Araştırma Makalesi
BibTex RIS Kaynak Göster

DETERMINATION OF PRIORITY STRATEGIES FOR INCREASING THE EFFICIENCY OF SOLAR PANELS USED IN HOSPITALS USING THE FERMATEAN FUZZY DEMATEL METHOD

Yıl 2025, Sayı: 29, 142 - 160, 30.04.2025
https://doi.org/10.29029/busbed.1583085

Öz

Hospitals are among the buildings with the highest energy consumption. Due to the unique characteristics of the service, such as uninterrupted and non-delayable ones, it is important to provide the service sustainably. In addition, the fact that health services are provided 24/7 reveals the extent of energy consumption in hospitals. In this context, the efficiency of solar energy panels used in hospitals will inevitably be increased. For this purpose, a set of criteria affecting the efficiency of solar energy panels used in hospitals has been established based on the literature. However, since the hospital management can't intervene in all of these criteria simultaneously, weighting was made with fermatean fuzzy DEMATEL. Accordingly, the most important issue affecting the efficiency of solar energy panels used in hospitals was found to be the material and technology of the panels. The results of the analysis show that the second most important criterion is energy storage systems. The criterion that affects the process the least is environmental factors. Accordingly, making the necessary technological investments and using up-to-date technologies will increase energy efficiency. In addition to having solar energy panels, the use of storage systems will contribute to energy efficiency. The use of automatic cleaning systems, water spray, or automatic brush cleaning systems are added as concrete steps.

Proje Numarası

Bu çalışma herhangi bir proje tarafından desteklenmemektedir.

Kaynakça

  • Adekanbi, M. L., Alaba, E. S., John, T. J., Tundealao, T. D., & Banji, T. I. (2023). Soiling loss in solar systems: A review of its effect on solar energy efficiency and mitigation techniques. Cleaner Energy Systems, 100094. https://doi.org/10.1016/j.cles.2023.100094
  • Afshari, F., Mandev, E., Muratçobanoğlu, B., Çelik, A., & Ceviz, M. A. (2024). Experimental and numerical study on solar energy storage in black-covered sunspace using water-filled tin cans. Journal of Enhanced Heat Transfer, 31(3), 21–44. https://doi.org/10.1615/JEnhHeatTrans.2024041512
  • Ansari, M. A., & Kumar, K. (2019, October). Impact of various factors on the performance of solar panel. In 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC) (pp. 111-115). IEEE. https://doi.org/10.1109/PEEIC47157.2019.8976860
  • Alam, M. N., Aziz, S., Karim, R., & Chowdhury, S. A. (2021, December). Impact of solar PV panel cleaning frequency on the performance of a rooftop solar PV plant. In 2021 6th International Conference on Development in Renewable Energy Technology (ICDRET) (pp. 1-4). IEEE. https://doi.org/10.1109/ICDRET54330.2021.9752681
  • Alici, H., Esenboga, B., Oktem, I., Demirdelen, T., & Tumay, M. (2021). Designing and performance analysis of solar tracker system: A case study of Çukurova region. In Design, Analysis, and Applications of Renewable Energy Systems (pp. 165–184). Academic Press. https://doi.org/10.1016/B978-0-12-824555-2.00004-6
  • Al-Shahri, O. A., Ismail, F. B., Hannan, M. A., Lipu, M. H., Al-Shetwi, A. Q., Begum, R. A., ... & Soujeri, E. (2021). Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. Journal of Cleaner Production, 284, 125465. https://doi.org/10.1016/j.jclepro.2020.125465
  • As, M., & Bilir, T. (2023). Enhancing energy efficiency and cost-effectiveness while reducing CO2 emissions in a hospital building. Journal of Building Engineering, 78, 107792. https://doi.org/10.1016/j.jobe.2023.107792
  • Batista, J. P., da Silva, H. J., Rocha, L. A., & Nassar, E. J. (2021). Glass slides or solar cells: Which are better to improve solar energy efficiency? Journal of Materials Science: Materials in Electronics, 32(11), 15151–15159. https://doi.org/10.1007/s10854-021-06065-4
  • Bayraktar, N. T., & Şener, M. (2021). Sağlık Yapısı Cephelerinde Enerji Verimliliğini Arttırmaya Yönelik Güncel Uygulamalar Üzerine Bir İnceleme. Mimarlık ve Yaşam, 6(1), 285-299. https://doi.org/10.26835/my.864431
  • Bozkaya, Ş., & Duran, M. S. (2024). Yeşil Büyüme Sürecinin Enerji Verimliliği Üzerine Etkisinin Araştırılması: G-7 Ülkeleri Üzerine Bir İnceleme. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksekokulu Dergisi, 27(2), 799-810. https://doi.org/10.29249/selcuksbmyd.1519177
  • Carmona, M., Bastos, A. P., & García, J. D. (2021). Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module. Renewable Energy, 172, 680–696. https://doi.org/10.1016/j.renene.2021.03.022
  • Devaraju, D., Kumar, V. S., Vivek, D. S., Kumar, A., Reddy, G. H., & Gope, S. (2022, November). An Efficient Automatic Solar Panel Cleaning System for Roof-top Solar PV System. In 2022 International Conference on Smart and Sustainable Technologies in Energy and Power Sectors (SSTEPS) (pp. 13-16). IEEE. https://doi.org/10.1109/SSTEPS57475.2022.00018
  • Dincer, H., Eti, S., Yüksel, S., Gökalp, Y., & Çelebi, B. (2024). Strategy generation for risk minimization of renewable energy technology ınvestments in hospitals with sf top-dematel methodology. Journal of Computational and Cognitive Engineering. https://doi.org/10.47852/bonviewJCCE32021141
  • Dinçer, H., & Gökalp, Y. (2024). Optimal Management of Energy Storage Systems in Hospitals with Quantum Spherical Fuzzy Decision-Making Modelling: Developing Energy Storage System Strategies for Hospitals. Computer and Decision Making: An International Journal, 1, 185-195. https://doi.org/10.59543/comdem.v1i.10089
  • Dion, H., Evans, M., & Farrell, P. (2023). Hospitals management transformative initiatives; towards energy efficiency and environmental sustainability in healthcare facilities. Journal of Engineering, Design and Technology, 21(2), 552-584. https://doi.org/10.1108/JEDT-04-2022-0200
  • Elkhatat, A., & Al-Muhtaseb, S. A. (2023). Combined “renewable energy–thermal energy storage (RE–TES)” systems: A review. Energies, 16(11), 4471. https://doi.org/10.3390/en16114471
  • Fan, X., Qiu, X., Lu, L., & Zhou, B. (2021). Full-spectrum light-driven phase change microcapsules modified by CuS-GO nanoconverter for enhancing solar energy conversion and storage capability. Solar Energy Materials and Solar Cells, 223, 110937. https://doi.org/10.1016/j.solmat.2020.110937
  • Fathi, A., Bararzadeh Ledari, M., & Saboohi, Y. (2021). Evaluation of optimal occasional tilt on photovoltaic power plant energy efficiency and land use requirements, Iran. Sustainability, 13(18), 10213. https://doi.org/10.3390/su131810213
  • Filiz, B. C., Unlu, E. B., Yörüklü, H. C., Elibol, M. K., Akar, Y., San, A. T., ... & Figen, A. K. (2023). Solar–hydrogen coupling hybrid systems for green energy. In Materials for Hydrogen Production, Conversion, and Storage (pp. 65–95). Wiley. https://doi.org/10.1002/9781119829584.ch3
  • Gao, D., Hao, Y., & Pei, G. (2023). Investigation of a novel space heating scheme based on evacuated flat-plate solar collector and virtual energy storage. Applied Thermal Engineering, 219, 119672. https://doi.org/10.1016/j.applthermaleng.2022.119672
  • Gonzales, G., Costan, F., Suladay, D., Gonzales, R., Enriquez, L., Costan, E., & Ocampo, L. (2022). Fermatean fuzzy DEMATEL and MMDE algorithm for modelling the barriers of implementing education 4.0: Insights from the Philippines. Applied Sciences, 12(2), 689. https://doi.org/10.3390/app12020689
  • Gökalp, Y., & Eti, S. (2025). Priority strategy development with intuitionistic fuzzy DEMATEL method for reducing energy costs in hospitals. Journal of Soft Computing and Decision Analytics, 26, 26-32. https://doi.org/10.31181/jscda31202548
  • Gökalp, Y., & Eti, S. (2024). Investigating energy consumption in hospitals by text mining method. In Decision Making in Interdisciplinary Renewable Energy Projects: Navigating Energy Investments (pp. 259-269). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-51532-3_21
  • Guo, F., Li, Y., Xu, Z., Qin, J., & Long, L. (2021). Multi-objective optimization of multi-energy heating systems based on solar, natural gas, and air-energy. Sustainable Energy Technologies and Assessments, 47, 101394. https://doi.org/10.1016/j.seta.2021.101394
  • Hama Radha, C. (2023). Retrofitting for improving indoor air quality and energy efficiency in the hospital building. Sustainability, 15(4), 3464. https://doi.org/10.3390/su15043464
  • Hou, G., Xu, L., Liu, Z., Chen, D., Ru, H., & Taherian, H. (2023). Solar-assisted geothermal heat pump systems: Current practice and future development. In Renewable Energy Production and Distribution Volume 2 (pp. 217–246). Academic Press. https://doi.org/10.1016/B978-0-443-18439-0.00013-6
  • Hohne, P. A., Kusakana, K., & Numbi, B. P. (2020). Improving energy efficiency of thermal processes in healthcare institutions: A review on the latest sustainable energy management strategies. Energies, 13(3), 569. https://doi.org/10.3390/en13030569
  • Huang, H. C., Huang, C. N., Lo, H. W., & Thai, T. M. (2023). Exploring the mutual influence relationships of international airport resilience factors from the perspective of aviation safety: Using Fermatean fuzzy DEMATEL approach. Axioms, 12(11), 1009. https://doi.org/10.3390/axioms12111009
  • Kambezidis, H. D., Mimidis, K., & Kavadias, K. A. (2023). The solar energy potential of Greece for flat-plate solar panels mounted on double-axis systems. Energies, 16(13), 5067. https://doi.org/10.3390/en16135067
  • Kumar, R. T., & Rajan, C. A. (2023, August). Modified Cuk converter with bird swarm optimized PI controller for microgrid system. In Proceedings of the 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT) (pp. 1773–1780). IEEE. https://doi.org/10.1109/ICCPCT.2023.10245452
  • Mtioui, N., Zamd, M., Ait Taleb, A., Bouaalam, A., & Ramdani, B. (2021). Carbon footprint of a hemodialysis unit in Morocco. Therapeutic Apheresis and Dialysis, 25(5), 613–620. https://doi.org/10.1111/1744-9987.13607
  • Murugan, D. K., Panchal, H., Said, Z., & Shankaranarayanan, S. (2023). Air stone-induced microbubble agitation: A strategy for solar still performance enhancement. Clean Technologies and Environmental Policy, 1–18. https://doi.org/10.1007/s10098-023-02630-z
  • Myyas, R. E. N., Al-Dabbasa, M., Tostado-Véliz, M., & Jurado, F. (2022). A novel solar panel cleaning mechanism to improve performance and harvesting rainwater. Solar Energy, 237, 19–28. https://doi.org/10.1016/j.solener.2022.03.068
  • Niu, L., Li, X., Zhang, Y., Yang, H., Feng, J., & Liu, Z. (2022). Electrospun lignin-based phase-change nanofiber films for solar energy storage. ACS Sustainable Chemistry & Engineering, 10(39), 13081–13090. https://doi.org/10.1021/acssuschemeng.2c03462
  • Nourdine, B., & Saad, A. (2021). About energy efficiency in Moroccan health care buildings. Materials Today: Proceedings, 39, 1141–1147. https://doi.org/10.1016/j.matpr.2020.04.135
  • Patnaik, B., Swain, S. C., & Rout, U. K. (2020). Modelling and performance of solar PV panel with different parameters. In Applications of Robotics in Industry Using Advanced Mechanisms: Proceedings of International Conference on Robotics and Its Industrial Applications 2019 1 (pp. 250-259). Springer International Publishing. https://doi.org/10.1007/978-3-030-30271-9_23
  • Saleh, S. F., Aboaltabooq, M. H. K., & Khwayyir, H. H. (2023, April). Improvement of PV cell performance by using different cleaning methods. In AIP Conference Proceedings (Vol. 2776, No. 1). AIP Publishing. https://doi.org/10.1063/5.0136522
  • Semai, H., & Bouhdjar, A. (2023). The thermal impact of stored water as supplementary energy source for a solar air heater. Environmental Progress & Sustainable Energy. https://doi.org/10.1002/ep.14297
  • Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of ambient intelligence and humanized computing, 11, 663-674. https://doi.org/10.1007/s12652-019-01377-0
  • Shahdabadi, R. S., Mortazavi, A., Lotfi, P., Shakib, S. E., & Ghafurian, M. M. (2023). Boosting stepped solar still system efficiency with affordable natural energy absorbers. Case Studies in Thermal Engineering, 52, 103666. https://doi.org/10.1016/j.csite.2023.103666
  • Tepe, S., Çabuk, A., Eti, S., & Mertoğlu, B. (2024). Evaluation of psychosocial risks affecting academician using the sine trigonometric pythagorean fuzzy (ST-PFN) DEMATEL method. Work, (Preprint), 1-16. https://doi.org/10.3233/WOR-240145
  • Tony, M. A. (2021). Nexus approach: ZSM-12 derived from industrial waste into microencapsulated in organic wax for solar energy storage system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(15), 1–19. https://doi.org/10.1080/15567036.2021.2001119
  • Ummah, H. F., Setiati, R., Dadi, Y. B. V., Ariq, M. N., & Malinda, M. T. (2021, May). Solar energy as natural resource utilization in urban areas: Solar energy efficiency literature review. In IOP Conference Series: Earth and Environmental Science 780, 1, 012007. IOP Publishing. https://doi.org/10.1088/1755-1315/780/1/012007
  • United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. United Nations. https://sdgs.un.org/2030agenda
  • Vavili, F., & Kyrkou, A. (2020). Sustainability and energy efficiency design in hospital buildings. In Energy Efficient Building Design (pp. 157-169). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-40671-4_10
  • Vaziri, S. M., Rezaee, B., & Monirian, M. A. (2020). Utilizing renewable energy sources efficiently in hospitals using demand dispatch. Renewable Energy, 151, 551-562. https://doi.org/10.1016/j.renene.2019.11.053
  • Vijayan, D. S., Koda, E., Sivasuriyan, A., Winkler, J., Devarajan, P., Kumar, R. S., ... & Vaverková, M. D. (2023). Advancements in solar panel technology in civil engineering for revolutionizing renewable energy solutions—a review. Energies, 16(18), 6579. https://doi.org/10.3390/en16186579
  • Yalçın, A. Z., & Dogan, M. (2023). Enerjide Dışa Bağımlılık Sorunu: Türkiye İçin Ampirik Bir Analiz. Yönetim ve Ekonomi Dergisi, 30(2), 203-223. https://doi.org/10.18657/yonveek.1206158
  • Yan, Y., Khan, K. A., Adebayo, T. S., & Olanrewaju, V. O. (2024). Unveiling energy efficiency and renewable electricity’s role in achieving sustainable development goals 7 and 13 policies. International Journal of Sustainable Development & World Ecology, 1-26. https://doi.org/10.1080/13504509.2023.2300006
  • Yang, Z., Gao, X., & Lei, J. (2023). Aeolian disaster risk evaluation in the African Sahel. Science of the Total Environment, 899, 165462. https://doi.org/10.1016/j.scitotenv.2023.165462
  • Zhang, R., Wang, D., Yu, Z., Sun, Y., Wan, H., Liu, Y., ... & Lan, B. (2023). Dual-objective optimization of large-scale solar heating systems integrated with water-to-water heat pumps for improved techno-economic performance. Energy and Buildings, 296, 113281. https://doi.org/10.1016/j.enbuild.2023.113281

HASTANELERDE KULLANILAN GÜNEŞ PANELLERİNİN VERİMLİLİĞİNİN ARTIRILMASINA YÖNELİK ÖNCELİKLİ STRATEJİLERİN FERMATEAN BULANIK DEMATEL YÖNTEMİ İLE BELİRLENMESİ

Yıl 2025, Sayı: 29, 142 - 160, 30.04.2025
https://doi.org/10.29029/busbed.1583085

Öz

Hastaneler, enerji tüketiminin en yüksek olduğu binaların başında gelmektedir. Sunulan hizmetin kendine has kesintisizlik ve ertelenememe gibi özellikleri nedeniyle hizmetin sürdürülebilir şekilde sağlanması önem taşımaktadır. Ayrıca, sağlık hizmetlerinin 7/24 sunulması, hastanelerdeki enerji tüketiminin boyutu gözler önüne sermektedir. Bu bağlamda, hastanelerde kullanılan güneş enerji panellerinin verimliliğinin artırılmasının gerekliliği kaçınılmazdır. Buna yönelik olarak, literatür tabanlı belirlenen hastanelerde kullanılan güneş enerji panellerinin verimliliğini etkileyen kriter seti oluşturulmuştur. Fakat, hastane yönetiminin bu kriterler tamamına aynı anda müdahale etmesi mümkün olmadığından fermatean bulanık DEMATEL yönetimi ile ağırlıklandırma yapılmıştır. Buna göre, hastanelerde kullanılan güneş enerji panellerinin verimliliğini etkileyen en önemli husus panellerin malzeme ve teknolojisi olarak bulunmuştur. Yapılan analiz sonuçları, en önemli ikinci kriterin ise enerji depolama sistemleri olduğunu göstermektedir. Süreci en az etkileyen kriter ise çevresel faktörlerdir. Buna göre, gerekli teknolojik yatırımların yapılması ve güncel teknolojilerin kullanılması enerji verimliliğini artıracaktır. Ayrıca, güneş enerji panellerine sahip olmanın yanında depolama sistemlerinin kullanılması enerji verimliliğine katkı sağlayacaktır. Otomatik temizlik sistemlerinin kullanılması, su püskürtmeli ya da otomatik fırçalı temizlik sistemlerinin kullanılması somut adımlar olarak addedilebilir. Ayrıca, teknoloji kullanımı çerçevesinde güneş enerji sistemlerini izleyen ve optimize eden akıllı enerji yönetim yazılımlarının kullanılması faydalı olacaktır.

Proje Numarası

Bu çalışma herhangi bir proje tarafından desteklenmemektedir.

Kaynakça

  • Adekanbi, M. L., Alaba, E. S., John, T. J., Tundealao, T. D., & Banji, T. I. (2023). Soiling loss in solar systems: A review of its effect on solar energy efficiency and mitigation techniques. Cleaner Energy Systems, 100094. https://doi.org/10.1016/j.cles.2023.100094
  • Afshari, F., Mandev, E., Muratçobanoğlu, B., Çelik, A., & Ceviz, M. A. (2024). Experimental and numerical study on solar energy storage in black-covered sunspace using water-filled tin cans. Journal of Enhanced Heat Transfer, 31(3), 21–44. https://doi.org/10.1615/JEnhHeatTrans.2024041512
  • Ansari, M. A., & Kumar, K. (2019, October). Impact of various factors on the performance of solar panel. In 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC) (pp. 111-115). IEEE. https://doi.org/10.1109/PEEIC47157.2019.8976860
  • Alam, M. N., Aziz, S., Karim, R., & Chowdhury, S. A. (2021, December). Impact of solar PV panel cleaning frequency on the performance of a rooftop solar PV plant. In 2021 6th International Conference on Development in Renewable Energy Technology (ICDRET) (pp. 1-4). IEEE. https://doi.org/10.1109/ICDRET54330.2021.9752681
  • Alici, H., Esenboga, B., Oktem, I., Demirdelen, T., & Tumay, M. (2021). Designing and performance analysis of solar tracker system: A case study of Çukurova region. In Design, Analysis, and Applications of Renewable Energy Systems (pp. 165–184). Academic Press. https://doi.org/10.1016/B978-0-12-824555-2.00004-6
  • Al-Shahri, O. A., Ismail, F. B., Hannan, M. A., Lipu, M. H., Al-Shetwi, A. Q., Begum, R. A., ... & Soujeri, E. (2021). Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. Journal of Cleaner Production, 284, 125465. https://doi.org/10.1016/j.jclepro.2020.125465
  • As, M., & Bilir, T. (2023). Enhancing energy efficiency and cost-effectiveness while reducing CO2 emissions in a hospital building. Journal of Building Engineering, 78, 107792. https://doi.org/10.1016/j.jobe.2023.107792
  • Batista, J. P., da Silva, H. J., Rocha, L. A., & Nassar, E. J. (2021). Glass slides or solar cells: Which are better to improve solar energy efficiency? Journal of Materials Science: Materials in Electronics, 32(11), 15151–15159. https://doi.org/10.1007/s10854-021-06065-4
  • Bayraktar, N. T., & Şener, M. (2021). Sağlık Yapısı Cephelerinde Enerji Verimliliğini Arttırmaya Yönelik Güncel Uygulamalar Üzerine Bir İnceleme. Mimarlık ve Yaşam, 6(1), 285-299. https://doi.org/10.26835/my.864431
  • Bozkaya, Ş., & Duran, M. S. (2024). Yeşil Büyüme Sürecinin Enerji Verimliliği Üzerine Etkisinin Araştırılması: G-7 Ülkeleri Üzerine Bir İnceleme. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksekokulu Dergisi, 27(2), 799-810. https://doi.org/10.29249/selcuksbmyd.1519177
  • Carmona, M., Bastos, A. P., & García, J. D. (2021). Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module. Renewable Energy, 172, 680–696. https://doi.org/10.1016/j.renene.2021.03.022
  • Devaraju, D., Kumar, V. S., Vivek, D. S., Kumar, A., Reddy, G. H., & Gope, S. (2022, November). An Efficient Automatic Solar Panel Cleaning System for Roof-top Solar PV System. In 2022 International Conference on Smart and Sustainable Technologies in Energy and Power Sectors (SSTEPS) (pp. 13-16). IEEE. https://doi.org/10.1109/SSTEPS57475.2022.00018
  • Dincer, H., Eti, S., Yüksel, S., Gökalp, Y., & Çelebi, B. (2024). Strategy generation for risk minimization of renewable energy technology ınvestments in hospitals with sf top-dematel methodology. Journal of Computational and Cognitive Engineering. https://doi.org/10.47852/bonviewJCCE32021141
  • Dinçer, H., & Gökalp, Y. (2024). Optimal Management of Energy Storage Systems in Hospitals with Quantum Spherical Fuzzy Decision-Making Modelling: Developing Energy Storage System Strategies for Hospitals. Computer and Decision Making: An International Journal, 1, 185-195. https://doi.org/10.59543/comdem.v1i.10089
  • Dion, H., Evans, M., & Farrell, P. (2023). Hospitals management transformative initiatives; towards energy efficiency and environmental sustainability in healthcare facilities. Journal of Engineering, Design and Technology, 21(2), 552-584. https://doi.org/10.1108/JEDT-04-2022-0200
  • Elkhatat, A., & Al-Muhtaseb, S. A. (2023). Combined “renewable energy–thermal energy storage (RE–TES)” systems: A review. Energies, 16(11), 4471. https://doi.org/10.3390/en16114471
  • Fan, X., Qiu, X., Lu, L., & Zhou, B. (2021). Full-spectrum light-driven phase change microcapsules modified by CuS-GO nanoconverter for enhancing solar energy conversion and storage capability. Solar Energy Materials and Solar Cells, 223, 110937. https://doi.org/10.1016/j.solmat.2020.110937
  • Fathi, A., Bararzadeh Ledari, M., & Saboohi, Y. (2021). Evaluation of optimal occasional tilt on photovoltaic power plant energy efficiency and land use requirements, Iran. Sustainability, 13(18), 10213. https://doi.org/10.3390/su131810213
  • Filiz, B. C., Unlu, E. B., Yörüklü, H. C., Elibol, M. K., Akar, Y., San, A. T., ... & Figen, A. K. (2023). Solar–hydrogen coupling hybrid systems for green energy. In Materials for Hydrogen Production, Conversion, and Storage (pp. 65–95). Wiley. https://doi.org/10.1002/9781119829584.ch3
  • Gao, D., Hao, Y., & Pei, G. (2023). Investigation of a novel space heating scheme based on evacuated flat-plate solar collector and virtual energy storage. Applied Thermal Engineering, 219, 119672. https://doi.org/10.1016/j.applthermaleng.2022.119672
  • Gonzales, G., Costan, F., Suladay, D., Gonzales, R., Enriquez, L., Costan, E., & Ocampo, L. (2022). Fermatean fuzzy DEMATEL and MMDE algorithm for modelling the barriers of implementing education 4.0: Insights from the Philippines. Applied Sciences, 12(2), 689. https://doi.org/10.3390/app12020689
  • Gökalp, Y., & Eti, S. (2025). Priority strategy development with intuitionistic fuzzy DEMATEL method for reducing energy costs in hospitals. Journal of Soft Computing and Decision Analytics, 26, 26-32. https://doi.org/10.31181/jscda31202548
  • Gökalp, Y., & Eti, S. (2024). Investigating energy consumption in hospitals by text mining method. In Decision Making in Interdisciplinary Renewable Energy Projects: Navigating Energy Investments (pp. 259-269). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-51532-3_21
  • Guo, F., Li, Y., Xu, Z., Qin, J., & Long, L. (2021). Multi-objective optimization of multi-energy heating systems based on solar, natural gas, and air-energy. Sustainable Energy Technologies and Assessments, 47, 101394. https://doi.org/10.1016/j.seta.2021.101394
  • Hama Radha, C. (2023). Retrofitting for improving indoor air quality and energy efficiency in the hospital building. Sustainability, 15(4), 3464. https://doi.org/10.3390/su15043464
  • Hou, G., Xu, L., Liu, Z., Chen, D., Ru, H., & Taherian, H. (2023). Solar-assisted geothermal heat pump systems: Current practice and future development. In Renewable Energy Production and Distribution Volume 2 (pp. 217–246). Academic Press. https://doi.org/10.1016/B978-0-443-18439-0.00013-6
  • Hohne, P. A., Kusakana, K., & Numbi, B. P. (2020). Improving energy efficiency of thermal processes in healthcare institutions: A review on the latest sustainable energy management strategies. Energies, 13(3), 569. https://doi.org/10.3390/en13030569
  • Huang, H. C., Huang, C. N., Lo, H. W., & Thai, T. M. (2023). Exploring the mutual influence relationships of international airport resilience factors from the perspective of aviation safety: Using Fermatean fuzzy DEMATEL approach. Axioms, 12(11), 1009. https://doi.org/10.3390/axioms12111009
  • Kambezidis, H. D., Mimidis, K., & Kavadias, K. A. (2023). The solar energy potential of Greece for flat-plate solar panels mounted on double-axis systems. Energies, 16(13), 5067. https://doi.org/10.3390/en16135067
  • Kumar, R. T., & Rajan, C. A. (2023, August). Modified Cuk converter with bird swarm optimized PI controller for microgrid system. In Proceedings of the 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT) (pp. 1773–1780). IEEE. https://doi.org/10.1109/ICCPCT.2023.10245452
  • Mtioui, N., Zamd, M., Ait Taleb, A., Bouaalam, A., & Ramdani, B. (2021). Carbon footprint of a hemodialysis unit in Morocco. Therapeutic Apheresis and Dialysis, 25(5), 613–620. https://doi.org/10.1111/1744-9987.13607
  • Murugan, D. K., Panchal, H., Said, Z., & Shankaranarayanan, S. (2023). Air stone-induced microbubble agitation: A strategy for solar still performance enhancement. Clean Technologies and Environmental Policy, 1–18. https://doi.org/10.1007/s10098-023-02630-z
  • Myyas, R. E. N., Al-Dabbasa, M., Tostado-Véliz, M., & Jurado, F. (2022). A novel solar panel cleaning mechanism to improve performance and harvesting rainwater. Solar Energy, 237, 19–28. https://doi.org/10.1016/j.solener.2022.03.068
  • Niu, L., Li, X., Zhang, Y., Yang, H., Feng, J., & Liu, Z. (2022). Electrospun lignin-based phase-change nanofiber films for solar energy storage. ACS Sustainable Chemistry & Engineering, 10(39), 13081–13090. https://doi.org/10.1021/acssuschemeng.2c03462
  • Nourdine, B., & Saad, A. (2021). About energy efficiency in Moroccan health care buildings. Materials Today: Proceedings, 39, 1141–1147. https://doi.org/10.1016/j.matpr.2020.04.135
  • Patnaik, B., Swain, S. C., & Rout, U. K. (2020). Modelling and performance of solar PV panel with different parameters. In Applications of Robotics in Industry Using Advanced Mechanisms: Proceedings of International Conference on Robotics and Its Industrial Applications 2019 1 (pp. 250-259). Springer International Publishing. https://doi.org/10.1007/978-3-030-30271-9_23
  • Saleh, S. F., Aboaltabooq, M. H. K., & Khwayyir, H. H. (2023, April). Improvement of PV cell performance by using different cleaning methods. In AIP Conference Proceedings (Vol. 2776, No. 1). AIP Publishing. https://doi.org/10.1063/5.0136522
  • Semai, H., & Bouhdjar, A. (2023). The thermal impact of stored water as supplementary energy source for a solar air heater. Environmental Progress & Sustainable Energy. https://doi.org/10.1002/ep.14297
  • Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of ambient intelligence and humanized computing, 11, 663-674. https://doi.org/10.1007/s12652-019-01377-0
  • Shahdabadi, R. S., Mortazavi, A., Lotfi, P., Shakib, S. E., & Ghafurian, M. M. (2023). Boosting stepped solar still system efficiency with affordable natural energy absorbers. Case Studies in Thermal Engineering, 52, 103666. https://doi.org/10.1016/j.csite.2023.103666
  • Tepe, S., Çabuk, A., Eti, S., & Mertoğlu, B. (2024). Evaluation of psychosocial risks affecting academician using the sine trigonometric pythagorean fuzzy (ST-PFN) DEMATEL method. Work, (Preprint), 1-16. https://doi.org/10.3233/WOR-240145
  • Tony, M. A. (2021). Nexus approach: ZSM-12 derived from industrial waste into microencapsulated in organic wax for solar energy storage system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(15), 1–19. https://doi.org/10.1080/15567036.2021.2001119
  • Ummah, H. F., Setiati, R., Dadi, Y. B. V., Ariq, M. N., & Malinda, M. T. (2021, May). Solar energy as natural resource utilization in urban areas: Solar energy efficiency literature review. In IOP Conference Series: Earth and Environmental Science 780, 1, 012007. IOP Publishing. https://doi.org/10.1088/1755-1315/780/1/012007
  • United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. United Nations. https://sdgs.un.org/2030agenda
  • Vavili, F., & Kyrkou, A. (2020). Sustainability and energy efficiency design in hospital buildings. In Energy Efficient Building Design (pp. 157-169). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-40671-4_10
  • Vaziri, S. M., Rezaee, B., & Monirian, M. A. (2020). Utilizing renewable energy sources efficiently in hospitals using demand dispatch. Renewable Energy, 151, 551-562. https://doi.org/10.1016/j.renene.2019.11.053
  • Vijayan, D. S., Koda, E., Sivasuriyan, A., Winkler, J., Devarajan, P., Kumar, R. S., ... & Vaverková, M. D. (2023). Advancements in solar panel technology in civil engineering for revolutionizing renewable energy solutions—a review. Energies, 16(18), 6579. https://doi.org/10.3390/en16186579
  • Yalçın, A. Z., & Dogan, M. (2023). Enerjide Dışa Bağımlılık Sorunu: Türkiye İçin Ampirik Bir Analiz. Yönetim ve Ekonomi Dergisi, 30(2), 203-223. https://doi.org/10.18657/yonveek.1206158
  • Yan, Y., Khan, K. A., Adebayo, T. S., & Olanrewaju, V. O. (2024). Unveiling energy efficiency and renewable electricity’s role in achieving sustainable development goals 7 and 13 policies. International Journal of Sustainable Development & World Ecology, 1-26. https://doi.org/10.1080/13504509.2023.2300006
  • Yang, Z., Gao, X., & Lei, J. (2023). Aeolian disaster risk evaluation in the African Sahel. Science of the Total Environment, 899, 165462. https://doi.org/10.1016/j.scitotenv.2023.165462
  • Zhang, R., Wang, D., Yu, Z., Sun, Y., Wan, H., Liu, Y., ... & Lan, B. (2023). Dual-objective optimization of large-scale solar heating systems integrated with water-to-water heat pumps for improved techno-economic performance. Energy and Buildings, 296, 113281. https://doi.org/10.1016/j.enbuild.2023.113281
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekoloji, Sürdürülebilirlik ve Enerji, Hastane İşletmeciliği
Bölüm Araştırma Makaleleri
Yazarlar

Yaşar Gökalp 0000-0002-3390-4597

Proje Numarası Bu çalışma herhangi bir proje tarafından desteklenmemektedir.
Erken Görünüm Tarihi 28 Nisan 2025
Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 11 Kasım 2024
Kabul Tarihi 2 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 29

Kaynak Göster

APA Gökalp, Y. (2025). HASTANELERDE KULLANILAN GÜNEŞ PANELLERİNİN VERİMLİLİĞİNİN ARTIRILMASINA YÖNELİK ÖNCELİKLİ STRATEJİLERİN FERMATEAN BULANIK DEMATEL YÖNTEMİ İLE BELİRLENMESİ. Bingöl Üniversitesi Sosyal Bilimler Enstitüsü Dergisi(29), 142-160. https://doi.org/10.29029/busbed.1583085