Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Konfigürasyona Sahip İki Bölümlü Ve Üç Bölümlü Diyot Lazerlerde Optik Darbe Üretiminin Deneysel İncelenmesi

Yıl 2025, Cilt: 6 Sayı: 2, 51 - 63, 23.12.2025

Öz

Bu çalışmada, 1350 nm dalga boyunda çalışan iki ve üç kesitli InGaAsP/InP diyot lazerlerinden elde edilen optik darbe ölçümleri, kavite uzunluğu 315 µm’de sabit tutulurken, kazanç ve soğurucu bölümlerin konumları değiştirilerek sunulmuştur. 100 µs darbe genişliğine sahip 2 kHz'lik bir sinyal, 20 mA DC akımla birlikte kazanç bölümlerine uygulanırken, soğurucu bölüme 0 ile -1,5 V arasında değişen bir ters kutuplu gerilim uygulanmıştır. Kazanç bölümüne uygulanan akım ve soğurucu bölüme uygulanan ters kutuplu gerilim her iki lazer tipi için de belirli değerlerde sabit tutulmuş ve ortaya çıkan darbe genlikleri ve süreleri analiz edilmiştir. Soğurucu bölümün ortada (iki kazanç bölümü arasında) konumlandırıldığı üç kesitli lazerlerden elde edilen darbeler, iki kesitli lazerlerden elde edilenlerden daha yüksek genlikler sergilemiş ve darbe genişlikleri yaklaşık %5 daha dar olmuştur. Buna karşılık, soğurucu bölümü uçta olan lazerler, tek kazançlı lazerlere kıyasla daha yüksek çıkış gücü ürettiler, ancak darbe genişlikleri, soğurucu bölümü ortada olan lazerlere göre daha geniş elde edilmiştir.

Proje Numarası

122E681

Kaynakça

  • Hall N, Fenner G H, Kingsley J D, Soltys T J, Carlson R D. Coherent light emission from GaAs. Physical Review Letters. 1962;9(1), 62–64.
  • Nakamura T, Okuda T, Kobayashi R, Muroya Y, Tsuruoka K, Ohsawa Y, Tsukuda T, Ishikawa S. 1.3 μm AlGaInAs strain-compensated MQW-buried-heterostructure lasers for uncooled 10 Gb/s operation. IEEE Journal of Selected Topics in Quantum Electronics. 2005;11(1), 141–148.
  • Cakmak B, Biber M, Karacali T, Duman C. A comparative study of fabrication of long wavelength diode lasers using CCl₂F₂/O₂ and H₂/CH₄. Optics and Photonics Journal. 2013;3(1), 21–24.
  • Pilny R H, Döpke B, Brenner C, Klehr A, Knigge A, Tränkle G, Hofmann M R. Self-optimizing passively, actively and hybridly mode-locked diode lasers. CLEO/Europe EQEC Conference Proceedings. 2017.
  • Stolarz P M, Javaloyes J, Mezosi G, Hou L, Ironside C N, Sorel M, Bryce A C, Balle S. Spectral dynamical behaviour in passively mode-locked semiconductor lasers. IEEE Photonics Journal. 2011;3(6), 1067–1082.
  • Keller U. Recent developments in compact ultrafast lasers. Nature. 2003;424, 831–838.
  • Schelte C, Gurevich S V, Javaloyes J. A functional mapping for passively mode-locked semiconductor lasers. Optics Letters. 2018;43, 2535–2538.
  • Ma Y, Zhu X, Yang L, Tong M, Norwood R A, Wei H, Chu Y, Li H, Dai N, Peng J, Li J, Peyghambarian N. Numerical investigation of GHz repetition rate fundamentally mode-locked all-fiber lasers. Optics Express. 2019;27(10), 14487–14504.
  • Duman C, Cakmak B. Time domain dynamic analysis of a 1550 nm monolithic two section mode-locked MQW laser. East Anatolian Science. 2015;2, 70–76.
  • Adams M J, Steventon A G, Delvin W J, Henning I D. Semiconductor lasers for long-wavelength optical-fiber communications systems. Short Run Press Ltd. 1987.
  • Zhang L M, Yu S F, Nowell M C, Marcenac D D, Carroll J E, Plumb R G S. Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model. IEEE Journal of Quantum Electronics. 1994;30, 1389–1395.
  • Avrutin E A, Marsh J H, Portnoi E L. Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models, and applications. IEEE Proceedings of OptoElectronics. 2000;147, 251–278.
  • Schwarz S, Baumgartner O, Austerer M, Andrews A M, Detz H, Strasser G. Ultrafast dynamics of monolithic semiconductor mode-locked lasers. Journal of Applied Physics. 2013;113, 083102.
  • Thompson M G, Williams K A, White I H. High-performance ultrashort pulse generation using mode-locked quantum-dot semiconductor lasers. IEEE Journal of Quantum Electronics. 2006;42, 1032–1038.
  • Martini R, Hofstetter D, Faist J, Sivco D L, Baillargeon J N, Cho A Y, Capasso F. High-frequency modulation with picosecond pulses in quantum cascade lasers. Electronics Letters. 2002;38, 181–182.
  • Rafailov E U, Bimberg D, Avrutin E A. Quantum-dot mode-locked lasers and their applications: Review. Journal of Optics and Quantum Electronics. 2007;39, 973–1002.
  • Liu X, Ling J, Yoo S, Shieh W. High-speed optical communication using mode-locked semiconductor lasers. Optics Express. 2010;18, 14632–14637.
  • Wang C, Liu Y, Zhao H, Zhang Z, Xu J, Wang J. High-power passively mode locked semiconductor laser at 1550 nm. IEEE Photonics Technology Letters. 2012;24, 1706–1709.
  • Schires K, Grillot F, Poingt F, Lhuillier J, Llopis O, Thevenin J. Repetition rate enhancement of a passively mode-locked quantum dash semiconductor laser using an external fibered feedback loop. Optics Express. 2013;21, 8894–8899.
  • Duan L, Lu X, Yu J, Luo Y, Liu Y, Zhou H. Passive mode-locking of a two-section InGaAsP/InP quantum well laser at 1.55 μm. Optics Communications. 2015;356, 517–522.
  • Pan S, Yang H, Wang F, Xu S, Chen H. Dynamic characteristics of a two-section passively mode-locked semiconductor laser with varied absorber length. Optics Express. 2016;24, 21484–21492.
  • Aksakal R, Duman C, Cakmak B. Numerical investigation of 1550 nm passively mode-locked diode lasers with different gain and absorber configurations. Laser Physics. 2020;30, 085003.

Experimental Investigation Of Optical Pulse Generation In Two-Section And Three-Section Diode Lasers With Different Configuration

Yıl 2025, Cilt: 6 Sayı: 2, 51 - 63, 23.12.2025

Öz

In this study, optical pulses measurements obtained from two-section and three-section InGaAsP/InP diode lasers operating at a wavelength of 1350 nm are presented, with the cavity length kept constant at 315 µm, while the positions of the gain and absorber sections are varied. A 2 kHz signal with a 100 µs pulse width was applied to the gain sections along with a 20 mA DC current, while a reverse bias voltage ranging from 0 to -1.5 V was applied to the absorber section. The current applied to the gain section and the reverse bias voltage applied to the absorber section were kept constant at certain values for both laser types, and the resulting pulse amplitudes and durations were analyzed. The pulses obtained from the three-section lasers, where the absorber section was positioned in the middle (between the two gain sections), exhibited higher amplitudes than those obtained from the two-section lasers, and their pulse widths were approximately 5% narrower. In contrast, lasers with the absorber at the end produced higher output power compared to single-gain lasers, but wider pulse widths were obtained than lasers with the absorber at the middle.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

122E681

Kaynakça

  • Hall N, Fenner G H, Kingsley J D, Soltys T J, Carlson R D. Coherent light emission from GaAs. Physical Review Letters. 1962;9(1), 62–64.
  • Nakamura T, Okuda T, Kobayashi R, Muroya Y, Tsuruoka K, Ohsawa Y, Tsukuda T, Ishikawa S. 1.3 μm AlGaInAs strain-compensated MQW-buried-heterostructure lasers for uncooled 10 Gb/s operation. IEEE Journal of Selected Topics in Quantum Electronics. 2005;11(1), 141–148.
  • Cakmak B, Biber M, Karacali T, Duman C. A comparative study of fabrication of long wavelength diode lasers using CCl₂F₂/O₂ and H₂/CH₄. Optics and Photonics Journal. 2013;3(1), 21–24.
  • Pilny R H, Döpke B, Brenner C, Klehr A, Knigge A, Tränkle G, Hofmann M R. Self-optimizing passively, actively and hybridly mode-locked diode lasers. CLEO/Europe EQEC Conference Proceedings. 2017.
  • Stolarz P M, Javaloyes J, Mezosi G, Hou L, Ironside C N, Sorel M, Bryce A C, Balle S. Spectral dynamical behaviour in passively mode-locked semiconductor lasers. IEEE Photonics Journal. 2011;3(6), 1067–1082.
  • Keller U. Recent developments in compact ultrafast lasers. Nature. 2003;424, 831–838.
  • Schelte C, Gurevich S V, Javaloyes J. A functional mapping for passively mode-locked semiconductor lasers. Optics Letters. 2018;43, 2535–2538.
  • Ma Y, Zhu X, Yang L, Tong M, Norwood R A, Wei H, Chu Y, Li H, Dai N, Peng J, Li J, Peyghambarian N. Numerical investigation of GHz repetition rate fundamentally mode-locked all-fiber lasers. Optics Express. 2019;27(10), 14487–14504.
  • Duman C, Cakmak B. Time domain dynamic analysis of a 1550 nm monolithic two section mode-locked MQW laser. East Anatolian Science. 2015;2, 70–76.
  • Adams M J, Steventon A G, Delvin W J, Henning I D. Semiconductor lasers for long-wavelength optical-fiber communications systems. Short Run Press Ltd. 1987.
  • Zhang L M, Yu S F, Nowell M C, Marcenac D D, Carroll J E, Plumb R G S. Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model. IEEE Journal of Quantum Electronics. 1994;30, 1389–1395.
  • Avrutin E A, Marsh J H, Portnoi E L. Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models, and applications. IEEE Proceedings of OptoElectronics. 2000;147, 251–278.
  • Schwarz S, Baumgartner O, Austerer M, Andrews A M, Detz H, Strasser G. Ultrafast dynamics of monolithic semiconductor mode-locked lasers. Journal of Applied Physics. 2013;113, 083102.
  • Thompson M G, Williams K A, White I H. High-performance ultrashort pulse generation using mode-locked quantum-dot semiconductor lasers. IEEE Journal of Quantum Electronics. 2006;42, 1032–1038.
  • Martini R, Hofstetter D, Faist J, Sivco D L, Baillargeon J N, Cho A Y, Capasso F. High-frequency modulation with picosecond pulses in quantum cascade lasers. Electronics Letters. 2002;38, 181–182.
  • Rafailov E U, Bimberg D, Avrutin E A. Quantum-dot mode-locked lasers and their applications: Review. Journal of Optics and Quantum Electronics. 2007;39, 973–1002.
  • Liu X, Ling J, Yoo S, Shieh W. High-speed optical communication using mode-locked semiconductor lasers. Optics Express. 2010;18, 14632–14637.
  • Wang C, Liu Y, Zhao H, Zhang Z, Xu J, Wang J. High-power passively mode locked semiconductor laser at 1550 nm. IEEE Photonics Technology Letters. 2012;24, 1706–1709.
  • Schires K, Grillot F, Poingt F, Lhuillier J, Llopis O, Thevenin J. Repetition rate enhancement of a passively mode-locked quantum dash semiconductor laser using an external fibered feedback loop. Optics Express. 2013;21, 8894–8899.
  • Duan L, Lu X, Yu J, Luo Y, Liu Y, Zhou H. Passive mode-locking of a two-section InGaAsP/InP quantum well laser at 1.55 μm. Optics Communications. 2015;356, 517–522.
  • Pan S, Yang H, Wang F, Xu S, Chen H. Dynamic characteristics of a two-section passively mode-locked semiconductor laser with varied absorber length. Optics Express. 2016;24, 21484–21492.
  • Aksakal R, Duman C, Cakmak B. Numerical investigation of 1550 nm passively mode-locked diode lasers with different gain and absorber configurations. Laser Physics. 2020;30, 085003.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektronik, Elektronik Cihaz ve Sistem Performansı Değerlendirme, Test ve Simülasyon, Fotonik ve Elektro-Optik Cihazlar, Sensörler ve Sistemler (İletişim Hariç), Mikroelektronik, Yarı İletkenler
Bölüm Araştırma Makalesi
Yazarlar

Rukiye Aksakal 0000-0002-2708-2937

Bülent Çakmak 0000-0002-9939-4809

Proje Numarası 122E681
Gönderilme Tarihi 20 Mayıs 2025
Kabul Tarihi 28 Temmuz 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

Vancouver Aksakal R, Çakmak B. Experimental Investigation Of Optical Pulse Generation In Two-Section And Three-Section Diode Lasers With Different Configuration. BUTS. 2025;6(2):51-63.
Bu dergi; Bingöl Üniversitesi Teknik Bilimler dergi ekibi tarafından hazırlanmakta ve yayınlanmaktadır.