Derleme
BibTex RIS Kaynak Göster

İklim Değişikliğinin Tarım Ürünleri ve Böcekler Üzerindeki Etkisi

Yıl 2024, , 535 - 564, 15.12.2024
https://doi.org/10.20479/bursauludagziraat.1417075

Öz

İklim değişikliği ve küresel ısınma, dünya genelinde tarım endüstrisini büyük ölçüde etkilemekte ve günümüz toplumunda en çok tartışılan konular arasında yer almaktadır. İklim değişikliği sonucunda sıcaklıkların yükselmesinin, atmosferde CO2 konsantrasyonlarının artmasının ve değişen yağış miktarı gibi olumsuz koşulların tarımsal üretim ve tarım zararlısı böcekler üzerine önemli etkisi bulunmaktadır. İklim değişiklikleri zararlı ve faydalı böcekleri çeşitli şekillerde etkileyebilir. Bu etkiler tarım zararlısı böceklerin coğrafi dağılımlarının genişlemesine, kışı canlı geçiren türlerin hayatta kalma oranının artmasına, döl sayısının yükselmesine, bitkiler ve zararlılar arasındaki dengenin değişmesine, türler arası etkileşimin değişmesine, göç eden zararlılar tarafından istila riskinin artmasına, böceklerle bulaşan bitki hastalıklarının görülme sıklığının artmasına ve özellikle biyolojik mücadele etmenlerinin etkinliğinin azalmasına neden olabilir. Bu sebepler nedeniyle, tarımsal üretimde ürün kaybı ve gıda güvenliği ciddi bir sorunla karşı karşıya kalabilir. Zararlı böcekler ile bu böceklerin predatörleri ve parazitoitleri iklim değişikliğine farklı şekillerde cevap verirler. Yüksek sıcaklık böceklerin doğal düşmanları tarafından saldırıya uğrayacakları dönemleri daha kısa sürede geçirmelerine sebep olur. Dolayısıyla zararlı böcek ve onun doğal düşmanı arasındaki ilişki sıcaklığın artmasından dolayı önemli derecede etkilenmiş olacaktır. Bu çalışmada iklim değişikliğinin tarım zararlısı böcekler üzerindeki etkilerine karşı yapılacak olan öncelikli araştırmalar tartışılmaktadır. Bu öncelikli araştırmalar arasında, modifiye edilmiş entegre zararlı yönetimi stratejileri, iklim ve zararlı böcek popülasyonlarının izlenmesi ve modelleme tahmin araçlarının kullanımı sayılabilir. Sonuç olarak, iklim değişikliğinin tarım zararlısı böcekler üzerine olumsuz etkisi ile ilgili yapılan çalışmalar araştırılmış ve gelecekte ihtiyaç duyulan zararlı böceklerle mücadele yönetim stratejileri ve uyulması gereken mevzuat detaylı olarak değerlendirilmiştir. Ayrıca, böcek popülasyonlarını korumak için uygun yöntemlerin neler olabileceği değerlendirilmiş olup iklim değişikliği sorunu ile başa çıkmak için proaktif ve bilimsel bir yaklaşımın gerektiği sonucuna varılmıştır.

Kaynakça

  • Abram, P.K., Boivin, G., Moiroux, J. and Brodeur, J. 2017. Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biological Reviews, 92(4): 1859–1876.
  • Ahmed S.S., Liu S.D. and Simon, J.C. 2017. Impact of water-deficit stress on tritrophic interactions in a wheat aphid-parasitoid system. Plos One, 12(10): e0186599.
  • Alexandratos, N. and J. Bruinsma. 2012. World agriculture towards 2030/2050: the 2012 revision. ESA Working, FAO, Rome, 12-03.
  • Altermatt, F. 2010. Climatic warming increases voltinism in european butterflies and moths. Proceedings of the Royal Society B: Biological Sciences, 277(1685): 1281–1287.
  • Andrew, N.R. and Hill, S.J. 2017. Effect of Climate Change on Insect Pest Management, In Environmental Pest Management, Wiley, pp: 195–223.
  • Arnell, N.W., Lowe, J.A., Challinor, A.J. and Osborn, T.J. 2019. Global and regional impacts of climate change at different levels of global temperature increase. Climatic Change, 155(3): 377–391.
  • Asseng, S., Foster, I. and Turner, N.C. 2011. The impact of temperature variability on wheat yields. Global Change Biology, 17(2): 997–1012.
  • Bacon, S.J., Aebi, A., Calanca, P. and Bacher, S. 2014. Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Diversity and Distributions, 20(1): 84–94.
  • Bale, J.S. 1993. Classes of insect cold hardiness. Functional ecology (Print), 7(6): 751–753.
  • Bale, J.S. and Hayward, S.A.L. 2010. Insect overwintering in a changing climate. Journal of Experimental Biology, 213(6): 980–994.
  • Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D. and Whittaker, J.B. 2002. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology, 8(1): 1–16.
  • Barzman, M., Bàrberi, P., Birch, A.N.E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., Hommel, B., Jensen, J.E., Kiss, J., Kudsk, P., Lamichhane, J.R., Messéan, A., Moonen, A.C., Ratnadass, A., Ricci, P., Sarah, J.L. and Sattin, M. 2015. Eight principles of integrated pest management. Agronomy for Sustainable Development, 35(4): 1199–1215.
  • Battisti, D.S. and Naylor, R.L. 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323(5911): 240–244.
  • BCS, 2018. Invasive alien species: The application of classical biological control for the management of established invasive alien species causing environmental impacts. Convention on Biological Diversity, 17–29 November 2018, Sharm El-Sheikh, Egypt, 88p.
  • Bernays, E.A. 1997. Feeding by lepidopteran larvae is dangerous. Ecological Entomology, 22(1): 121–123.
  • Bhargava, S. and Mitra, S. 2021. Elevated atmospheric CO2 and the future of crop plants. Plant Breeding, 140(1): 1–11.
  • Burkett, C.N.D. and Vittor, A.Y. 2018. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic and Applied Ecology, 26: 101–110.
  • Cannon, R.J.C. 1998. The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biology, 4(7): 785–796.
  • Chevin, L.M., Lande, R. and Mace, G.M. 2010. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS biology, 8(4): e100357.
  • Cini, A., Anfora, G., Escudero, C.L.A., Grassi, A., Santosuosso, U., Seljak, G. and Papini, A. 2014. Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. Journal of Pest Science, 87(4): 559–566.
  • Dáder, B., Fereres, A., Moreno, A. and Trębicki, P. 2015. Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability. Scientific Reports, 6: 19120.
  • Dai, A. 2011. Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1): 45–65.
  • Dai, A., Zhao, T. and Chen, J. 2018. Climate Change and Drought: a Precipitation and Evaporation Perspective. Current Climate Change Reports, 4(3): 301–312.
  • Dell, D., Sparks, T.H. and Dennis, R.L.H. 2005. Climate change and the effect of increasing spring temperatures on emergence dates of the butterfly Apatura iris (Lepidoptera: Nymphalidae). European Journal of Entomology, 102(2): 161–167.
  • DeLucia, E.H., Nabity, P.D., Zavala, J.A. and Berenbaum, M.R. 2012. Climate change: Resetting plant-insect interactions. Plant Physiology, 160(4): 1677–1685.
  • Deshar, R. and Koirala, M. 2019. Global Climate Change and Environmental Policy: Agriculture Perspectives: Climate change and gender policy, Venkatramanan, V., Shah, S. and Prasad, R., Springer, Singapore, p:411-422.
  • Dinç, S.Ö., Künili, İ.E. and Çolakoğlu, F. 2022. İklim Değişimi Sürecinin Sürdürülebilir ve Güvenli Gıda Üretimine Etkisi. Bursa Uludağ Üniv. Ziraat Fak. Derg., 36(2): 447–460.
  • Draper, A.M. and Weissburg, M.J. 2019. Impacts of global warming and elevated CO2 on sensory behavior in predator-prey interactions: A review and synthesis. Frontiers in Ecology and Evolution, 7 (MAR): 428445.
  • Edosa, T.T., Jo, Y.H., Keshavarz, M., Anh, Y.S., Noh, M.Y. and Han, Y.S. 2019. Current status of the management of fall webworm, Hyphantria cunea: Towards the integrated pest management development. Journal of Applied Entomology, 143(1–2): 1–10.
  • Eigenbrode, S.D. and Trumble, J.T. 1994. Host plant resistance to insects in integrated pest management in vegetable crops. Journal of Agriculture Entomology, 11(3): 201-224
  • Evans, E.W., Carlile, N.R., Innes, M.B. and Pitigala, N. 2013. Warm springs reduce parasitism of the cereal leaf beetle through phenological mismatch. Journal of Applied Entomology, 137(5): 383–391.
  • Field, C.B., V.R. Barros, M.D. Mastrandrea, K.J. Mach, M.K. Abdrabo, N. Adger, Y.A. Anokhin, O.A. Anisimov, D.J. Arent, J. Barnett, 2014. Summary for policymakers, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, USA, pp:1–32.
  • Fischer, G., Tubiello, F.N., van Velthuizen, H. and Wiberg, D.A. 2007. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990-2080. Technological Forecasting and Social Change, 74(7): 1083–1107.
  • Frank, S.D. 2021. Review of the direct and indirect effects of warming and drought on scale insect pests of forest systems. Forestry: An International Journal of Forest Research, 94(2): 167–180.
  • Fróna, D., Szenderák, J. and Harangi-Rákos, M. 2019. The challenge of feeding theworld. Sustainability, 11(20): 5816
  • Fuhrer, J. 2003. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems and Environment, 97(1–3): 1–20.
  • Gill, H.K., Goyal, G. and Chahil, G. 2017. Insect Diapause: A Review. Journal of Agricultural Science and Technology A, 7 (7).
  • Gomez Z.A., Mejuto, J.C. and Simal, G.J. 2020. Mitigation of emerging implications of climate change on food production systems. Food Research International, 134: 109256.
  • González, T.D., Córdoba, A.A., Dáttilo, W., Lira, N.A., Sánchez, G.R.A. and Villalobos, F. 2020. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biological Reviews, 95(3): 802–821.
  • Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K. and Wiltshire, A. 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554): 2973–2989.
  • Gregory, P.J., Johnson, S.N., Newton, A.C. and Ingram, J.S.I. 2009. Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60(10): 2827–2838.
  • Guo, H., Sun, Y., Ren, Q., Zhu, S.K., Kang, L., Wang, C., Li, C. and Ge, F. 2012. Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PLoS ONE, 7(7): e41426.
  • Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z.D., Wada, Y. and Wisser, D. 2014. Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3251–3256.
  • Hahn, D.A. and Denlinger, D.L. 2011. Energetics of insect diapause. Annual Review of Entomology, 56: 103 121.
  • Hamilton, J.G., Dermody, O., Aldea, M., Zangerl, A.R., Rogers, A., Berenbaum, M.R. and DeLucia, E.H. 2005. Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environmental Entomology, 34(2): 479–485.
  • Harrington, R., Clark, S.J., Welham, S.J., Verrier, P.J., Denholm, C.H., Hullé, M., Maurice, D., Rounsevell, M.D. and Cocu, N. 2007. Environmental change and the phenology of European aphids. Global Change Biology, 13(8): 1550–1564.
  • Harrington, R., Fleming, R.A. and Woiwod, I.P. 2001. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted?. Agricultural and Forest Entomology, 3(4): 233 240.
  • Harrington, R., Woiwod, I., and Sparks, T. 1999. Climate change and trophic interactions. Trends in Ecology and Evolution, 14(4): 146–150.
  • Harvey, J.A., Tougeron, K., Gols, R., Heinen, R., Abarca, M., Abram, P.K., Basset, Y., Berg, M., Boggs, C., Brodeur, J., Cardoso, P., de Boer, J.G., de Snoo, G.R., Deacon, C., Dell, J.E., Desneux, N., Dillon, M.E., Duffy, G.A., Dyer, L.A., Ellers, J., Espíndola, A., Fordyce, J., Forister, M.L., Fukushima, C., Gage, M.J.G., García, R.C., Gely, C., Gobbi, M., Hallmann, C., Hance, T., Harte, J., Hochkirch, A., Hof, C., Hoffmann, A.A., Kingsolver, J.G., Lamarre, G.P.A., Laurance, W.F., Lavandero, B., Leather, S.R., Lehmann, P., Le Lann, C., López‐Uribe, M.M., Ma, C., Ma, G., Moiroux, J., Monticelli, L., Nice, C., Ode, P.J., Pincebourde, S., ... and Chown, S.L. 2023. Scientists’ warning on climate change and insects. Ecological Monographs, 93(1): e1553.
  • Heeb, L., Jenner, E. and Cock, M.J.W. 2019. Climate-smart pest management: building resilience of farms and landscapes to changing pest threats. Journal of Pest Science, 92(3): 951–969.
  • Heuskin, S., Verheggen, F.J., Haubruge, E., Wathelet, J.P. and Lognay, G. 2011. The use of semiochemical slow-release devices in integrated pest management strategies. Biotechnol. Agron. Soc. Environ, 15(3): 459470.
  • Hill, D.S. 1987. Agricultural insect pests of temperate regions and their control. Stony Brook University Published, 672p.
  • Hill, M.P. and Thomson, L.J. 2015. Species distribution modelling in predicting response to climate change. Climate Change and Insect Pests. CABI, p:16–37.
  • Hof, C. 2021. Towards more integration of physiology, dispersal and land-use change to understand the responses of species to climate change. Journal of Experimental Biology, 224(1): jeb238352.
  • Holley, J.M. 2022. Enhancing yield, nutrition, and water-use efficiency of lettuce (Lactuca sativa) with greenhouse light spectrum and carbon dioxide enrichment. Horticulturae. 8(9): 820.
  • Howden, S.M., Soussana, J.F., Tubiello, F.N., Chhetri, N., Dunlop, M. and Meinke, H. 2007. Adapting agriculture to climate change. Proceedings of the National Academy of Sciences, 104(50): 19691–19696.
  • Höhn, J.G. and Rötter, R.P. 2014. Impact of global warming on European cereal production. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 9: 022.
  • Huntington, T.G. 2010. Climate warming-induced intensification of the hydrologic cycle. An assessment of the published record and potential impacts on agriculture. Advances in Agronomy, 109(C): 1–53.
  • Johnson, S.N., Anderson, E.A., Dawson, G. and Griffiths, D.W. 2008. Varietal susceptibility of potatoes to wireworm herbivory. Agricultural and Forest Entomology, 10(2): 167–174.
  • Joyce, L.A., Briske, D.D., Brown, J.R., Polley, H.W., McCarl, B.A. and Bailey, D.W. 2013. Climate change and North American Rangelands: assessment of mitigation and adaptation strategies. Rangeland Ecology & Management, 66(5): 512–528.
  • Kang, Y., Khan, S. and Ma, X. 2009. Climate change impacts on crop yield, crop water productivity and food security- A review. Progress in Natural Science, 19(12): 1665–1674.
  • Kimball, B.A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agronomy Journal, 75(5): 779–788.
  • Kimball, B.A. 2016. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Current Opinion in Plant Biology, 31: 36–43.
  • Kiritani, K. 2006. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Population Ecology, 48(1): 5–12.
  • Kocmánková, E., Trnka, M., Eitzinger, J., Formayer, H., Dubrovský, M., Semerádová, D., Ǎalud, Z., Juroch, J. and Možný, M. 2010. Estimating the impact of climate change on the occurrence of selected pests in the central European region. Climate Research, 44(1): 95–105.
  • Kriticos, D.J., Maywald, G.F., Yonow, T., Zurcher, E.J., Herrmann, N.I. and Sutherst, R. 2015. Exploring the effects of climate on plants, animals and diseases. CLIMEX Version, 4: Exploring the effects of climate on plants, animals anddiseases. CSIRO, Canberra, 156 p.
  • Kumar, S., Neven, L.G. and Yee, W.L. 2014. Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere, 5(7): 1–23.
  • Lamichhane, J.R., Barzman, M., Booij, K., Boonekamp, P., Desneux, N., Huber, L., Kudsk, P., Langrell, S.R.H., Ratnadass, A., Ricci, P., Sarah, J.L. and Messéan, A. 2015. Robust cropping systems to tackle pests under climate change. A review. Agronomy for Sustainable Development, 35(2): 443–459.
  • Lehmann, P., Ammunét, T., Barton, M., Battisti, A., Eigenbrode, S.D., Jepsen, J.U., Kalinkat, G., Neuvonen, S., Niemelä, P., Terblanche, J.S., Økland, B. and Björkman, C. 2020. Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 18(3): 141–150.
  • Lesk, C., Anderson, W., Rigden, A., Coast, O., Jägermeyr, J., McDermid, S., Davis, K.F. and Konar, M. 2022. Compound heat and moisture extreme impacts on global crop yields under climate change. Nature Reviews Earth and Environment, 3(12): 872–889.
  • Liliane, T.N., Charles, M.S., Liliane, T.N. and Charles, M.S. 2020. Factors Affecting Yield of Crops. Agronomy - Climate Change and Food Security. Intechopen, Budapest, Hungary, 16p.
  • Lin, H.I., Yu, Y.Y., Wen, F.I. and Liu, P.T. 2022. Status of Food Security in East and Southeast Asia and Challenges of Climate Change. Climate, 10(3): 40.
  • Liu, Y. and Shi, J. 2020. Predicting the Potential Global Geographical Distribution of Two Icerya Species under Climate Change. Forests, 11(6): 684.
  • Lobell, D.B., Bänziger, M., Magorokosho, C. and Vivek, B. 2011a. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1(1): 42–45.
  • Lobell, D.B., Schlenker, W. and Costa, R. J. 2011b. Climate trends and global crop production since 1980. Science, 333(6042): 616–620.
  • Mandal, P., Mondal, F. and Protec, H.M.S. 2020. Factors influences selection and adaptation of aphid to their host plant. Journal of Plant Sciences and Crop Protection, 3(1): 102.
  • Martín, V.D., Ferrero, G.J.J. and Torres, V.L.M. 2010. Global warming affects phenology and voltinism of Lobesia botrana in Spain. Agricultural and Forest Entomology, 12(2): 169–176.
  • Masters, G. and Norgrove, L. 2010. Climate change and invasive alien species. CABI Working Paper 1, 30pp.
  • McWatters, H.G. and Saunders, D.S. 1998. Maternal temperature has different effects on the photoperiodic response and duration of larval diapause in blow fly (Calliphora vicina) strains collected at two latitudes. Physiological Entomology, 23(4): 369–375.
  • Menéndez, R., González-Megías, A., Collingham, Y., Fox, R., Roy, D.B., Ohlemüller, R. and Thomas, C.D. 2007. Direct and indirect effects of climate and habitat factors on butterfly diversity. Ecology, 88(3): 605 611.
  • Menéndez, R., González, M.A., Lewis, O.T., Shaw, M.R. and Thomas, C.D. 2008. Escape from natural enemies during climate-driven range expansion: a case study. Ecological Entomology, 33(3): 413–421.
  • Metz, B., Davidson, O., Swart, R. and Pan, J. 2001. Climate change 2001: mitigation: contribution of Working Group III to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University press, United states of America, 762p.
  • Meynard, C.N., Migeon, A. and Navajas, M. 2013. Uncertainties in predicting species distributions under climate change: A case study using Tetranychus evansi (Acari: Tetranychidae), a widespread agricultural pest. PLoS One, 8(6): e66445.
  • Myers, S., Fanzo, J., Wiebe, K., Huybers, P. and Smith, M. 2022. Current guidance underestimates risk of global environmental change to food security. The BMJ, 378: e071533.
  • Nechols, J.R. 2021. The potential impact of climate change on non-target risks from imported generalist natural enemies and on biological control. BioControl, 66(1): 37–44.
  • Netherer, S., Matthews, B., Katzensteiner, K., Blackwell, E., Henschke, P., Hietz, P., Pennerstorfer, J., Rosner, S., Kikuta, S., Schume, H. and Schopf, A. 2015. Do water-limiting conditions predispose Norway spruce to bark beetle attack?. New Phytologist, 205: 1128–1141.
  • Netherer, S., Panassiti, B., Pennerstorfer, J. and Matthews, B. 2019. Acute drought ıs an ımportant driver of bark beetle ınfestation in austrian norway spruce stands. Frontiers in Forests and Global Change, 2: 465067.
  • Nyamukondiwa, C., Machekano, H., Chidawanyika, F., Mutamiswa, R., Ma, G. and Ma, C. Sen. 2022. Geographic dispersion of invasive crop pests: the role of basal, plastic climate stress tolerance and other complementary traits in the tropics. Current Opinion in Insect Science, 50: 100878.
  • O’Neill, B.F., Zangerl, A.R., DeLucia, E.H. and Berenbaum, M.R. 2008. Longevity and fecundity of japanese beetle (Popillia japonica) on foliage grown under elevated carbon dioxide. Environmental Entomology, 37(2): 601–607.
  • Olesen, J.E. and Bindi, M. 2002. Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16(4): 239–262.
  • Pachauari, R.K. and Reisinger, A. 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report on Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 104p.
  • Pachauri, R.K., Allen, M.R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N.K., Edenhofer, O., Elgizouli, I., Field, C.B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez, E.L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez, C.B., Kattsov, V., Lee, H., Mach, K.J., Marotzke, J., Mastrandrea, M.D., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K., ... and van Ypserle, J.P. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151p.
  • Pareek, A., Meena, B., Sharma, S., Tetarwal, M., Kalyan, R. and Meena, B. 2017. Impact of climate change on insect pests and their management strategies. Climate change and sustainable agriculture. New Indıa Publıshıng Agency, p:253-286.
  • Parmesan, C. 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13(9): 1860–1872.
  • Parmesan, C. and Yohe, G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918): 37–42.
  • Pathak, H., Aggarwal, P.K. and Singh, S.D. 2012. Climate change impact, adaptation and mitigation in agriculture: methodology for assessment and applications. Indian Agricultural Research Institute, New Delhi, 302p.
  • Pathak, H., Bhatia, A., Jain, N. and Aggarwal P.K. 2014. Greenhouse gas emission from Indian agriculture: trends, mitigation and policy needs. Indian Agricultural Research Institute, New Delhi-110012, 39p.
  • Pathania, M., Verma, A., Singh, M., Arora, P.K. and Kaur, N. 2020. Influence of abiotic factors on the infestation dynamics of whitefly, Bemisia tabaci (Gennadius 1889) in cotton and its management strategies in North-Western India. International Journal of Tropical Insect Science, 40(4): 969–981.
  • Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S. and Cassman, K.G. 2004. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101(27): 9971–9975.
  • Peng, W., Ma, N.L., Zhang, D., Zhou, Q., Yue, X., Khoo, S.C., Yang, H., Guan, R., Chen, H., Zhang, X., Wang, Y., Wei, Z., Suo, C., Peng, Y., Yang, Y., Lam, S.S. and Sonne, C. 2020. A review of historical and recent locust outbreaks: Links to global warming, food security and mitigation strategies. Environmental Research, 191: 110046.
  • Perrings, C., Burgiel, S., Lonsdale, M., Mooney, H. and Williamson, M. 2010. International cooperation in the solution to trade-related invasive species risks. Annals of the New York Academy of Sciences, 1195: 198–212.
  • Pingali, P. and Abraham, M. 2022. Food systems transformation in Asia – A brief economic history. Agricultural Economics (United Kingdom), 53(6): 895–910.
  • Poyet, M., Le Roux, V., Gibert, P., Meirland, A., Prévost, G., Eslin, P. and Chabrerie, O. 2015. The wide potential trophic niche of the asiatic fruit fly Drosophila suzukii: the key of its invasion success in temperate Europe?. Plos One, 10(11): e0142785.
  • Prentice, I.C., Farquhar, G.D., Fasham, M.J.R., Goulden, M.L., Heimann, M., Jaramillo, V.J., Kheshgi, H.S., Le Quéré, C., Scholes, R.J. and Wallace, D.W.R. 2001. The carbon cycle and atmospheric carbon dioxide. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Linden, P.J.V.D., Dai, X., Maskell, K. and Johnson, C.A., Cambridge University Press, pp:183- 237.
  • Priya, M., Sharma, L., Kaur, R., Bindumadhava, H., Nair, R.M., Siddique, K.H.M. and Nayyar, H. 2019. GABA (γ-aminobutyric acid), as a thermo-protectant, to improve the reproductive function of heat-stressed mungbean plants. Scientific Reports, 9(1): 7788.
  • Purcell, C., Batke, S.P., Yiotis, C., Caballero, R., Soh, W.K., Murray, M. and McElwain, J.C. 2018. Increasing stomatal conductance in response to rising atmospheric CO2. Annals of Botany, 121(6): 1137–1149.
  • Raza, M.M., Khan, M.A., Arshad, M., Sagheer, M., Sattar, Z., Shafi, J., Haq, E. ul, Ali, A., Aslam, U., Mushtaq, A., Ishfaq, I., Sabir, Z. and Sattar, A. 2015. Impact of global warming on insects. Archives of Phytopathology and Plant Protection, 48(1): 84–94.
  • Rehman, F.U., Abbas, M., Murtaza, S., Butt, W.H., Rehman, S. and Qamar, U. 2018. SimFiller. similarity-based missing values filling algorithm. 13th International Conference on Digital Information Management, 24-26 Sep 2018, Berlin, Germany, p:77–81.
  • Ricciardi, A. 2013 Ecological Systems. Springer, New York, US, pp: 161–178.
  • Ripple, W.J., Wolf, C., Gregg, J.W., Levin, K., Rockström, J., Newsome, T.M., Betts, M.G., Huq, S., Law, B.E., Kemp, L., Kalmus, P. and Lenton, T.M. 2022. World Scientists’ Warning of a Climate Emergency 2022. BioScience, 72(12): 1149–1155.
  • Robbins, Z.J., Xu, C., Aukema, B.H., Buotte, P.C., Chitra-Tarak, R., Fettig, C.J., Goulden, M.L., Goodsman, D.W., Hall, A.D., Koven, C.D., Kueppers, L.M., Madakumbura, G.D., Mortenson, L.A., Powell, J.A. and Scheller, R.M. 2022. Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California. Global Change Biology, 28(2): 509–523.
  • Robinet, C. and Roques, A. 2010. Direct impacts of recent climate warming on insect populations. Integrative Zoology, 5(2): 132–142.
  • Robinson, E.A., Ryan, G.D. and Newman, J.A. 2012. A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194(2): 321–336.
  • Santana, P.A., Kumar, L., Da Silva, R.S. and Picanço, M.C. 2019. Global geographic distribution of Tuta absoluta as affected by climate change. Journal of Pest Science, 92(4): 1373–1385.
  • Santos, P.L., Cordery, I. and Iacovides, I. 2009. Coping with water scarcity, Springer Dordrecht, 382p.
  • Schroeder, J.B., Gray, M.E., Ratcliffe, S.T., Estes, R.E. and Long, S.P. 2006. Effects of elevated CO2 and O3 on a variant of the western corn rootworm (Coleoptera: Chrysomelidae). Environmental Entomology, 35(3): 637–644.
  • Sconiers, W.B. and Eubanks, M.D. 2017. Not all droughts are created equal? The effects of stress severity on insect herbivore abundance. Arthropod-Plant Interactions, 11(1): 45–60.
  • Sharma, H.C., Srivastava, C.P., Durairaj, C. and Gowda, C.L.L. 2010. Pest management in grain legumes and climate change. Climate Change and Management of Cool Season Grain Legume Crops, 9789048137091: 115–139.
  • Sharma, H.C., War, A.R., Pathania, M., Sharma, S.P., Akbar, S.M.D. and Munghate, R.S. 2016. Elevated CO2 influences host plant defense response in chickpea against Helicoverpa armigera. Arthropod-Plant Interactions, 10(2): 171–181.
  • Shrestha, S. 2019. Effects of climate change in agricultural insect pest. Acta Scientific Agriculture, 3 (12): 74 80.
  • Simberloff, D. 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics, 40(1): 81–102.
  • Skendžić, S., Zovko, M., Živković, I.P., Lešić, V. and Lemić, D. 2021. The impact of climate change on agricultural insect pests. Insects, 12(5): 440.
  • Snell, R.E.C., Kobiela, Megan E., Sikkink, , Kristin L. and Shephard, A.M. 2018. Mechanisms of Plastic Rescue in Novel Environments. Annual Review of Ecology, Evolution, and Systematics, 49(1): 331–354.
  • Staley, J.T., Hodgson, C.J., Mortimer, S.R., Morecroft, M.D., Masters, G.J., Brown, V.K. and Taylor, M.E. 2007. Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. European Journal of Soil Biology, 43(3): 189–198.
  • Streck, N.A. 2005. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield. Ciência Rural, 35(3): 730–740.
  • Subedi, B., Poudel, A. and Aryal, S. 2023. The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. Journal of Agriculture and Food Research, 14: 100733.
  • Sutherst, R.W., Constable, F., Finlay, K.J., Harrington, R., Luck, J. and Zalucki, M.P. 2011. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdisciplinary Reviews: Climate Change, 2(2): 220–237.
  • Tai, A.P.K., Martin, M.V. and Heald, C.L. 2014. Threat to future global food security from climate change and ozone air pollution. Nature Climate Change, 4(9): 817–821.
  • Tarım Reformu Genel Müdürlüğü (2021). İklim Değişikliği ve Tarım Değerlendirme Raporu. Tarım ve Orman Bakanlığı. https://www.tarimorman.gov.tr/TRGM/Duyuru/428/Iklim-Degisikligi-Ve-Tarim-Degerlendirme Raporu (Erişim tarihi: 27.01.2024).
  • Tauber, M.J., Tauber, C.A. and Masaki, S. 1986. Seasonal adaptations of insects. Oxford University Press, United States of America, 411p.
  • Thomson, L.J., Macfadyen, S. and Hoffmann, A.A. 2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control, 52(3): 296–306.
  • Thornton, P.K., Ericksen, P.J., Herrero, M. and Challinor, A.J. 2014. Climate variability and vulnerability to climate change: A review. Global Change Biology, 20(11): 3313–3328.
  • Timmer, C.P. 2012. Behavioral dimensions of food security. Proceedings of the National Academy of Sciences of the United States of America, 109(31): 12315–12320.
  • Tobın, P.C., Nagarkattı, S., Loeb, G., and Saunders, M.C. 2008. Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Global Change Biology, 14(5): 951–957.
  • Trȩbicki, P., Vandegeer, R.K., Bosque, P.N.A., Powell, K.S., Dader, B., Freeman, A.J., Yen, A.L., Fitzgerald, G.J. and Luck, J.E. 2016. Virus infection mediates the effects of elevated CO2 on plants and vectors. Scientific Reports, 6(1): 1–11.
  • Trumble, J.T. and Butler, C.D. 2009. Climate change will exacerbate California’s insect pest problems. California Agriculture, 63(2): 73–78.
  • Vadez, V., Berger, J.D., Warkentin, T., Asseng, S., Ratnakumar, P., Rao, K.P.C., Gaur, P.M., Munier. J.N., Larmure, A., Voisin, A.S., Sharma, H.C., Pande, S., Sharma, M., Krishnamurthy, L. and Zaman, M.A. 2012. Adaptation of grain legumes to climate change: a review. Agronomy for Sustainable Development, 32(1): 3144.
  • van Doan, C., Pfander, M., Guyer, A.S., Zhang, X., Maurer, C. and Robert, C.A.M. 2021. Natural enemies of herbivores maintain their biological control potential under short-term exposure to future CO2, temperature, and precipitation patterns. Ecology and Evolution, 11(9): 4182–4192.
  • Vander, Z.M.J. 2005. The success of animal invaders. Proceedings of the National Academy of Sciences, 102(20): 7055–7056.
  • Vanhanen, H. 2008. Invasive insects in Europe the role of climate change and global trade. Dissertationes Forestales 57, Helsinki, Finland, 33p.
  • Verberk, W.C.E.P., Atkinson, D., Hoefnagel, K.N., Hirst, A.G., Horne, C.R. and Siepel, H. 2021. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biological Reviews, 96(1): 247–268.
  • Vermeij, G.J. 1996. An agenda for invasion biology. Biological Conservation, 78(1–2): 3–9.
  • Wagner, D.L., Fox, R., Salcido, D.M. and Dyer, L.A. 2021. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proceedings of the National Academy of Sciences, 118(2): e2002549117.
  • Walther, G.R., Roques, A., Hulme, P.E., Sykes, M.T., Pyšek, P., Kühn, I., Zobel, M., Bacher, S., Botta, D.Z. and Bugmann, H. 2009. Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution, 24(12): 686–693.
  • Wang, D., Heckathorn, S.A., Barua, D., Joshi, P., Hamilton, E.W. and LaCroix, J.J. 2008. Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species. American Journal of Botany, 95(2): 165–176.
  • Wang, L., Hui, C., Sandhu, H.S., Li, Z. and Zhao, Z. 2015. Population dynamics and associated factors of cereal aphids and armyworms under global change. Scientific Reports, 5: 18801.
  • Wang, Z., Wang, C. and Liu, S. 2022. Elevated CO2 alleviates adverse effects of drought on plant water relations and photosynthesis: A global meta-analysis. Journal of Ecology, 110(12): 2836–2849.
  • Wang, Z., Hu, X., Kang, W., Qu, Q., Feng, R. and Mu, L. 2023. Interactions between dissolved organic matter and the microbial community are modified by microplastics and heat waves. Journal of Hazardous Materials, 448: 130868.
  • Ward, N.L. and Masters, G.J. 2007. Linking climate change and species invasion: an illustration using insect herbivores. Global Change Biology, 13(8): 1605–1615.
  • Wellenreuther, M., Dudaniec, R.Y., Neu, A., Lessard, J.-P., Bridle, J., Carbonell, J.A., Diamond, S.E., Marshall, K.E., Parmesan, C., Singer, M.C., Swaegers, J., Thomas, C.D. and Lancaster, L.T. 2022. The importance of eco-evolutionary dynamics for predicting and managing insect range shifts. Current Opinion in Insect Science, 52: 100939.
  • Wu, Y., Li, J., Liu, H., Qiao, G. and Huang, X. 2020. Investigating the impact of climate warming on phenology of aphid pests in China using long‐term historical data. Insects, 11(3): 167.
  • Wudil, A.H., Usman, M., Rosak-Szyrocka, J., Pilař, L. and Boye, M. 2022. Reversing years for global food security: A review of the food security situation in Sub-Saharan Africa (SSA). International Journal of Environmental Research and Public Health, 19(22): 14836.
  • Yamamura, K. and Kiritani, K. 1998. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Applied Entomology and Zoology, 33(2): 289–298.
  • Yamamura, K. and Yokozawa, M. 2002. Prediction of a geographical shift in the prevalence of rice stripe virus disease transmitted by the small brown planthopper, Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae), under global warming. Applied Entomology and Zoology, 37(1): 181–190.
  • Yaşar, İ., Kök, Ş. ve Kasap, İ., 2021. Küresel Isınma ve İklim Değişikliğinin Böcekler Üzerindeki Olası Etkileri. ÇOMÜ, L. J. A. R., 2 (4): 67-75.
  • Zavala, J.A., Casteel, C.L., Nabity, P.D., Berenbaum, M.R. and Delucia, E.H. 2009. Role of cysteine proteinase inhibitors in preference of japanese beetles (Popillia Japonica) for soybean (Glycine Max) leaves of different ages and grown under elevated CO2. Oecologia, 161(1): 35–41.
  • Zayan, S.A. 2019. Impact of Climate Change on Plant Diseases and IPM Strategies. Plant Diseases-Current Threats and Management Trends. IntechOpen, Budapest, Hungary, 240p.
  • Zeng, J., Liu, Y., Zhang, H., Liu, J., Jiang, Y., Wyckhuys, K.A.G. and Wu, K. 2020. Global warming modifies long-distance migration of an agricultural insect pest. Journal of Pest Science, 93(2): 569–581.
  • Zhang, Q., Dai, W., Wang, X. and Li, J. 2020. Elevated CO2 concentration affects the defense of tobacco and melon against Lepidopteran larvae through the jasmonic acid signaling pathway. Scientific Reports, 10 (1): 4060.

The Effect of Climate Change On Agricultural Products and Insects

Yıl 2024, , 535 - 564, 15.12.2024
https://doi.org/10.20479/bursauludagziraat.1417075

Öz

Climate change and global warming greatly affect the agricultural industry worldwide and are among the most discussed topics today. Various factors, such as temperature increases as a result of climate change, increased CO2 concentration in the atmosphere, and changing rainfall amounts as a result of climate change, cause very negative effects on crop production, benefitial insects and agricultural pests. The most significant environmental factor influencing the dynamics of insect populations is temperature, so it is anticipated that rising global climate warnings will cause an increase in their geographic range, overwintering survival, number of generations, risk of invasive insect species and plant diseases, and interactions with natural enemies and host plants. Future pest management strategies are desperately needed as climate change makes the pest problem worse. Pests and their predators and parasitoids respond to climate change in different ways. High temperatures cause insects to have a shorter period of time when they will be attacked by their natural enemies. Therefore, the relationship between the pest and its natural enemy will be significantly affected by the increase in temperature. These include the use of the modelling prediction tools that are provided here, the monitoring of the climate and pest populations, and updated integrated pest control strategies. As a result, studies on the negative effects of climate change on agricultural pests have been investigated, and management strategies for combating pests needed in the future and legislation to be followed have been evaluated in detail. Additionally, appropriate methods to protect insect populations were evaluated, and it was concluded that a proactive and scientific approach is required to deal with the problem of climate change.

Kaynakça

  • Abram, P.K., Boivin, G., Moiroux, J. and Brodeur, J. 2017. Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biological Reviews, 92(4): 1859–1876.
  • Ahmed S.S., Liu S.D. and Simon, J.C. 2017. Impact of water-deficit stress on tritrophic interactions in a wheat aphid-parasitoid system. Plos One, 12(10): e0186599.
  • Alexandratos, N. and J. Bruinsma. 2012. World agriculture towards 2030/2050: the 2012 revision. ESA Working, FAO, Rome, 12-03.
  • Altermatt, F. 2010. Climatic warming increases voltinism in european butterflies and moths. Proceedings of the Royal Society B: Biological Sciences, 277(1685): 1281–1287.
  • Andrew, N.R. and Hill, S.J. 2017. Effect of Climate Change on Insect Pest Management, In Environmental Pest Management, Wiley, pp: 195–223.
  • Arnell, N.W., Lowe, J.A., Challinor, A.J. and Osborn, T.J. 2019. Global and regional impacts of climate change at different levels of global temperature increase. Climatic Change, 155(3): 377–391.
  • Asseng, S., Foster, I. and Turner, N.C. 2011. The impact of temperature variability on wheat yields. Global Change Biology, 17(2): 997–1012.
  • Bacon, S.J., Aebi, A., Calanca, P. and Bacher, S. 2014. Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Diversity and Distributions, 20(1): 84–94.
  • Bale, J.S. 1993. Classes of insect cold hardiness. Functional ecology (Print), 7(6): 751–753.
  • Bale, J.S. and Hayward, S.A.L. 2010. Insect overwintering in a changing climate. Journal of Experimental Biology, 213(6): 980–994.
  • Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D. and Whittaker, J.B. 2002. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology, 8(1): 1–16.
  • Barzman, M., Bàrberi, P., Birch, A.N.E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., Hommel, B., Jensen, J.E., Kiss, J., Kudsk, P., Lamichhane, J.R., Messéan, A., Moonen, A.C., Ratnadass, A., Ricci, P., Sarah, J.L. and Sattin, M. 2015. Eight principles of integrated pest management. Agronomy for Sustainable Development, 35(4): 1199–1215.
  • Battisti, D.S. and Naylor, R.L. 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323(5911): 240–244.
  • BCS, 2018. Invasive alien species: The application of classical biological control for the management of established invasive alien species causing environmental impacts. Convention on Biological Diversity, 17–29 November 2018, Sharm El-Sheikh, Egypt, 88p.
  • Bernays, E.A. 1997. Feeding by lepidopteran larvae is dangerous. Ecological Entomology, 22(1): 121–123.
  • Bhargava, S. and Mitra, S. 2021. Elevated atmospheric CO2 and the future of crop plants. Plant Breeding, 140(1): 1–11.
  • Burkett, C.N.D. and Vittor, A.Y. 2018. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic and Applied Ecology, 26: 101–110.
  • Cannon, R.J.C. 1998. The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biology, 4(7): 785–796.
  • Chevin, L.M., Lande, R. and Mace, G.M. 2010. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS biology, 8(4): e100357.
  • Cini, A., Anfora, G., Escudero, C.L.A., Grassi, A., Santosuosso, U., Seljak, G. and Papini, A. 2014. Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. Journal of Pest Science, 87(4): 559–566.
  • Dáder, B., Fereres, A., Moreno, A. and Trębicki, P. 2015. Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability. Scientific Reports, 6: 19120.
  • Dai, A. 2011. Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1): 45–65.
  • Dai, A., Zhao, T. and Chen, J. 2018. Climate Change and Drought: a Precipitation and Evaporation Perspective. Current Climate Change Reports, 4(3): 301–312.
  • Dell, D., Sparks, T.H. and Dennis, R.L.H. 2005. Climate change and the effect of increasing spring temperatures on emergence dates of the butterfly Apatura iris (Lepidoptera: Nymphalidae). European Journal of Entomology, 102(2): 161–167.
  • DeLucia, E.H., Nabity, P.D., Zavala, J.A. and Berenbaum, M.R. 2012. Climate change: Resetting plant-insect interactions. Plant Physiology, 160(4): 1677–1685.
  • Deshar, R. and Koirala, M. 2019. Global Climate Change and Environmental Policy: Agriculture Perspectives: Climate change and gender policy, Venkatramanan, V., Shah, S. and Prasad, R., Springer, Singapore, p:411-422.
  • Dinç, S.Ö., Künili, İ.E. and Çolakoğlu, F. 2022. İklim Değişimi Sürecinin Sürdürülebilir ve Güvenli Gıda Üretimine Etkisi. Bursa Uludağ Üniv. Ziraat Fak. Derg., 36(2): 447–460.
  • Draper, A.M. and Weissburg, M.J. 2019. Impacts of global warming and elevated CO2 on sensory behavior in predator-prey interactions: A review and synthesis. Frontiers in Ecology and Evolution, 7 (MAR): 428445.
  • Edosa, T.T., Jo, Y.H., Keshavarz, M., Anh, Y.S., Noh, M.Y. and Han, Y.S. 2019. Current status of the management of fall webworm, Hyphantria cunea: Towards the integrated pest management development. Journal of Applied Entomology, 143(1–2): 1–10.
  • Eigenbrode, S.D. and Trumble, J.T. 1994. Host plant resistance to insects in integrated pest management in vegetable crops. Journal of Agriculture Entomology, 11(3): 201-224
  • Evans, E.W., Carlile, N.R., Innes, M.B. and Pitigala, N. 2013. Warm springs reduce parasitism of the cereal leaf beetle through phenological mismatch. Journal of Applied Entomology, 137(5): 383–391.
  • Field, C.B., V.R. Barros, M.D. Mastrandrea, K.J. Mach, M.K. Abdrabo, N. Adger, Y.A. Anokhin, O.A. Anisimov, D.J. Arent, J. Barnett, 2014. Summary for policymakers, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, USA, pp:1–32.
  • Fischer, G., Tubiello, F.N., van Velthuizen, H. and Wiberg, D.A. 2007. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990-2080. Technological Forecasting and Social Change, 74(7): 1083–1107.
  • Frank, S.D. 2021. Review of the direct and indirect effects of warming and drought on scale insect pests of forest systems. Forestry: An International Journal of Forest Research, 94(2): 167–180.
  • Fróna, D., Szenderák, J. and Harangi-Rákos, M. 2019. The challenge of feeding theworld. Sustainability, 11(20): 5816
  • Fuhrer, J. 2003. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems and Environment, 97(1–3): 1–20.
  • Gill, H.K., Goyal, G. and Chahil, G. 2017. Insect Diapause: A Review. Journal of Agricultural Science and Technology A, 7 (7).
  • Gomez Z.A., Mejuto, J.C. and Simal, G.J. 2020. Mitigation of emerging implications of climate change on food production systems. Food Research International, 134: 109256.
  • González, T.D., Córdoba, A.A., Dáttilo, W., Lira, N.A., Sánchez, G.R.A. and Villalobos, F. 2020. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biological Reviews, 95(3): 802–821.
  • Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K. and Wiltshire, A. 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554): 2973–2989.
  • Gregory, P.J., Johnson, S.N., Newton, A.C. and Ingram, J.S.I. 2009. Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60(10): 2827–2838.
  • Guo, H., Sun, Y., Ren, Q., Zhu, S.K., Kang, L., Wang, C., Li, C. and Ge, F. 2012. Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PLoS ONE, 7(7): e41426.
  • Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z.D., Wada, Y. and Wisser, D. 2014. Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3251–3256.
  • Hahn, D.A. and Denlinger, D.L. 2011. Energetics of insect diapause. Annual Review of Entomology, 56: 103 121.
  • Hamilton, J.G., Dermody, O., Aldea, M., Zangerl, A.R., Rogers, A., Berenbaum, M.R. and DeLucia, E.H. 2005. Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environmental Entomology, 34(2): 479–485.
  • Harrington, R., Clark, S.J., Welham, S.J., Verrier, P.J., Denholm, C.H., Hullé, M., Maurice, D., Rounsevell, M.D. and Cocu, N. 2007. Environmental change and the phenology of European aphids. Global Change Biology, 13(8): 1550–1564.
  • Harrington, R., Fleming, R.A. and Woiwod, I.P. 2001. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted?. Agricultural and Forest Entomology, 3(4): 233 240.
  • Harrington, R., Woiwod, I., and Sparks, T. 1999. Climate change and trophic interactions. Trends in Ecology and Evolution, 14(4): 146–150.
  • Harvey, J.A., Tougeron, K., Gols, R., Heinen, R., Abarca, M., Abram, P.K., Basset, Y., Berg, M., Boggs, C., Brodeur, J., Cardoso, P., de Boer, J.G., de Snoo, G.R., Deacon, C., Dell, J.E., Desneux, N., Dillon, M.E., Duffy, G.A., Dyer, L.A., Ellers, J., Espíndola, A., Fordyce, J., Forister, M.L., Fukushima, C., Gage, M.J.G., García, R.C., Gely, C., Gobbi, M., Hallmann, C., Hance, T., Harte, J., Hochkirch, A., Hof, C., Hoffmann, A.A., Kingsolver, J.G., Lamarre, G.P.A., Laurance, W.F., Lavandero, B., Leather, S.R., Lehmann, P., Le Lann, C., López‐Uribe, M.M., Ma, C., Ma, G., Moiroux, J., Monticelli, L., Nice, C., Ode, P.J., Pincebourde, S., ... and Chown, S.L. 2023. Scientists’ warning on climate change and insects. Ecological Monographs, 93(1): e1553.
  • Heeb, L., Jenner, E. and Cock, M.J.W. 2019. Climate-smart pest management: building resilience of farms and landscapes to changing pest threats. Journal of Pest Science, 92(3): 951–969.
  • Heuskin, S., Verheggen, F.J., Haubruge, E., Wathelet, J.P. and Lognay, G. 2011. The use of semiochemical slow-release devices in integrated pest management strategies. Biotechnol. Agron. Soc. Environ, 15(3): 459470.
  • Hill, D.S. 1987. Agricultural insect pests of temperate regions and their control. Stony Brook University Published, 672p.
  • Hill, M.P. and Thomson, L.J. 2015. Species distribution modelling in predicting response to climate change. Climate Change and Insect Pests. CABI, p:16–37.
  • Hof, C. 2021. Towards more integration of physiology, dispersal and land-use change to understand the responses of species to climate change. Journal of Experimental Biology, 224(1): jeb238352.
  • Holley, J.M. 2022. Enhancing yield, nutrition, and water-use efficiency of lettuce (Lactuca sativa) with greenhouse light spectrum and carbon dioxide enrichment. Horticulturae. 8(9): 820.
  • Howden, S.M., Soussana, J.F., Tubiello, F.N., Chhetri, N., Dunlop, M. and Meinke, H. 2007. Adapting agriculture to climate change. Proceedings of the National Academy of Sciences, 104(50): 19691–19696.
  • Höhn, J.G. and Rötter, R.P. 2014. Impact of global warming on European cereal production. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 9: 022.
  • Huntington, T.G. 2010. Climate warming-induced intensification of the hydrologic cycle. An assessment of the published record and potential impacts on agriculture. Advances in Agronomy, 109(C): 1–53.
  • Johnson, S.N., Anderson, E.A., Dawson, G. and Griffiths, D.W. 2008. Varietal susceptibility of potatoes to wireworm herbivory. Agricultural and Forest Entomology, 10(2): 167–174.
  • Joyce, L.A., Briske, D.D., Brown, J.R., Polley, H.W., McCarl, B.A. and Bailey, D.W. 2013. Climate change and North American Rangelands: assessment of mitigation and adaptation strategies. Rangeland Ecology & Management, 66(5): 512–528.
  • Kang, Y., Khan, S. and Ma, X. 2009. Climate change impacts on crop yield, crop water productivity and food security- A review. Progress in Natural Science, 19(12): 1665–1674.
  • Kimball, B.A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agronomy Journal, 75(5): 779–788.
  • Kimball, B.A. 2016. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Current Opinion in Plant Biology, 31: 36–43.
  • Kiritani, K. 2006. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Population Ecology, 48(1): 5–12.
  • Kocmánková, E., Trnka, M., Eitzinger, J., Formayer, H., Dubrovský, M., Semerádová, D., Ǎalud, Z., Juroch, J. and Možný, M. 2010. Estimating the impact of climate change on the occurrence of selected pests in the central European region. Climate Research, 44(1): 95–105.
  • Kriticos, D.J., Maywald, G.F., Yonow, T., Zurcher, E.J., Herrmann, N.I. and Sutherst, R. 2015. Exploring the effects of climate on plants, animals and diseases. CLIMEX Version, 4: Exploring the effects of climate on plants, animals anddiseases. CSIRO, Canberra, 156 p.
  • Kumar, S., Neven, L.G. and Yee, W.L. 2014. Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere, 5(7): 1–23.
  • Lamichhane, J.R., Barzman, M., Booij, K., Boonekamp, P., Desneux, N., Huber, L., Kudsk, P., Langrell, S.R.H., Ratnadass, A., Ricci, P., Sarah, J.L. and Messéan, A. 2015. Robust cropping systems to tackle pests under climate change. A review. Agronomy for Sustainable Development, 35(2): 443–459.
  • Lehmann, P., Ammunét, T., Barton, M., Battisti, A., Eigenbrode, S.D., Jepsen, J.U., Kalinkat, G., Neuvonen, S., Niemelä, P., Terblanche, J.S., Økland, B. and Björkman, C. 2020. Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 18(3): 141–150.
  • Lesk, C., Anderson, W., Rigden, A., Coast, O., Jägermeyr, J., McDermid, S., Davis, K.F. and Konar, M. 2022. Compound heat and moisture extreme impacts on global crop yields under climate change. Nature Reviews Earth and Environment, 3(12): 872–889.
  • Liliane, T.N., Charles, M.S., Liliane, T.N. and Charles, M.S. 2020. Factors Affecting Yield of Crops. Agronomy - Climate Change and Food Security. Intechopen, Budapest, Hungary, 16p.
  • Lin, H.I., Yu, Y.Y., Wen, F.I. and Liu, P.T. 2022. Status of Food Security in East and Southeast Asia and Challenges of Climate Change. Climate, 10(3): 40.
  • Liu, Y. and Shi, J. 2020. Predicting the Potential Global Geographical Distribution of Two Icerya Species under Climate Change. Forests, 11(6): 684.
  • Lobell, D.B., Bänziger, M., Magorokosho, C. and Vivek, B. 2011a. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1(1): 42–45.
  • Lobell, D.B., Schlenker, W. and Costa, R. J. 2011b. Climate trends and global crop production since 1980. Science, 333(6042): 616–620.
  • Mandal, P., Mondal, F. and Protec, H.M.S. 2020. Factors influences selection and adaptation of aphid to their host plant. Journal of Plant Sciences and Crop Protection, 3(1): 102.
  • Martín, V.D., Ferrero, G.J.J. and Torres, V.L.M. 2010. Global warming affects phenology and voltinism of Lobesia botrana in Spain. Agricultural and Forest Entomology, 12(2): 169–176.
  • Masters, G. and Norgrove, L. 2010. Climate change and invasive alien species. CABI Working Paper 1, 30pp.
  • McWatters, H.G. and Saunders, D.S. 1998. Maternal temperature has different effects on the photoperiodic response and duration of larval diapause in blow fly (Calliphora vicina) strains collected at two latitudes. Physiological Entomology, 23(4): 369–375.
  • Menéndez, R., González-Megías, A., Collingham, Y., Fox, R., Roy, D.B., Ohlemüller, R. and Thomas, C.D. 2007. Direct and indirect effects of climate and habitat factors on butterfly diversity. Ecology, 88(3): 605 611.
  • Menéndez, R., González, M.A., Lewis, O.T., Shaw, M.R. and Thomas, C.D. 2008. Escape from natural enemies during climate-driven range expansion: a case study. Ecological Entomology, 33(3): 413–421.
  • Metz, B., Davidson, O., Swart, R. and Pan, J. 2001. Climate change 2001: mitigation: contribution of Working Group III to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University press, United states of America, 762p.
  • Meynard, C.N., Migeon, A. and Navajas, M. 2013. Uncertainties in predicting species distributions under climate change: A case study using Tetranychus evansi (Acari: Tetranychidae), a widespread agricultural pest. PLoS One, 8(6): e66445.
  • Myers, S., Fanzo, J., Wiebe, K., Huybers, P. and Smith, M. 2022. Current guidance underestimates risk of global environmental change to food security. The BMJ, 378: e071533.
  • Nechols, J.R. 2021. The potential impact of climate change on non-target risks from imported generalist natural enemies and on biological control. BioControl, 66(1): 37–44.
  • Netherer, S., Matthews, B., Katzensteiner, K., Blackwell, E., Henschke, P., Hietz, P., Pennerstorfer, J., Rosner, S., Kikuta, S., Schume, H. and Schopf, A. 2015. Do water-limiting conditions predispose Norway spruce to bark beetle attack?. New Phytologist, 205: 1128–1141.
  • Netherer, S., Panassiti, B., Pennerstorfer, J. and Matthews, B. 2019. Acute drought ıs an ımportant driver of bark beetle ınfestation in austrian norway spruce stands. Frontiers in Forests and Global Change, 2: 465067.
  • Nyamukondiwa, C., Machekano, H., Chidawanyika, F., Mutamiswa, R., Ma, G. and Ma, C. Sen. 2022. Geographic dispersion of invasive crop pests: the role of basal, plastic climate stress tolerance and other complementary traits in the tropics. Current Opinion in Insect Science, 50: 100878.
  • O’Neill, B.F., Zangerl, A.R., DeLucia, E.H. and Berenbaum, M.R. 2008. Longevity and fecundity of japanese beetle (Popillia japonica) on foliage grown under elevated carbon dioxide. Environmental Entomology, 37(2): 601–607.
  • Olesen, J.E. and Bindi, M. 2002. Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16(4): 239–262.
  • Pachauari, R.K. and Reisinger, A. 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report on Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 104p.
  • Pachauri, R.K., Allen, M.R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N.K., Edenhofer, O., Elgizouli, I., Field, C.B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez, E.L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez, C.B., Kattsov, V., Lee, H., Mach, K.J., Marotzke, J., Mastrandrea, M.D., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K., ... and van Ypserle, J.P. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151p.
  • Pareek, A., Meena, B., Sharma, S., Tetarwal, M., Kalyan, R. and Meena, B. 2017. Impact of climate change on insect pests and their management strategies. Climate change and sustainable agriculture. New Indıa Publıshıng Agency, p:253-286.
  • Parmesan, C. 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13(9): 1860–1872.
  • Parmesan, C. and Yohe, G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918): 37–42.
  • Pathak, H., Aggarwal, P.K. and Singh, S.D. 2012. Climate change impact, adaptation and mitigation in agriculture: methodology for assessment and applications. Indian Agricultural Research Institute, New Delhi, 302p.
  • Pathak, H., Bhatia, A., Jain, N. and Aggarwal P.K. 2014. Greenhouse gas emission from Indian agriculture: trends, mitigation and policy needs. Indian Agricultural Research Institute, New Delhi-110012, 39p.
  • Pathania, M., Verma, A., Singh, M., Arora, P.K. and Kaur, N. 2020. Influence of abiotic factors on the infestation dynamics of whitefly, Bemisia tabaci (Gennadius 1889) in cotton and its management strategies in North-Western India. International Journal of Tropical Insect Science, 40(4): 969–981.
  • Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S. and Cassman, K.G. 2004. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101(27): 9971–9975.
  • Peng, W., Ma, N.L., Zhang, D., Zhou, Q., Yue, X., Khoo, S.C., Yang, H., Guan, R., Chen, H., Zhang, X., Wang, Y., Wei, Z., Suo, C., Peng, Y., Yang, Y., Lam, S.S. and Sonne, C. 2020. A review of historical and recent locust outbreaks: Links to global warming, food security and mitigation strategies. Environmental Research, 191: 110046.
  • Perrings, C., Burgiel, S., Lonsdale, M., Mooney, H. and Williamson, M. 2010. International cooperation in the solution to trade-related invasive species risks. Annals of the New York Academy of Sciences, 1195: 198–212.
  • Pingali, P. and Abraham, M. 2022. Food systems transformation in Asia – A brief economic history. Agricultural Economics (United Kingdom), 53(6): 895–910.
  • Poyet, M., Le Roux, V., Gibert, P., Meirland, A., Prévost, G., Eslin, P. and Chabrerie, O. 2015. The wide potential trophic niche of the asiatic fruit fly Drosophila suzukii: the key of its invasion success in temperate Europe?. Plos One, 10(11): e0142785.
  • Prentice, I.C., Farquhar, G.D., Fasham, M.J.R., Goulden, M.L., Heimann, M., Jaramillo, V.J., Kheshgi, H.S., Le Quéré, C., Scholes, R.J. and Wallace, D.W.R. 2001. The carbon cycle and atmospheric carbon dioxide. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Linden, P.J.V.D., Dai, X., Maskell, K. and Johnson, C.A., Cambridge University Press, pp:183- 237.
  • Priya, M., Sharma, L., Kaur, R., Bindumadhava, H., Nair, R.M., Siddique, K.H.M. and Nayyar, H. 2019. GABA (γ-aminobutyric acid), as a thermo-protectant, to improve the reproductive function of heat-stressed mungbean plants. Scientific Reports, 9(1): 7788.
  • Purcell, C., Batke, S.P., Yiotis, C., Caballero, R., Soh, W.K., Murray, M. and McElwain, J.C. 2018. Increasing stomatal conductance in response to rising atmospheric CO2. Annals of Botany, 121(6): 1137–1149.
  • Raza, M.M., Khan, M.A., Arshad, M., Sagheer, M., Sattar, Z., Shafi, J., Haq, E. ul, Ali, A., Aslam, U., Mushtaq, A., Ishfaq, I., Sabir, Z. and Sattar, A. 2015. Impact of global warming on insects. Archives of Phytopathology and Plant Protection, 48(1): 84–94.
  • Rehman, F.U., Abbas, M., Murtaza, S., Butt, W.H., Rehman, S. and Qamar, U. 2018. SimFiller. similarity-based missing values filling algorithm. 13th International Conference on Digital Information Management, 24-26 Sep 2018, Berlin, Germany, p:77–81.
  • Ricciardi, A. 2013 Ecological Systems. Springer, New York, US, pp: 161–178.
  • Ripple, W.J., Wolf, C., Gregg, J.W., Levin, K., Rockström, J., Newsome, T.M., Betts, M.G., Huq, S., Law, B.E., Kemp, L., Kalmus, P. and Lenton, T.M. 2022. World Scientists’ Warning of a Climate Emergency 2022. BioScience, 72(12): 1149–1155.
  • Robbins, Z.J., Xu, C., Aukema, B.H., Buotte, P.C., Chitra-Tarak, R., Fettig, C.J., Goulden, M.L., Goodsman, D.W., Hall, A.D., Koven, C.D., Kueppers, L.M., Madakumbura, G.D., Mortenson, L.A., Powell, J.A. and Scheller, R.M. 2022. Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California. Global Change Biology, 28(2): 509–523.
  • Robinet, C. and Roques, A. 2010. Direct impacts of recent climate warming on insect populations. Integrative Zoology, 5(2): 132–142.
  • Robinson, E.A., Ryan, G.D. and Newman, J.A. 2012. A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194(2): 321–336.
  • Santana, P.A., Kumar, L., Da Silva, R.S. and Picanço, M.C. 2019. Global geographic distribution of Tuta absoluta as affected by climate change. Journal of Pest Science, 92(4): 1373–1385.
  • Santos, P.L., Cordery, I. and Iacovides, I. 2009. Coping with water scarcity, Springer Dordrecht, 382p.
  • Schroeder, J.B., Gray, M.E., Ratcliffe, S.T., Estes, R.E. and Long, S.P. 2006. Effects of elevated CO2 and O3 on a variant of the western corn rootworm (Coleoptera: Chrysomelidae). Environmental Entomology, 35(3): 637–644.
  • Sconiers, W.B. and Eubanks, M.D. 2017. Not all droughts are created equal? The effects of stress severity on insect herbivore abundance. Arthropod-Plant Interactions, 11(1): 45–60.
  • Sharma, H.C., Srivastava, C.P., Durairaj, C. and Gowda, C.L.L. 2010. Pest management in grain legumes and climate change. Climate Change and Management of Cool Season Grain Legume Crops, 9789048137091: 115–139.
  • Sharma, H.C., War, A.R., Pathania, M., Sharma, S.P., Akbar, S.M.D. and Munghate, R.S. 2016. Elevated CO2 influences host plant defense response in chickpea against Helicoverpa armigera. Arthropod-Plant Interactions, 10(2): 171–181.
  • Shrestha, S. 2019. Effects of climate change in agricultural insect pest. Acta Scientific Agriculture, 3 (12): 74 80.
  • Simberloff, D. 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics, 40(1): 81–102.
  • Skendžić, S., Zovko, M., Živković, I.P., Lešić, V. and Lemić, D. 2021. The impact of climate change on agricultural insect pests. Insects, 12(5): 440.
  • Snell, R.E.C., Kobiela, Megan E., Sikkink, , Kristin L. and Shephard, A.M. 2018. Mechanisms of Plastic Rescue in Novel Environments. Annual Review of Ecology, Evolution, and Systematics, 49(1): 331–354.
  • Staley, J.T., Hodgson, C.J., Mortimer, S.R., Morecroft, M.D., Masters, G.J., Brown, V.K. and Taylor, M.E. 2007. Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. European Journal of Soil Biology, 43(3): 189–198.
  • Streck, N.A. 2005. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield. Ciência Rural, 35(3): 730–740.
  • Subedi, B., Poudel, A. and Aryal, S. 2023. The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. Journal of Agriculture and Food Research, 14: 100733.
  • Sutherst, R.W., Constable, F., Finlay, K.J., Harrington, R., Luck, J. and Zalucki, M.P. 2011. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdisciplinary Reviews: Climate Change, 2(2): 220–237.
  • Tai, A.P.K., Martin, M.V. and Heald, C.L. 2014. Threat to future global food security from climate change and ozone air pollution. Nature Climate Change, 4(9): 817–821.
  • Tarım Reformu Genel Müdürlüğü (2021). İklim Değişikliği ve Tarım Değerlendirme Raporu. Tarım ve Orman Bakanlığı. https://www.tarimorman.gov.tr/TRGM/Duyuru/428/Iklim-Degisikligi-Ve-Tarim-Degerlendirme Raporu (Erişim tarihi: 27.01.2024).
  • Tauber, M.J., Tauber, C.A. and Masaki, S. 1986. Seasonal adaptations of insects. Oxford University Press, United States of America, 411p.
  • Thomson, L.J., Macfadyen, S. and Hoffmann, A.A. 2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control, 52(3): 296–306.
  • Thornton, P.K., Ericksen, P.J., Herrero, M. and Challinor, A.J. 2014. Climate variability and vulnerability to climate change: A review. Global Change Biology, 20(11): 3313–3328.
  • Timmer, C.P. 2012. Behavioral dimensions of food security. Proceedings of the National Academy of Sciences of the United States of America, 109(31): 12315–12320.
  • Tobın, P.C., Nagarkattı, S., Loeb, G., and Saunders, M.C. 2008. Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Global Change Biology, 14(5): 951–957.
  • Trȩbicki, P., Vandegeer, R.K., Bosque, P.N.A., Powell, K.S., Dader, B., Freeman, A.J., Yen, A.L., Fitzgerald, G.J. and Luck, J.E. 2016. Virus infection mediates the effects of elevated CO2 on plants and vectors. Scientific Reports, 6(1): 1–11.
  • Trumble, J.T. and Butler, C.D. 2009. Climate change will exacerbate California’s insect pest problems. California Agriculture, 63(2): 73–78.
  • Vadez, V., Berger, J.D., Warkentin, T., Asseng, S., Ratnakumar, P., Rao, K.P.C., Gaur, P.M., Munier. J.N., Larmure, A., Voisin, A.S., Sharma, H.C., Pande, S., Sharma, M., Krishnamurthy, L. and Zaman, M.A. 2012. Adaptation of grain legumes to climate change: a review. Agronomy for Sustainable Development, 32(1): 3144.
  • van Doan, C., Pfander, M., Guyer, A.S., Zhang, X., Maurer, C. and Robert, C.A.M. 2021. Natural enemies of herbivores maintain their biological control potential under short-term exposure to future CO2, temperature, and precipitation patterns. Ecology and Evolution, 11(9): 4182–4192.
  • Vander, Z.M.J. 2005. The success of animal invaders. Proceedings of the National Academy of Sciences, 102(20): 7055–7056.
  • Vanhanen, H. 2008. Invasive insects in Europe the role of climate change and global trade. Dissertationes Forestales 57, Helsinki, Finland, 33p.
  • Verberk, W.C.E.P., Atkinson, D., Hoefnagel, K.N., Hirst, A.G., Horne, C.R. and Siepel, H. 2021. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biological Reviews, 96(1): 247–268.
  • Vermeij, G.J. 1996. An agenda for invasion biology. Biological Conservation, 78(1–2): 3–9.
  • Wagner, D.L., Fox, R., Salcido, D.M. and Dyer, L.A. 2021. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proceedings of the National Academy of Sciences, 118(2): e2002549117.
  • Walther, G.R., Roques, A., Hulme, P.E., Sykes, M.T., Pyšek, P., Kühn, I., Zobel, M., Bacher, S., Botta, D.Z. and Bugmann, H. 2009. Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution, 24(12): 686–693.
  • Wang, D., Heckathorn, S.A., Barua, D., Joshi, P., Hamilton, E.W. and LaCroix, J.J. 2008. Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species. American Journal of Botany, 95(2): 165–176.
  • Wang, L., Hui, C., Sandhu, H.S., Li, Z. and Zhao, Z. 2015. Population dynamics and associated factors of cereal aphids and armyworms under global change. Scientific Reports, 5: 18801.
  • Wang, Z., Wang, C. and Liu, S. 2022. Elevated CO2 alleviates adverse effects of drought on plant water relations and photosynthesis: A global meta-analysis. Journal of Ecology, 110(12): 2836–2849.
  • Wang, Z., Hu, X., Kang, W., Qu, Q., Feng, R. and Mu, L. 2023. Interactions between dissolved organic matter and the microbial community are modified by microplastics and heat waves. Journal of Hazardous Materials, 448: 130868.
  • Ward, N.L. and Masters, G.J. 2007. Linking climate change and species invasion: an illustration using insect herbivores. Global Change Biology, 13(8): 1605–1615.
  • Wellenreuther, M., Dudaniec, R.Y., Neu, A., Lessard, J.-P., Bridle, J., Carbonell, J.A., Diamond, S.E., Marshall, K.E., Parmesan, C., Singer, M.C., Swaegers, J., Thomas, C.D. and Lancaster, L.T. 2022. The importance of eco-evolutionary dynamics for predicting and managing insect range shifts. Current Opinion in Insect Science, 52: 100939.
  • Wu, Y., Li, J., Liu, H., Qiao, G. and Huang, X. 2020. Investigating the impact of climate warming on phenology of aphid pests in China using long‐term historical data. Insects, 11(3): 167.
  • Wudil, A.H., Usman, M., Rosak-Szyrocka, J., Pilař, L. and Boye, M. 2022. Reversing years for global food security: A review of the food security situation in Sub-Saharan Africa (SSA). International Journal of Environmental Research and Public Health, 19(22): 14836.
  • Yamamura, K. and Kiritani, K. 1998. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Applied Entomology and Zoology, 33(2): 289–298.
  • Yamamura, K. and Yokozawa, M. 2002. Prediction of a geographical shift in the prevalence of rice stripe virus disease transmitted by the small brown planthopper, Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae), under global warming. Applied Entomology and Zoology, 37(1): 181–190.
  • Yaşar, İ., Kök, Ş. ve Kasap, İ., 2021. Küresel Isınma ve İklim Değişikliğinin Böcekler Üzerindeki Olası Etkileri. ÇOMÜ, L. J. A. R., 2 (4): 67-75.
  • Zavala, J.A., Casteel, C.L., Nabity, P.D., Berenbaum, M.R. and Delucia, E.H. 2009. Role of cysteine proteinase inhibitors in preference of japanese beetles (Popillia Japonica) for soybean (Glycine Max) leaves of different ages and grown under elevated CO2. Oecologia, 161(1): 35–41.
  • Zayan, S.A. 2019. Impact of Climate Change on Plant Diseases and IPM Strategies. Plant Diseases-Current Threats and Management Trends. IntechOpen, Budapest, Hungary, 240p.
  • Zeng, J., Liu, Y., Zhang, H., Liu, J., Jiang, Y., Wyckhuys, K.A.G. and Wu, K. 2020. Global warming modifies long-distance migration of an agricultural insect pest. Journal of Pest Science, 93(2): 569–581.
  • Zhang, Q., Dai, W., Wang, X. and Li, J. 2020. Elevated CO2 concentration affects the defense of tobacco and melon against Lepidopteran larvae through the jasmonic acid signaling pathway. Scientific Reports, 10 (1): 4060.
Toplam 159 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Koruma (Diğer)
Bölüm Derleme
Yazarlar

Meltem Erdem Küçük 0000-0003-3107-8946

Hilal Tunca 0000-0003-3073-6628

Erken Görünüm Tarihi 15 Aralık 2024
Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 11 Ocak 2024
Kabul Tarihi 15 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Erdem Küçük, M., & Tunca, H. (2024). İklim Değişikliğinin Tarım Ürünleri ve Böcekler Üzerindeki Etkisi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 38(2), 535-564. https://doi.org/10.20479/bursauludagziraat.1417075

TR Dizin kriterleri gereği dergimize gönderilecek olan makalelerin mutlaka aşağıda belirtilen hususlara uyması gerekmektedir.

Tüm bilim dallarında yapılan, ve etik kurul kararı gerektiren klinik ve deneysel insan ve hayvanlar üzerindeki çalışmalar için ayrı ayrı etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
Makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmelidir.
Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.
Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi.
Etik Kurul izni gerektiren araştırmalar aşağıdaki gibidir.
- Anket, mülakat, odak grup çalışması, gözlem, deney, görüşme teknikleri kullanılarak katılımcılardan veri toplanmasını gerektiren nitel ya da nicel yaklaşımlarla yürütülen her türlü araştırmalar
- İnsan ve hayvanların (materyal/veriler dahil) deneysel ya da diğer bilimsel amaçlarla kullanılması,
- İnsanlar üzerinde yapılan klinik araştırmalar,
- Hayvanlar üzerinde yapılan araştırmalar,
- Kişisel verilerin korunması kanunu gereğince retrospektif çalışmalar,
Ayrıca;
- Olgu sunumlarında “Aydınlatılmış onam formu”nun alındığının belirtilmesi,
- Başkalarına ait ölçek, anket, fotoğrafların kullanımı için sahiplerinden izin alınması ve belirtilmesi,
- Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine uyulduğunun belirtilmesi.



Makale başvurusunda;

(1) Tam metin makale, Dergi yazım kurallarına uygun olmalı, Makalenin ilk sayfasında ve teşekkür bilgi notu kısmında Araştırma ve Yayın Etiğine uyulduğuna ve Etik kurul izni gerektirmediğine dair ifadeye yer verilmelidir. Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmeli ve sisteme belgenin yüklenmesi gerekmektedir. (Dergiye gönderilen makalelerde; konu ile ilgili olarak derginin daha önceki sayılarında yayımlanan en az bir yayına atıf yapılması önem arz etmektedir. Dergiye yapılan atıflarda “Bursa Uludag Üniv. Ziraat Fak. Derg.” kısaltması kullanılmalıdır.)

(2) Tam metin makalenin taratıldığını gösteren benzerlik raporu (Ithenticate, intihal.net) (% 20’nin altında olmalıdır),

(3) İmzalanmış ve taratılmış başvuru formu, Dergi web sayfasında yer alan başvuru formunun başvuran tarafından İmzalanıp, taratılarak yüklenmesi , (Ön yazı yerine)

(4) Tüm yazarlar tarafından imzalanmış telif hakkı devir formunun taranmış kopyası,

(5) Araştırmacıların Katkı Oranı beyanı, Çıkar Çatışması beyanı verilmesi Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi ve sisteme belgenin (Tüm yazarlar tarafından imzalanmış bir yazı) yüklenmesi gerekmektedir.

Belgelerin elektronik formatta DergiPark sistemine https://dergipark.org.tr/tr/login adresinden kayıt olunarak başvuru sırasında yüklenmesi mümkündür. 


25056 

Journal of Agricultural Faculty of Bursa Uludag University is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.