungsten ore bodies in central Morocco. Chemical Geology. 64 (3-4), 279–294.
  • Hadj-Zobir, S., Oberhansli, R. 2013. The Sidi Mohamed peridotites (Edough massif, NE Algeria): evidence for an upper mantle origin. Journal of Earth System Science, 122 (6), 1455–1465.
  • Hammor, D. 1992. Du Panafricain au Miocene: 600 Ma d’évolution polycyclique dans le massif de l’Edough (Algerie nord-orientale) retracée par la pétrologie, la tectonique et la géochronologie (U/Pb, Rb/Sr, Sm/Nd,39Ar/40Ar). Nouvelle thèse, Université de Montpellier II, 205, France (unpublished).
  • Hoefs, J. 2009. Stable Isotope Geochemistry. Springer Verlag, Berlin, 286.
  • Horn, R. A., Wickman, F. E. 1973. The Na/K ratio of fluid inclusions in pegmatitic quartz and its genetic implications. A study by neutron activation analysis. Lithos, 6(4), 373-387.
  • Huang, X. D., Lu, J. J., Zhang, R. Q., Sizaret, S., Ma, D. S., Wang, R. C., Zhu, X., He, Z. Y. 2022. Garnet and scheelite chemistry of the Weijia tungsten deposit, South China: Implications for fluid evolution and W skarn mineralization in F-rich ore system. Ore Geology Reviews, 142, 1-18.
  • Ilavsky, J., Snopkova, P. 1987. Découverte d’Acritarches paléozoïques dans les terrains métamorphiques de l’Edough (Willaya d’Annaba, Algérie). Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre, 305(10), 881-884.
  • Jiang, W., Li, H., Evans, N. J., Wu, J., Cao, J. 2018. Metal Sources of World-Class Polymetallic W–Sn Skarns in the Nanling Range, South China: Granites versus Sedimentary Rocks. Minerals, 8(7), 265.
  • Kretschmar, U., Scott, S. D. 1976. Phase relations involving arsenopyrite in the system Fe-As-S and their application. Canadian mineralogist, 14 (3), 364-386.
  • Kwak, T. A. P. 1987. W-Sn skarn deposits and related metamorphic and granitoids. Elsevier, Amsterdam, 451.
  • Kwak, T. A. P. 1994. Hydrothermal alteration in carbonate- replacement deposits, Ore skarns and distal equivalents, in alteration and alteration processes associated with ore-forming systems. Lentz, D. R. (Ed.). Geological Association of Canada, short course notes, Ottawa, 381-402.
  • Kyser, T. K., Cameron, W. E., Nisbet, E. G. 1986. Boninite petrogenesis and alteration history: constraints from stable isotope compositions of boninites from Cape Vogel, New Caledonia and Cyprus. Contributions to Mineralogy and Petrology, 93(2), 222-226.
  • Labidi, J., Cartigny, P., Hamelin, C., Moreira, M., Dosso, L. 2014. Sulfur isotope budget (32S, 33S, 34S and 36S) in Pacific-Antarctic ridge basalts: A record of mantle source heterogeneity and hydrothermal sulfide assimilation. Geochimica et Cosmochimica Acta, 133, 47-67.
  • Laouar, R. 2002. Petrogenetic and metallogenetic studies of the Tertiary igneous complexes of northeast Algeria: a stable isotope study. Doctorat d’Etat thesis, University Badji Mokhtar Annaba 171, Algeria.
  • Laouar, R., Boyce, A. J., Ahmed-Said, Y., Ouabadi, A., Fallick, A. E., Toubal, A. 2002. Stable isotope study of the igneous, metamorphic and mineralized rocks of the Edough complex, Annaba, Northeast Algeria. Journal of African Earth Sciences, 35(2), 271–283.
  • Laouar, R., Boyce, A. J., Arafa, M., Ouabadi, A., Fallick, A. E. 2005. Petrological, geochemical, and stable isotope constraints on the genesis of the Miocene igneous rocks of Chetaibi and Cap de Fer (NE Algeria). Journal of African Earth Sciences, 41(5), 445-465.
  • Li, J., Li, X., Xiao, R. 2019. Multiple-stage tungsten mineralization in the Silurian Jiepai W skarn deposit, South China: Insights from cathodoluminescence images, trace elements, and fluid inclusions of scheelite. Journal of Asian Earth Sciences, 181, 103898.
  • Li, X. F., Huang, C., Wang, C., Wang, L. 2016. Genesis of the Huangshaping W-Mo–Cu–Pb–Zn polymetallic deposit in Southeastern Hunan Province, Phina: constraints from fluid inclusions, trace elements, and isotopes. Ore Geology Reviews, 79, 1–25.
  • Marignac, Ch., Zimmermann, J. L. 1983. Âges K-Ar de l’évènement Hydrothermal et des Intrusions Associées dans le District Minéralisé Miocène d’Ain-Barbar (Est Constantinois, Algérie). Mineralium Deposita, 18 (3), 457–467.
  • Marignac, Ch., Aissa, D. E., Cheilletz, A., Gasquet, D. 2016. Edough-Cap de Fer Polymetallic District, Northeast Algeria: II. Metallogenic Evolution of a Late Miocene Metamorphic Core Complex in the Alpine Maghrebide Belt. M. Bouabdellah and J.F. Slack (eds.), Springer International Publishing Switzerland. Mineral Deposits of North Africa, 167-199.
  • Marignac, Ch., Cuney, M., Cathelineau, M., Lecomte, A., Carocci, E., Pinto, F. 2020. The Panasqueira rare metal granite suites and their involvement in the genesis of the world-class Panasqueira W–Sn–Cu vein deposit: a petrographic, mineralogical, and geochemical study. Minerals, 10(6), 1-47.
  • Mattey, D., Lowry, D., Macpherson, C. 1994. Oxygen isotope composition of mantle peridotite. Earth and Planetary Science Letters, 128 (3-4), 231– 241.
  • Meinert, L. D. 1992. Skarns and Skarn Deposits. Geoscience Canada, 19 (4), 145-162.
  • Meinert, L. D., Hedenquist, J. W., Satoh, H., Matsuhisa, Y. 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Economic Geology, 98 (1), 147-156.
  • Meinert, L. D., Dipple, G. M., Nicolescu, S. 2005. World skarn deposits. In: Hedenquist, J. W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (Eds.), Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, CO, 299–336.
  • Miranda, A. C. R., Beaudoin, G., Rottier, B. 2022. Scheelite chemistry from skarn systems: implications for ore-forming processes and mineral exploration. Mineralium Deposita, 57 (8), 1469-1497.
  • Newberry, R. J. 1998. W-and Sn-skarn deposits: a 1998 status report. Mineralized intrusion-related skarn systems, 289-335.
  • Oehlert, A., Swart, P. 2014. Interpreting carbonate and organic carbon isotope covariance in the sedimentary record. Nature Communications, 19 (5), 4672.
  • Ohmoto, H. 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy 16, 491–559.
  • Ohmoto, H., Goldhaber, M. B., 1997. Geochemistry of Hydrothermal Ore Deposits, third edition, 509– 567.
  • Orhan, A. 2017. Evolution of the Mo-rich scheelite skarn mineralization at Kozbudaklar, Western Anatolia, Turkey: Evidence from mineral chemistry and fluid inclusions. Ore Geology Reviews, 80, 141– 165.
  • Paytan, A., Kastner, M., Campbell, D., Thiemens, M. H. 1998. Sulfur isotopic composition of Cenozoic seawater sulfate. Science, 282, 1459-1462.
  • Prasanna, K., Ghosh, P., Eagle, R. A., Tripati, A., Kapur, V. V. Feeney, R. F., Fosu, B. R., Mishra, D. 2021. Temperature estimates of lower Miocene (Burdigalian) coastal water of Southern India using a revised otolith “clumped” isotope paleothermometer. Geochemistry, Geophysics, Geosystems, 22.
  • Present, T. M., Adkins, J. F., Fischer, W. W. 2020. Variability in sulfur isotope records of Phanerozoic seawater sulfate. Geophysical Research Letters 47 (18), 1-17.
  • Roedder, E. 1984. The fluids in salt. American Mineralogist, 69 (5-6), 413-439.
  • Schoell, M. 1984. Recent advances in petroleum isotope geochemistry. Organic Geochemistry, 6, 645-663.
  • Singoyi, B., Zaw, K. 2001. A petrological and fluid inclusion study of magnetite–scheelite skarn mineralization at Kara, Northwestern Tasmania: implications for ore genesis. Chemical Geology. 173 (1-3), 239–253.
  • Soloviev, S. G., Kryazhev, S. G. 2018. Magmatic- hydrothermal evolution at the Lyangar redox- intermediate tungsten-molybdenum skarn deposit, western Uzbekistan, Tien Shan: Insights from igneous petrology, hydrothermal alteration, and fluid inclusion study, Lithos, 316, 154-177.
  • SO.NA.RE.M, 1975. Travaux d’exploration sur les minéralisations ferrifères du sud du massif de l’Edough. Rapport interne (unpublished).
  • Sterner, S. M., Hall, D. L., Bodnar, R. J. 1988. Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochimica et Cosmochimica Acta, 52 (5), 989-1005.
  • Taylor J. R., H. P., Sheppard, S. M. F. 1986. Igneous rocks: I. Processes of isotopic fractionation and isotopic systematics. Reviews in Mineralogy 16, 227–271.
  • Taylor, P., Larter, S., Jones, M., Dale, J., Horstad, I. 1997. The effect of oil-water-rock partitioning on the occurrence of alkylphenols in petroleum systems. Geochimica et cosmochimica acta, 61 (9), 1899-1910.
  • Tornos, F., Galindo, C., Crespo, J. L., Spiro, B. F. 2008. Geochemistry and origin of calcic tungsten- bearing skarns, Los Santos, Central Iberian zone, Spain. The Canadian Mineralogist, 46 (1), 87-109.
  • Wang, J., Zhao, L., Li, Q., Zhang, X., Wang, Y., Shao, Y., Li, Y. 2023. Ore-forming process of the W–Sn and Cu skarn mineralization in the Huangshaping deposit (Nanling Range): Constraints from scheelite geochemistry and cassiterite U–Pb geochronology. Ore Geology Reviews, 105354.
  • Wei, B., Wang C. Y., Lahaye Y., Xie L. H., Cao Y. H. 2019. S and C isotope constraints for mantle-derived sulfur source and organic carbon-induced sulfide saturation of magmatic Ni-Cu sulfide deposits in the Central Asian Orogenic Belt, North China. Economic Geology, 114 (4), 787-806.
  • Xu, J. Y., Giuliani, A., Li, Q. L., Lu, K., Melgarejo, J. C., Griffin, W. L. 2021. Light oxygen isotopes in mantle-derived magmas reflect assimilation of sub-continental lithospheric mantle material. Nature Communications, 12, 6295.
  • Xue, L., Wang, G., Tang, L., Cao, Y., Du, J., Du, Y., Cheng, H. 2021. Genesis and hydrothermal evolution of the Zhazigou skarn W (Mo) deposit, East Qinling, China: Constraints from fluid inclusions and H–O–S–Pb isotopes. Ore Geology Reviews, 138, 1-20.
  • Yeh, H. W., Epstein, S. 1981. Hydrogen and carbon isotopes of petroleum and related organic matter. Geochimica et Cosmochimica Acta, 45 (5), 753-762.
  • Zhang, Y., Chen, H. Y., Cheng, J. M., Tian, J., Zhang, L. J., Olin, P. 2022a. Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: An example from the Jiguanzui deposit, Eastern China. American Mineralogy, 107 (10), 1910- 1925.
  • Zhang, Y., Song, S. L., Hollings, P., Li, D. F., Shao, Y. J., Chen, H. Y., Zhao, L. J., Kamo, S., Jin, T. T., Yuan, L. L., Liu, Q. Q., Chen, S.C. 2022b. In-situ U-Pb geochronology of vesuvianite in skarn deposits. Chemical Geology, 612, 121-136.
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genel Jeoloji
Bölüm Makaleler
Yazarlar

Abdelmalek Lekoui Bu kişi benim 0000-0002-3861-6615

Rabah Laouar Bu kişi benim 0000-0002-2470-6863

Djamel Eddine Aissa Bu kişi benim 0009-0001-9036-6393

Adrian Joseph Boyce Bu kişi benim 0000-0002-9680-0787

Yayımlanma Tarihi 5 Aralık 2024
Gönderilme Tarihi 21 Kasım 2023
Kabul Tarihi 4 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 175 Sayı: 175

Kaynak Göster

APA Lekoui, A., Laouar, R., Aissa, D. E., Boyce, A. J. (2024). Origin of the mineralizing fluids involved in the formation of the scheelite skarn in the Beleleita area (Edough NE, Algeria): Fluid inclusion and stable S, O and C isotope study. Bulletin of the Mineral Research and Exploration, 175(175), 41-63. https://doi.org/10.19111/bulletinofmre.1543523
AMA Lekoui A, Laouar R, Aissa DE, Boyce AJ. Origin of the mineralizing fluids involved in the formation of the scheelite skarn in the Beleleita area (Edough NE, Algeria): Fluid inclusion and stable S, O and C isotope study. Bull.Min.Res.Exp. Aralık 2024;175(175):41-63. doi:10.19111/bulletinofmre.1543523
Chicago Lekoui, Abdelmalek, Rabah Laouar, Djamel Eddine Aissa, ve Adrian Joseph Boyce. “Origin of the Mineralizing Fluids Involved in the Formation of the Scheelite Skarn in the Beleleita Area (Edough NE, Algeria): Fluid Inclusion and Stable S, O and C Isotope Study”. Bulletin of the Mineral Research and Exploration 175, sy. 175 (Aralık 2024): 41-63. https://doi.org/10.19111/bulletinofmre.1543523.
EndNote Lekoui A, Laouar R, Aissa DE, Boyce AJ (01 Aralık 2024) Origin of the mineralizing fluids involved in the formation of the scheelite skarn in the Beleleita area (Edough NE, Algeria): Fluid inclusion and stable S, O and C isotope study. Bulletin of the Mineral Research and Exploration 175 175 41–63.
IEEE A. Lekoui, R. Laouar, D. E. Aissa, ve A. J. Boyce, “Origin of the mineralizing fluids involved in the formation of the scheelite skarn in the Beleleita area (Edough NE, Algeria): Fluid inclusion and stable S, O and C isotope study”, Bull.Min.Res.Exp., c. 175, sy. 175, ss. 41–63, 2024, doi: 10.19111/bulletinofmre.1543523.
ISNAD Lekoui, Abdelmalek vd. “Origin of the Mineralizing Fluids Involved in the Formation of the Scheelite Skarn in the Beleleita Area (Edough NE, Algeria): Fluid Inclusion and Stable S, O and C Isotope Study”. Bulletin of the Mineral Research and Exploration 175/175 (Aralık 2024), 41-63. https://doi.org/10.19111/bulletinofmre.1543523.
JAMA Lekoui A, Laouar R, Aissa DE, Boyce AJ. Origin of the mineralizing fluids involved in the formation of the scheelite skarn in the Beleleita area (Edough NE, Algeria): Fluid inclusion and stable S, O and C isotope study. Bull.Min.Res.Exp. 2024;175:41–63.
MLA Lekoui, Abdelmalek vd. “Origin of the Mineralizing Fluids Involved in the Formation of the Scheelite Skarn in the Beleleita Area (Edough NE, Algeria): Fluid Inclusion and Stable S, O and C Isotope Study”. Bulletin of the Mineral Research and Exploration, c. 175, sy. 175, 2024, ss. 41-63, doi:10.19111/bulletinofmre.1543523.
Vancouver Lekoui A, Laouar R, Aissa DE, Boyce AJ. Origin of the mineralizing fluids involved in the formation of the scheelite skarn in the Beleleita area (Edough NE, Algeria): Fluid inclusion and stable S, O and C isotope study. Bull.Min.Res.Exp. 2024;175(175):41-63.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en