Yıl 2025,
Cilt: 177 Sayı: 177, 1 - 2
Medet Junussov
Rustem Abirov
Gulnur Mekenbek
Aizada Assambayeva
Nessipzhan Mukhamediyarova
Kaynakça
- Barabás, A. 2010. A délkeletdunántúli hidrogenetikus uránérctelepek földtani környezete és összehasonlító értékelésük. PTE, Manuscript, PhD thesis (title “Geological Environment of the ISL Uranium Ore Deposits of Southeastern Transdanubia and Their Comparative Study”).
- Barabás, A. 2013. Hasadó anyagok. (Pál-Molnár E. and Bíró L. eds.) In: Szilárd ásványi anyagok Magyarországon (Fission mineral resources. Solid mineral resources of Hungary; in Hungarian). Geolitera publisher, SzTE TTIK Földrajzi és Földtani Tanszékcsoport, Szeged, 89-121.
- Barabás A., Konrád Gy. (eds.) 2000. Zárójelentés a magyarországi uránérc-kutatásról és a nyu-gat-mecseki uránérc-bányászatról. Kézirat, MECSEKÉRC Zrt. Földtani Adattár (Final report of the uranium exploration of Hungary and W-Mecsek uranium ore mining. Manuscript in Hungarian).
- Barer, D. H. 1984. Pyrite Morphology and its Relationship to Sedimentary Processes. Journal of Sedimentary Petrology, 54(1), 134-147.
- Barabás, A. 2010. A délkeletdunántúli hidrogenetikus uránérctelepek földtani környezete és összehasonlító értékelésük. PTE, Manuscript, PhD thesis (title “Geological Environment of the ISL Uranium Ore Deposits of Southeastern Transdanubia and Their Comparative Study”).
- Barabás, A. 2013. Hasadó anyagok. (Pál-Molnár E. and Bíró L. eds.) In: Szilárd ásványi anyagok Magyarországon (Fission mineral resources. Solid mineral resources of Hungary; in Hungarian). Geolitera publisher, SzTE TTIK Földrajzi és Földtani Tanszékcsoport, Szeged, 89-121.
- Barabás A., Konrád Gy. (eds.) 2000. Zárójelentés a magyarországi uránérc-kutatásról és a nyu-gat-mecseki uránérc-bányászatról. Kézirat, MECSEKÉRC Zrt. Földtani Adattár (Final report of the uranium exploration of Hungary and W-Mecsek uranium ore mining. Manuscript in Hungarian).
- Barer, D. H. 1984. Pyrite Morphology and its Relationship to Sedimentary Processes. Journal of Sedimentary Petrology, 54(1), 134-147.
- Cook, N. J., Chryssoulis, S. L. 1990. Concentrations of "invisible gold" in common sulphides. The Canadian Mineralogist 28, 1-16.
- Cook, N. J., Ciobanu, C. L., Mao, J. W. 2009. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China craton (Hebei Province, China). Chemical Geology, 264 (1-4), 101-121.
- Cook, N. J., Ciobanu, C. L., George, L., Zhu, Z. Y., Wade, B. P., Ehrig, K. 2013. Trace element analysis of pyrite from the Carlin-type gold deposits, Nevada: Implications for gold distribution and genesis. Geochimica et Cosmochimica Acta 111, 366-386.
- Davidson, C. M., Ferreira, P. S., Ure, A. M. 1999. Some sources of variability in the application of the three-stage sequential extraction procedure recommended by BCR to industrially-contaminated soil. Fresenius’ J Anal Chem 363, 446–451.
- Deditius, A. P., Utsunomiya, S., Ewing, R. C. 2008. The chemical stability of coffinite, USiO4·nH2O; 0<n<2, associated with organic matter: A case study from Grants uranium region, New Mexico, USA. Geochimica et Cosmochimica Acta 72(18), 4425-4443.
- Deditius, A. P., Utsunomiya, S., Ewing, R. C., Chryssoulis, S. L., Venter, D., Kesler, S. E. 2009. Decoupled geochemical behavior of As and Cu in hydrothermal systems. Geology 37 (8), 707–710.
- Deol, S., Deb, M., Large, R. R., Gilbert, S. 2012. LA–ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia–Jagpura gold prospect, southern Rajasthan, India: implications for ore genesis and gold remobilization. Chemical Geology 326–327, 72–87.
- Diehl, S. F, Goldhaber, M. B., Koenig, A. E, Lowers, H. A, Ruppert, L. F. 2012. Distribution of arsenic, selenium, and other trace elements in the high pyrite Appalachian coals: evidence for multiple episodes of pyrite formation. International Journal of Coal Geology 94, 238–249.
- Dold, B., Fontboté, L. 2001. Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate primary mineralogy and mineral processing. Journal of Geochemistry Exploration 74, 3-55.
- Fodor, L., Jelen, B., Márton, E., Skaberne, D., Vrabec, M. 1998. Miocene–Pliocene tectonic evolution of the Slovenian Periadriatic Line and surrounding area - implication for Alpine-Carpathian extrusion models. Tectonics 17, 690–709.
- Földessy, J. 1998. Geological Report: Diagnostic sampling of the formations of the W-Mecsek mountains. Report. Budapest.
- Gao, F., Du, Y., Pang, Z., Du, Y., Xin, F., Xie, J. 2019. LA-ICP-MS trace-element analysis of pyrite from the Huanxiangwa gold deposit, Xiong’ershan district, China: Implications for ore genesis. Minerals, 9(3), 157.
- Genkin, A. D., Bortnikov, N. S., Cabri, L. J., Wagner, F. E., Stanley, C. J., Safonov, Y. G., McMahon, G., Friedl, J., Kerzin, A. L., Gamyanin, G. N. 1998. A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation: Economic Geology, 93, 463–487.
- Goldfarb, R. J., Hagemann, S. G., Stanton, R. L. 1991. The role of pyrite in gold deposits. Economic Geology, 86(6), 1318-1331.
- Gregory, D. D., Meffre, S., Large, R. R. 2014. Comparision of metal enrichment in pyrite framboids from a metal-enriched and metal-poor estuary. American Mineralogist 99, 633-644.
Haas, J. 2012. Geology of Hungary. Springer. ISBN 978-3-642-21910-8 (eBook).
- Haas, J., Hámor, G. 1998. Magyarország területe szerkezetfejlődésének összefoglalása, in: Borezi I. és Jámbor Á. (szerk.) (1998). Magyarország geológiai képződményeinek rétegtana, MOL Rt.-MÁFI kiadvány, Budapest, 45-55.
- Haas, J., Budai, T., Csontos, L., Fodor, L., Konrád, Gy. 2010. Pre-Cenozoic geological map of Hungary, 1:500 000. Geology Institute Hung, Budapest.
- Hámor, T. 1994. The occurrence and morphology of sedimentary pyrite. Acta Geologica Hungarica 37/2-2,153-181.
- Hámor-Vidó, M., Hámor, K. 2007. Sulfur isotope studies in the Western Mecsek uranium ore deposit. Journal of Geochemical Exploration, 93(1-3), 30-45.
- Heinrich, C. A., Günther, D., Audétat, A., Ulrich, T., Frischknecht, R. 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 27(8), 755-758.
- Henderson, K. M., Williams-Jones, A. E., Clark, J.R. 2019. Metal transport by liquid hydrocarbons: Evidence from metalliferous shale and pyrobitumen, Yukon; in Targeted Geoscience Initiative: 2018 report of activities, (ed.) N. Rogers; Geological Survey of Canada, Open File 8549, 179–187.
- Henrique-Pinto, R., Barnes, S., Savard, D. D., Mehdi, S. 2015. Quantification of metals and semimetals in carbon-rich rocks: a new sequential protocol including extraction from humic substances. Geostandards and Geoanalytical Research 41, 41-62.
- Huston, D. L., Sie, S. H., Suter, G. F., Cooke, D. R., Both, R. A. 1995a. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part II. Selenium in pyrite. Economic Geology, 90(3), 705-720.
- Huston, D. L., Large, R. R., McPhie, J. 1995b. Invisible gold in pyrite: Evidence from hydrothermal gold deposits. Economic Geology, 90(6), 1440-1452.
- Hu, S. Y., Evans, K., Fisher, L., Rempel, K., Craw, D., Evans, N. J., Cumberland, S., Robert, A., Grice, K. 2016. Associations between sulfides, carbonaceous material, gold and other trace elements in polyframboids: implications for the source of orogenic gold deposits, Otago Schist, New Zealand. Geochimica et Cosmochimica Acta, 180, 197-213.
- IAEA Report, 2014. Uranium 2014 – Resources, Production and Demand. Chapter 3, National Reports – Hungary. A Joint Report by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, 244-250.
- Ingham, N. J. Cook, J. Cliff, C. L. Ciobanu, A. 2014. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia. Geochimica et Cosmochimica Acta, 125, 440-465.
- Jiao, Y. Q., Wu, L. Q., Rong, H. 2018. Model of inner and outer reductive media within uranium reservoir sandstone of sandstone-type uranium deposits and its ore-controlling mechanism: case studies in Daying and Qianjiadian uranium deposit. Earth Science 43, 459-474.
- Junussov, M. 2018. Characteristics, distribution and morphogenesis of gold-bearing sulfide minerals in the gold black shale deposit of Bakyrchik. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 18(1.1), 643–650.
- Junussov, M., Madai, F., Kristály, F., Tóth, T., Fintor, K., Muránszky, G., Prekob, Á., Hámor-Vidó, M. 2021. Preliminary analysis on roles of metal–organic compounds in the formation of invisible gold. Acta Geochimica 40, 1050–1072.
- Junussov, M., Ferenc, M., Földessy, J., Mária, H.-V. 2024a. The role of organic matter in gold occurrence: insights from Western Mecsek uranium ore deposit. Economic and Environmental Geology 57, 16.
- Junussov, M., Tarikhov F., Abildakhanov A., Zhanaidar D., Mekenbek G., Assambayeva A. 2024b.Mineralogical and elemental analysis of Kazakh coals from three mines: Preliminary insights from mode of occurrence to environmental impacts. Open Geosciences. 16 (1), 20220721.
- Junussov, M., Mohammad, A., Longinos, S. 2025. Geochemical analysis of organic matter associated with gold in ore deposits: A study of Kazakhstan and Hungary. Acta Geochimica 44(1), 23–35
Kádas, M. 1983. Analysis on trace elements in coals of Mecsek. Geological research. (A mecseki feketekőszén nyomelemvizsgálatának legújabb eredményei. Földtani Kutatás, in Hungarian) 26, 81-82.
- Kiss, J. 1958. La genèse de chrome uranifère et son role paragénitiçme dans l'ensemble permien du Mecsek (Deux, Conf. Irt. des. Nations Unies).
- Kiss, J. 1960. Az urán-króm-vanádium eloszlása és az epigén kromcsülám szerepe a mecseki permi osszletben. X oldt. Közi. 90/1.
- Kizilshtein, L. J., Minaeva, L. G. 1972. Origin of the framboidal pyrite Doklady Akademii Nauk SSSR, 206, 1187-1189 (in Russian).
- Koglin, N., Frimmel, H. E., Minter, W. E. L, Bratz, H. 2010. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Miner. Deposita 45, 259-280.
Large, R. R., Maslennikov, V. V. 2020. Invisible Gold Paragenesis and Geochemistry in Pyrite from Orogenic and Sediment-Hosted Gold Deposits. Minerals 10(4), 339.
- Large, R. R., Bull, S. W., Maslennikov, V. V., Gregory, D. D., Meffre, S. 2007. Stratiform and strata-bound Zn-Pb-Ag mineralization in the Siberian Urals: a review of tectonic settings, fluid characteristics, and genetic models. Ore Geology Reviews 32(3-4), 206-233.
- Large, R. R., Maslennikov, V. V., Robert, F., Danyushevsky, L. V., Chang, Z. 2011. Gold distribution and genesis in arsenian pyrite: An example from the Proterozoic Broken Hill District, Australia. Mineralium Deposita 45, 259-280.
- Large, R. R., Thomas, H., Craw, D., Henne, A., Henderson, S. 2012. Diagenetic pyrite as a source for metals in orogenic gold deposits, Otago Schist, New Zealand. New Zealand Journal of Geology and Geophysics 55, 137-149.
- Liang, L., Jian-Ming, Zh. 2016. An optimized sequential extraction scheme for molybdenum association in environmental samples. Acta Geochimica 35(2), 111–119.
- Liu, Z. Y., Peng, S. P., Qin, M. K., Liu, H. X., Huang, S. H., He, Z. B., Guo, Q., Song, J. Y. 2017. Multistage enrichment of the Sawafuqi uranium deposit: new insights into sandstone-hosted uranium deposits in the intramontane Basins of Tian Shan, China. Acta Geologica Sinica (English edition) 91, 2138-2152.
- Love, L. G. 1971. Early diagenetic polyframboidal pyrite, primary and redeposited, from the Wenlockian Denbigh Grit Group, Conway, North Wales, UK. Journal of Sedimentary Research, 41(4), 1038-1044.
- Lowers, H. A., Breit, G. N., Foster, A. L., Whitney, J., Yount, J., Uddin, M. N., Muneem, A. A. 2007. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh. Geochimica et Cosmochimica Acta 71, 2699-2717.
- Min, M. Z., Chen, J., Wang, J. P., Wei, G. H., Fayek, M. 2005. Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China. Ore Geology Reviews, 26, 51-69.
Morse, J. W., Luther. G. W. 1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta 63, 3373-3378.
- Nayak, B., Chakravarty, S., Bhattacharyya, K. K. 2008. Invisible gold in the high-sulphur Tertiary coals of northeast India. Current science, 1334-1337.
- Neumann, T., Scholz, F., Kramar, U., Ostermaier, M., Rausch, N., Berner, Z. 2013. Arsenic in framboidal pyrite from recent sediments of a shallow water lagoon of the Baltic Sea. Sedimentology 60, 1389-1414.
- Ódor, L. 1969. The Be content of Transdanubian Eocene coals. Magy All Foldt Intez EviJel, 123-131.
- Pirajno, F. 2009. Hydrothermal Processes and Mineral Systems. Springer Science and Business Media.
Raiswell, R. 1982. Pyrite texture, isotopic composition and the availability of iron. American Journal of Science 282, 1244-1263.
- Reifenröther, R., Münker,C., Scheibner, B. 2021. Evidence for tungsten mobility during oceanic crust alteration. Chemical Geology 584, 120504.
- René, M. 2014. Rare-earth, yttrium and zirconium mobility associated with the uranium mineralisation at Okrouhlá Radouň, Bohemian Massif, Czech Republic. European Journal of Mineralogy 27, 57–70.
- Sack, R. O., Blundy, J. D., Wood, B. J. 2018. Trace element partitioning and isotope systematics in hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry 83(1), 213-261.
- Sawłowicz, Z. 1993. Pyrite framboids and their development: a new conceptual mechanism. Geologische Rundschau 82, 148-156.
- Sawłowicz, Z. 2000. Framboids: from their origin to application. Polish Academy of Science, Krakow. 1-80.
Scholz, F., Neumann, T. 2007. Trace element diagenesis in pyrite-rich sediments of the Achterwasser lagoon, SW Baltic Sea. Marine Chemistry 107, 516-532.
- Selmeczi-Antal, P., Vincze, J. 1986. A szénült és ásványosodott növényi maradványok szerepe a mecseki uránércesedésben. Földtani Közlöny, 116(2), 111-136.
- Sidorova, N. V., Aristov, V. V., Grigor’eva, A. V., Sidorov, A. A. 2020. “Invisible” Gold in Pyrite and Arsenopyrite from The Pavlik Deposit (Northeastern Russia). In Doklady Earth Sciences, Pleiades Publishing, 495, 821-826.
- Steadman, J. A., Large, R. R., Olin, P. H., Danyushevsky, L. V., Meffre, S., Huston, D., Fabris, A., Lisitsin, V., Wells, T. 2021. Pyrite trace element behavior in magmatic-hydrothermal environments: An LA-ICPMS imaging study. Ore Ore Geology Reviews 128, 103878.
- Sung, Y. H., Brugger, J., Ciobanu, L., Pring, A., Skinner, W., Nugus, M. 2009. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Mineralium Deposita 44, 765–791.
- Szalay, S. 1954. Enrichment of uranium in some brown coals in Hungary. Acta Geologica Academiae Scientiarum Hungaricae 2, 299-311; Chemical Abstracts 48, 12629.
- Szalay, S., Almássy, G. 1956. Analytical investigations on the uranium content of Hungarian coals. Mag Tud Akad Kern Tud Oszt. Kozl, 8, 33-38.
- Szederkényi, T., Haas, J., Nagymarosy, A., Hámor, G. 2012. Geology and History of Evolution of the Tisza Mega-Unit. Book: Geology of Hungary. Editors Roland Oberhänsli, Maarten de Wit, Francois M. Roure. 103-149.
- Trigub, A. L., Tagirov, B. R., Kvashnina, K. O., Chareev, D. A., Nickckolsky, M. S., Shiryaev, A. A., Baranova, N. N., Kovalchuk, E. V., Mokhov, A. V. 2017. X-ray spectroscopy study of the chemical state of "invisible" Au in synthetic minerals in the Fe-As-S system. American Mineralogist, 102(5), 1057-1065.
- Tribovillard, N., Algeo, T. J., Lyons, T., Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol., 232, 12-32.
- Usmanova, N. F., Bragina, V. I., Zhizhaeva, A.M., Merkulova, E. N., Bondarenkoa, G. N. 2017. Comparative analysis of sequential leaching procedures for dissociation of rare earth elements in gold-bearing material. ISSN 1062-7391 Journal of Mining Science 53 (6), 1124-1132.
- Varga, E., Bella. M., Benocs. S. K. 1972. Comparative survey of the trends of trace elements concentration in Hungarian coal fields. Puhl. Hung. Min. Res. Inst., No. 15, 221-236.
- Varshal, G. M., Velyukhanova, T. K., Chkhetiya, D. N., Kholin, Y. V., Shumskaya, T. V., Tyutyunnik, O. A., Koshcheeva, I. Ya., Korochantsev, A. V. 2000. Sorption on humic acids as a basis for the mechanism of primary accumulation of gold and platinum group elements in black shales. Lithology and Mineral Resources, 35, 538-545.
- Vikentyev, I. V. 2015. Invisible and microscopic gold in pyrite: methods and new data for massive sulfide ores of the Urals. Geology Ore Deposits 57 (4), 237–265.
- Vincze, K. 1987. A mecseki felsőperm uránércesedésének vizsgálata modellkísérletekkel. Földt. Közlöny, Bull, of the Hungarian Geöl. Soc. 117. 347—373
- Virágh, K., Vincze, J. 1967. A mecseki uránérclelőhely képződésének sajátosságai. (Specialty of uranium deposit formation in the W-Mecsek; in Hungarian). Földtani Közlöny, 97/1, 39-59.
- Wagner, T., Klemd, R., Wenzel, T., Mattsson, B. 2007. Gold upgrading in metamorphosed massive sulfide ore deposits: Direct evidence from laser-ablation–inductively coupled plasma–mass spectrometry analysis of invisible gold: Geology 35, 775–778.
- Yue, L., Jiaoa, Y., Wua, L., Ronga, H., Fayekc, M., Xie, H. 2020. Evolution and origins of pyrite in sandstone-type uranium deposits, northern Ordos Basin, north-central China, based on micromorphological and compositional analysis. Ore Geology Reviews 118, 103334.
- Zhang, B., Li, N., Shu, S. P., Wang, W., Yu, J., Chen, X., Ye, T., Chen, Y. J. 2018a. Textural and compositional evolution of Au-hosting Fe-S-As minerals at the Axi epithermal gold deposit, Western Tianshan, NW China. Ore Geology Reviews, 100, 31-50.
- Zhang, X. T., Pan, J. Y., Xia, F., Zhang, Y., Liu, G. Q., Liu, Y., Zhong, F. J. 2018b. Genesis and metallogenic process of the Lujing uranium deposit, southwest Jiangxi province, China: constraints of micropetrography and S-C-O isotopes. Resource Geology 68, 303-325.
- Zhao, H. X., Frimmel, H. E., Jiang, S. Y., Dai, B. Z. 2011. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: implications for ore genesis. Ore Geology Reviews 43, 142-153.
- Zheng, Y., Zhang, L., Chen, Y. J., Hollings, P., Chen, H. Y. 2013. Metamorphosed Pb–Zn–(Ag) ores of the Keketale VMS deposit, Xinjiang: evidence from ore textures, fluid inclusions, geochronology and pyrite compositions. Ore Geology Reviews 54, 167–180.
New insights into pyrite in the Western Mecsek uranium ore deposit: its morphology, invisible gold and trace element composition
Yıl 2025,
Cilt: 177 Sayı: 177, 1 - 2
Medet Junussov
Rustem Abirov
Gulnur Mekenbek
Aizada Assambayeva
Nessipzhan Mukhamediyarova
Öz
This study presents the occurrence of invisible gold and associated trace elements in pyrite from the Late Permian Kővágószőlős Sandstone Formation within the Western Mecsek uranium ore deposit, Hungary. Eight pyrite-rich drill-core samples were analyzed using optical microscopy, EMPA, LA-ICP-MS, and sequential extraction coupled with ICP-OES. Optical microscopy and EMPA analyses identified three pyrite morphologies: framboidal (1–20 μm), cement (50–200 μm), and euhedral (1–20 μm). Framboidal pyrite, of bacterial origin, occurs within organic matter, whereas cement and euhedral pyrites are associated with quartz and feldspar. Cement pyrite occasionally hosts minor sulfosalt and galena inclusions. LA-ICP-MS detected gold in pyrite grains (average 0.33 ppm), while sequential extraction with ICP-OES confirmed gold at 0.42 ppm. Elevated concentrations of As, Zn, and Cu range from 0.2 to 2.3%, along with trace elements such as W (0.05-0.13 ppm), Ba (7- 40 ppm), and Ni (95-244 ppm), were also identified. Gold is interpreted to occur primarily as a solid solution within the pyrite lattice, whereas other trace elements are likely associated with metal nanoparticles on or within the pyrite grains. These findings emphasize the complex geochemistry of pyrite and highlight the necessity for further studies, including sulfur isotope analysis, to elucidate ore-forming processes and gold mineralization mechanisms.
Etik Beyan
Special thanks to M. Ferenc, J. Földessy, and V. Mária for their invaluable support in accessing reliable analytical equipment and providing expert consultations. Appreciation also goes to K. Ferenc, E. Király, D. Debus, F. Móricz, J. Richards, M. Leskó, and L. Majoros for their crucial assistance and expertise during the extensive analytical and laboratory work. Their contributions were essential to the success of this research. We sincerely appreciate the constructive comments and valuable insights of Dr. David Richard Lentz, Dr. Nurullah Hanilçi, and Dr. Ali Tuğcan Ünlüer, which have significantly contributed to improving the quality of this manuscript.
Destekleyen Kurum
Special thanks to M. Ferenc, J. Földessy, and V. Mária for their invaluable support in accessing reliable analytical equipment and providing expert consultations. Appreciation also goes to K. Ferenc, E. Király, D. Debus, F. Móricz, J. Richards, M. Leskó, and L. Majoros for their crucial assistance and expertise during the extensive analytical and laboratory work. Their contributions were essential to the success of this research. We sincerely appreciate the constructive comments and valuable ins
Teşekkür
Special thanks to M. Ferenc, J. Földessy, and V. Mária for their invaluable support in accessing reliable analytical equipment and providing expert consultations. Appreciation also goes to K. Ferenc, E. Király, D. Debus, F. Móricz, J. Richards, M. Leskó, and L. Majoros for their crucial assistance and expertise during the extensive analytical and laboratory work. Their contributions were essential to the success of this research. We sincerely appreciate the constructive comments and valuable insights of Dr. David Richard Lentz, Dr. Nurullah Hanilçi, and Dr. Ali Tuğcan Ünlüer, which have significantly contributed to improving the quality of this manuscript.
Kaynakça
- Barabás, A. 2010. A délkeletdunántúli hidrogenetikus uránérctelepek földtani környezete és összehasonlító értékelésük. PTE, Manuscript, PhD thesis (title “Geological Environment of the ISL Uranium Ore Deposits of Southeastern Transdanubia and Their Comparative Study”).
- Barabás, A. 2013. Hasadó anyagok. (Pál-Molnár E. and Bíró L. eds.) In: Szilárd ásványi anyagok Magyarországon (Fission mineral resources. Solid mineral resources of Hungary; in Hungarian). Geolitera publisher, SzTE TTIK Földrajzi és Földtani Tanszékcsoport, Szeged, 89-121.
- Barabás A., Konrád Gy. (eds.) 2000. Zárójelentés a magyarországi uránérc-kutatásról és a nyu-gat-mecseki uránérc-bányászatról. Kézirat, MECSEKÉRC Zrt. Földtani Adattár (Final report of the uranium exploration of Hungary and W-Mecsek uranium ore mining. Manuscript in Hungarian).
- Barer, D. H. 1984. Pyrite Morphology and its Relationship to Sedimentary Processes. Journal of Sedimentary Petrology, 54(1), 134-147.
- Barabás, A. 2010. A délkeletdunántúli hidrogenetikus uránérctelepek földtani környezete és összehasonlító értékelésük. PTE, Manuscript, PhD thesis (title “Geological Environment of the ISL Uranium Ore Deposits of Southeastern Transdanubia and Their Comparative Study”).
- Barabás, A. 2013. Hasadó anyagok. (Pál-Molnár E. and Bíró L. eds.) In: Szilárd ásványi anyagok Magyarországon (Fission mineral resources. Solid mineral resources of Hungary; in Hungarian). Geolitera publisher, SzTE TTIK Földrajzi és Földtani Tanszékcsoport, Szeged, 89-121.
- Barabás A., Konrád Gy. (eds.) 2000. Zárójelentés a magyarországi uránérc-kutatásról és a nyu-gat-mecseki uránérc-bányászatról. Kézirat, MECSEKÉRC Zrt. Földtani Adattár (Final report of the uranium exploration of Hungary and W-Mecsek uranium ore mining. Manuscript in Hungarian).
- Barer, D. H. 1984. Pyrite Morphology and its Relationship to Sedimentary Processes. Journal of Sedimentary Petrology, 54(1), 134-147.
- Cook, N. J., Chryssoulis, S. L. 1990. Concentrations of "invisible gold" in common sulphides. The Canadian Mineralogist 28, 1-16.
- Cook, N. J., Ciobanu, C. L., Mao, J. W. 2009. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China craton (Hebei Province, China). Chemical Geology, 264 (1-4), 101-121.
- Cook, N. J., Ciobanu, C. L., George, L., Zhu, Z. Y., Wade, B. P., Ehrig, K. 2013. Trace element analysis of pyrite from the Carlin-type gold deposits, Nevada: Implications for gold distribution and genesis. Geochimica et Cosmochimica Acta 111, 366-386.
- Davidson, C. M., Ferreira, P. S., Ure, A. M. 1999. Some sources of variability in the application of the three-stage sequential extraction procedure recommended by BCR to industrially-contaminated soil. Fresenius’ J Anal Chem 363, 446–451.
- Deditius, A. P., Utsunomiya, S., Ewing, R. C. 2008. The chemical stability of coffinite, USiO4·nH2O; 0<n<2, associated with organic matter: A case study from Grants uranium region, New Mexico, USA. Geochimica et Cosmochimica Acta 72(18), 4425-4443.
- Deditius, A. P., Utsunomiya, S., Ewing, R. C., Chryssoulis, S. L., Venter, D., Kesler, S. E. 2009. Decoupled geochemical behavior of As and Cu in hydrothermal systems. Geology 37 (8), 707–710.
- Deol, S., Deb, M., Large, R. R., Gilbert, S. 2012. LA–ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia–Jagpura gold prospect, southern Rajasthan, India: implications for ore genesis and gold remobilization. Chemical Geology 326–327, 72–87.
- Diehl, S. F, Goldhaber, M. B., Koenig, A. E, Lowers, H. A, Ruppert, L. F. 2012. Distribution of arsenic, selenium, and other trace elements in the high pyrite Appalachian coals: evidence for multiple episodes of pyrite formation. International Journal of Coal Geology 94, 238–249.
- Dold, B., Fontboté, L. 2001. Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate primary mineralogy and mineral processing. Journal of Geochemistry Exploration 74, 3-55.
- Fodor, L., Jelen, B., Márton, E., Skaberne, D., Vrabec, M. 1998. Miocene–Pliocene tectonic evolution of the Slovenian Periadriatic Line and surrounding area - implication for Alpine-Carpathian extrusion models. Tectonics 17, 690–709.
- Földessy, J. 1998. Geological Report: Diagnostic sampling of the formations of the W-Mecsek mountains. Report. Budapest.
- Gao, F., Du, Y., Pang, Z., Du, Y., Xin, F., Xie, J. 2019. LA-ICP-MS trace-element analysis of pyrite from the Huanxiangwa gold deposit, Xiong’ershan district, China: Implications for ore genesis. Minerals, 9(3), 157.
- Genkin, A. D., Bortnikov, N. S., Cabri, L. J., Wagner, F. E., Stanley, C. J., Safonov, Y. G., McMahon, G., Friedl, J., Kerzin, A. L., Gamyanin, G. N. 1998. A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation: Economic Geology, 93, 463–487.
- Goldfarb, R. J., Hagemann, S. G., Stanton, R. L. 1991. The role of pyrite in gold deposits. Economic Geology, 86(6), 1318-1331.
- Gregory, D. D., Meffre, S., Large, R. R. 2014. Comparision of metal enrichment in pyrite framboids from a metal-enriched and metal-poor estuary. American Mineralogist 99, 633-644.
Haas, J. 2012. Geology of Hungary. Springer. ISBN 978-3-642-21910-8 (eBook).
- Haas, J., Hámor, G. 1998. Magyarország területe szerkezetfejlődésének összefoglalása, in: Borezi I. és Jámbor Á. (szerk.) (1998). Magyarország geológiai képződményeinek rétegtana, MOL Rt.-MÁFI kiadvány, Budapest, 45-55.
- Haas, J., Budai, T., Csontos, L., Fodor, L., Konrád, Gy. 2010. Pre-Cenozoic geological map of Hungary, 1:500 000. Geology Institute Hung, Budapest.
- Hámor, T. 1994. The occurrence and morphology of sedimentary pyrite. Acta Geologica Hungarica 37/2-2,153-181.
- Hámor-Vidó, M., Hámor, K. 2007. Sulfur isotope studies in the Western Mecsek uranium ore deposit. Journal of Geochemical Exploration, 93(1-3), 30-45.
- Heinrich, C. A., Günther, D., Audétat, A., Ulrich, T., Frischknecht, R. 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 27(8), 755-758.
- Henderson, K. M., Williams-Jones, A. E., Clark, J.R. 2019. Metal transport by liquid hydrocarbons: Evidence from metalliferous shale and pyrobitumen, Yukon; in Targeted Geoscience Initiative: 2018 report of activities, (ed.) N. Rogers; Geological Survey of Canada, Open File 8549, 179–187.
- Henrique-Pinto, R., Barnes, S., Savard, D. D., Mehdi, S. 2015. Quantification of metals and semimetals in carbon-rich rocks: a new sequential protocol including extraction from humic substances. Geostandards and Geoanalytical Research 41, 41-62.
- Huston, D. L., Sie, S. H., Suter, G. F., Cooke, D. R., Both, R. A. 1995a. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part II. Selenium in pyrite. Economic Geology, 90(3), 705-720.
- Huston, D. L., Large, R. R., McPhie, J. 1995b. Invisible gold in pyrite: Evidence from hydrothermal gold deposits. Economic Geology, 90(6), 1440-1452.
- Hu, S. Y., Evans, K., Fisher, L., Rempel, K., Craw, D., Evans, N. J., Cumberland, S., Robert, A., Grice, K. 2016. Associations between sulfides, carbonaceous material, gold and other trace elements in polyframboids: implications for the source of orogenic gold deposits, Otago Schist, New Zealand. Geochimica et Cosmochimica Acta, 180, 197-213.
- IAEA Report, 2014. Uranium 2014 – Resources, Production and Demand. Chapter 3, National Reports – Hungary. A Joint Report by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, 244-250.
- Ingham, N. J. Cook, J. Cliff, C. L. Ciobanu, A. 2014. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia. Geochimica et Cosmochimica Acta, 125, 440-465.
- Jiao, Y. Q., Wu, L. Q., Rong, H. 2018. Model of inner and outer reductive media within uranium reservoir sandstone of sandstone-type uranium deposits and its ore-controlling mechanism: case studies in Daying and Qianjiadian uranium deposit. Earth Science 43, 459-474.
- Junussov, M. 2018. Characteristics, distribution and morphogenesis of gold-bearing sulfide minerals in the gold black shale deposit of Bakyrchik. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 18(1.1), 643–650.
- Junussov, M., Madai, F., Kristály, F., Tóth, T., Fintor, K., Muránszky, G., Prekob, Á., Hámor-Vidó, M. 2021. Preliminary analysis on roles of metal–organic compounds in the formation of invisible gold. Acta Geochimica 40, 1050–1072.
- Junussov, M., Ferenc, M., Földessy, J., Mária, H.-V. 2024a. The role of organic matter in gold occurrence: insights from Western Mecsek uranium ore deposit. Economic and Environmental Geology 57, 16.
- Junussov, M., Tarikhov F., Abildakhanov A., Zhanaidar D., Mekenbek G., Assambayeva A. 2024b.Mineralogical and elemental analysis of Kazakh coals from three mines: Preliminary insights from mode of occurrence to environmental impacts. Open Geosciences. 16 (1), 20220721.
- Junussov, M., Mohammad, A., Longinos, S. 2025. Geochemical analysis of organic matter associated with gold in ore deposits: A study of Kazakhstan and Hungary. Acta Geochimica 44(1), 23–35
Kádas, M. 1983. Analysis on trace elements in coals of Mecsek. Geological research. (A mecseki feketekőszén nyomelemvizsgálatának legújabb eredményei. Földtani Kutatás, in Hungarian) 26, 81-82.
- Kiss, J. 1958. La genèse de chrome uranifère et son role paragénitiçme dans l'ensemble permien du Mecsek (Deux, Conf. Irt. des. Nations Unies).
- Kiss, J. 1960. Az urán-króm-vanádium eloszlása és az epigén kromcsülám szerepe a mecseki permi osszletben. X oldt. Közi. 90/1.
- Kizilshtein, L. J., Minaeva, L. G. 1972. Origin of the framboidal pyrite Doklady Akademii Nauk SSSR, 206, 1187-1189 (in Russian).
- Koglin, N., Frimmel, H. E., Minter, W. E. L, Bratz, H. 2010. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Miner. Deposita 45, 259-280.
Large, R. R., Maslennikov, V. V. 2020. Invisible Gold Paragenesis and Geochemistry in Pyrite from Orogenic and Sediment-Hosted Gold Deposits. Minerals 10(4), 339.
- Large, R. R., Bull, S. W., Maslennikov, V. V., Gregory, D. D., Meffre, S. 2007. Stratiform and strata-bound Zn-Pb-Ag mineralization in the Siberian Urals: a review of tectonic settings, fluid characteristics, and genetic models. Ore Geology Reviews 32(3-4), 206-233.
- Large, R. R., Maslennikov, V. V., Robert, F., Danyushevsky, L. V., Chang, Z. 2011. Gold distribution and genesis in arsenian pyrite: An example from the Proterozoic Broken Hill District, Australia. Mineralium Deposita 45, 259-280.
- Large, R. R., Thomas, H., Craw, D., Henne, A., Henderson, S. 2012. Diagenetic pyrite as a source for metals in orogenic gold deposits, Otago Schist, New Zealand. New Zealand Journal of Geology and Geophysics 55, 137-149.
- Liang, L., Jian-Ming, Zh. 2016. An optimized sequential extraction scheme for molybdenum association in environmental samples. Acta Geochimica 35(2), 111–119.
- Liu, Z. Y., Peng, S. P., Qin, M. K., Liu, H. X., Huang, S. H., He, Z. B., Guo, Q., Song, J. Y. 2017. Multistage enrichment of the Sawafuqi uranium deposit: new insights into sandstone-hosted uranium deposits in the intramontane Basins of Tian Shan, China. Acta Geologica Sinica (English edition) 91, 2138-2152.
- Love, L. G. 1971. Early diagenetic polyframboidal pyrite, primary and redeposited, from the Wenlockian Denbigh Grit Group, Conway, North Wales, UK. Journal of Sedimentary Research, 41(4), 1038-1044.
- Lowers, H. A., Breit, G. N., Foster, A. L., Whitney, J., Yount, J., Uddin, M. N., Muneem, A. A. 2007. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh. Geochimica et Cosmochimica Acta 71, 2699-2717.
- Min, M. Z., Chen, J., Wang, J. P., Wei, G. H., Fayek, M. 2005. Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China. Ore Geology Reviews, 26, 51-69.
Morse, J. W., Luther. G. W. 1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta 63, 3373-3378.
- Nayak, B., Chakravarty, S., Bhattacharyya, K. K. 2008. Invisible gold in the high-sulphur Tertiary coals of northeast India. Current science, 1334-1337.
- Neumann, T., Scholz, F., Kramar, U., Ostermaier, M., Rausch, N., Berner, Z. 2013. Arsenic in framboidal pyrite from recent sediments of a shallow water lagoon of the Baltic Sea. Sedimentology 60, 1389-1414.
- Ódor, L. 1969. The Be content of Transdanubian Eocene coals. Magy All Foldt Intez EviJel, 123-131.
- Pirajno, F. 2009. Hydrothermal Processes and Mineral Systems. Springer Science and Business Media.
Raiswell, R. 1982. Pyrite texture, isotopic composition and the availability of iron. American Journal of Science 282, 1244-1263.
- Reifenröther, R., Münker,C., Scheibner, B. 2021. Evidence for tungsten mobility during oceanic crust alteration. Chemical Geology 584, 120504.
- René, M. 2014. Rare-earth, yttrium and zirconium mobility associated with the uranium mineralisation at Okrouhlá Radouň, Bohemian Massif, Czech Republic. European Journal of Mineralogy 27, 57–70.
- Sack, R. O., Blundy, J. D., Wood, B. J. 2018. Trace element partitioning and isotope systematics in hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry 83(1), 213-261.
- Sawłowicz, Z. 1993. Pyrite framboids and their development: a new conceptual mechanism. Geologische Rundschau 82, 148-156.
- Sawłowicz, Z. 2000. Framboids: from their origin to application. Polish Academy of Science, Krakow. 1-80.
Scholz, F., Neumann, T. 2007. Trace element diagenesis in pyrite-rich sediments of the Achterwasser lagoon, SW Baltic Sea. Marine Chemistry 107, 516-532.
- Selmeczi-Antal, P., Vincze, J. 1986. A szénült és ásványosodott növényi maradványok szerepe a mecseki uránércesedésben. Földtani Közlöny, 116(2), 111-136.
- Sidorova, N. V., Aristov, V. V., Grigor’eva, A. V., Sidorov, A. A. 2020. “Invisible” Gold in Pyrite and Arsenopyrite from The Pavlik Deposit (Northeastern Russia). In Doklady Earth Sciences, Pleiades Publishing, 495, 821-826.
- Steadman, J. A., Large, R. R., Olin, P. H., Danyushevsky, L. V., Meffre, S., Huston, D., Fabris, A., Lisitsin, V., Wells, T. 2021. Pyrite trace element behavior in magmatic-hydrothermal environments: An LA-ICPMS imaging study. Ore Ore Geology Reviews 128, 103878.
- Sung, Y. H., Brugger, J., Ciobanu, L., Pring, A., Skinner, W., Nugus, M. 2009. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Mineralium Deposita 44, 765–791.
- Szalay, S. 1954. Enrichment of uranium in some brown coals in Hungary. Acta Geologica Academiae Scientiarum Hungaricae 2, 299-311; Chemical Abstracts 48, 12629.
- Szalay, S., Almássy, G. 1956. Analytical investigations on the uranium content of Hungarian coals. Mag Tud Akad Kern Tud Oszt. Kozl, 8, 33-38.
- Szederkényi, T., Haas, J., Nagymarosy, A., Hámor, G. 2012. Geology and History of Evolution of the Tisza Mega-Unit. Book: Geology of Hungary. Editors Roland Oberhänsli, Maarten de Wit, Francois M. Roure. 103-149.
- Trigub, A. L., Tagirov, B. R., Kvashnina, K. O., Chareev, D. A., Nickckolsky, M. S., Shiryaev, A. A., Baranova, N. N., Kovalchuk, E. V., Mokhov, A. V. 2017. X-ray spectroscopy study of the chemical state of "invisible" Au in synthetic minerals in the Fe-As-S system. American Mineralogist, 102(5), 1057-1065.
- Tribovillard, N., Algeo, T. J., Lyons, T., Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol., 232, 12-32.
- Usmanova, N. F., Bragina, V. I., Zhizhaeva, A.M., Merkulova, E. N., Bondarenkoa, G. N. 2017. Comparative analysis of sequential leaching procedures for dissociation of rare earth elements in gold-bearing material. ISSN 1062-7391 Journal of Mining Science 53 (6), 1124-1132.
- Varga, E., Bella. M., Benocs. S. K. 1972. Comparative survey of the trends of trace elements concentration in Hungarian coal fields. Puhl. Hung. Min. Res. Inst., No. 15, 221-236.
- Varshal, G. M., Velyukhanova, T. K., Chkhetiya, D. N., Kholin, Y. V., Shumskaya, T. V., Tyutyunnik, O. A., Koshcheeva, I. Ya., Korochantsev, A. V. 2000. Sorption on humic acids as a basis for the mechanism of primary accumulation of gold and platinum group elements in black shales. Lithology and Mineral Resources, 35, 538-545.
- Vikentyev, I. V. 2015. Invisible and microscopic gold in pyrite: methods and new data for massive sulfide ores of the Urals. Geology Ore Deposits 57 (4), 237–265.
- Vincze, K. 1987. A mecseki felsőperm uránércesedésének vizsgálata modellkísérletekkel. Földt. Közlöny, Bull, of the Hungarian Geöl. Soc. 117. 347—373
- Virágh, K., Vincze, J. 1967. A mecseki uránérclelőhely képződésének sajátosságai. (Specialty of uranium deposit formation in the W-Mecsek; in Hungarian). Földtani Közlöny, 97/1, 39-59.
- Wagner, T., Klemd, R., Wenzel, T., Mattsson, B. 2007. Gold upgrading in metamorphosed massive sulfide ore deposits: Direct evidence from laser-ablation–inductively coupled plasma–mass spectrometry analysis of invisible gold: Geology 35, 775–778.
- Yue, L., Jiaoa, Y., Wua, L., Ronga, H., Fayekc, M., Xie, H. 2020. Evolution and origins of pyrite in sandstone-type uranium deposits, northern Ordos Basin, north-central China, based on micromorphological and compositional analysis. Ore Geology Reviews 118, 103334.
- Zhang, B., Li, N., Shu, S. P., Wang, W., Yu, J., Chen, X., Ye, T., Chen, Y. J. 2018a. Textural and compositional evolution of Au-hosting Fe-S-As minerals at the Axi epithermal gold deposit, Western Tianshan, NW China. Ore Geology Reviews, 100, 31-50.
- Zhang, X. T., Pan, J. Y., Xia, F., Zhang, Y., Liu, G. Q., Liu, Y., Zhong, F. J. 2018b. Genesis and metallogenic process of the Lujing uranium deposit, southwest Jiangxi province, China: constraints of micropetrography and S-C-O isotopes. Resource Geology 68, 303-325.
- Zhao, H. X., Frimmel, H. E., Jiang, S. Y., Dai, B. Z. 2011. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: implications for ore genesis. Ore Geology Reviews 43, 142-153.
- Zheng, Y., Zhang, L., Chen, Y. J., Hollings, P., Chen, H. Y. 2013. Metamorphosed Pb–Zn–(Ag) ores of the Keketale VMS deposit, Xinjiang: evidence from ore textures, fluid inclusions, geochronology and pyrite compositions. Ore Geology Reviews 54, 167–180.