Araştırma Makalesi
BibTex RIS Kaynak Göster

Semi-Invariant Submanifolds A Lorentzian Kenmotsu Manifold With Semi-Symmetric Metric Connection

Yıl 2021, Cilt: 2 Sayı: 1, 36 - 42, 09.07.2021

Öz

In this paper, semi-invariant submanifolds of a lorentzian Kenmotsu manifold endowed with a semi-symmetric metric connection are studied. Necessary and sufficient conditions are given on a submanifold of a lorentzian Kenmotsu manifold to be semi-invarinat submanifold with the semi-symmetric metric connection. Moreover, the parallel conditions of the distribution on semi-invariant submanifolds of a lorentzian Kenmotsu manifold with the semi-symmetric metric.

Kaynakça

  • Bishop RL, O'Neill B. Manifolds of negative curvature. Trans. Amer. Math. Soc.1969. 145: 1-50.
  • Duggal KL. Speace time manifold and contact Manifolds. Int. J. of math. And mathematical science. 1990. 13: 545-554.
  • Friedmann A, Schouten JA. Uber die Geometric der halbsymmetrischen Ubertragung. Math. Z. 1924. 21: 211-223.
  • Kenmotsu K. A class of almost contact Riemannian manifolds. TohokuMath. J. II Ser. 1972. 24: 93-103.
  • Kobayashi M. Semi-invariant submanifolds of a certain class of almost contact manifolds. Tensor N. S. 1986. 43: 28-36.
  • Nirmala SA, Mangala RC. A semi-symmetric non-metric connection on Riemannian manifold. Indiana J. Pure Appl. Math. 1992. 23: 399-40.
  • Roşca R. On Lorentzian Kenmotsu manifolds. Atti Accad. Peloritana Pericolanti, Cl. Sci. 1991. 69: 15-30.
  • Sarı R, Vanlı A. Slant submanifolds of a Lorentz Kenmotsu manifold. Mediterr. J. Math. 2019. 16:129.
  • Sarı R. Some Properties Curvture of Lorentzian Kenmotsu Manifolds. Applied Mathematics and Nonlinear Sciences. 2020. 5(1): 283–292.
  • Sinha BB, Srivastava AK. Semi-invariant submanifolds of a Kenmotsu manifold with constant φ-holomorphic sectional curvature. Indian J. pure appl. Math. 1992. 23(11): 783-789.
  • Takahashi T. Sasakian manifold with pseudo-Riemannian metric. Tohoku Math. J. 1969. 21(2): 271-290.
  • Turgut Vanli A, Sari R. On semi invariant submanifolds of generalized Kenmotsu manifolds with semi symmetric metric connection. Acta Universitatis Apulensis. 2015. 43: 79-92.
  • Yano K. On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl. 1970. 15: 1579-1586.

Semi-Invariant Submanifolds A Lorentzian Kenmotsu Manifold With Semi-Symmetric Metric Connection

Yıl 2021, Cilt: 2 Sayı: 1, 36 - 42, 09.07.2021

Öz

In this paper, semi-invariant submanifolds of a lorentzian Kenmotsu manifold endowed with a semi-symmetric metric connection are studied. Necessary and sufficient conditions are given on a submanifold of a lorentzian Kenmotsu manifold to be semi-invarinat submanifold with the semi-symmetric metric connection. Moreover, the parallel conditions of the distribution on semi-invariant submanifolds of a lorentzian Kenmotsu manifold with the semi-symmetric metric.

Kaynakça

  • Bishop RL, O'Neill B. Manifolds of negative curvature. Trans. Amer. Math. Soc.1969. 145: 1-50.
  • Duggal KL. Speace time manifold and contact Manifolds. Int. J. of math. And mathematical science. 1990. 13: 545-554.
  • Friedmann A, Schouten JA. Uber die Geometric der halbsymmetrischen Ubertragung. Math. Z. 1924. 21: 211-223.
  • Kenmotsu K. A class of almost contact Riemannian manifolds. TohokuMath. J. II Ser. 1972. 24: 93-103.
  • Kobayashi M. Semi-invariant submanifolds of a certain class of almost contact manifolds. Tensor N. S. 1986. 43: 28-36.
  • Nirmala SA, Mangala RC. A semi-symmetric non-metric connection on Riemannian manifold. Indiana J. Pure Appl. Math. 1992. 23: 399-40.
  • Roşca R. On Lorentzian Kenmotsu manifolds. Atti Accad. Peloritana Pericolanti, Cl. Sci. 1991. 69: 15-30.
  • Sarı R, Vanlı A. Slant submanifolds of a Lorentz Kenmotsu manifold. Mediterr. J. Math. 2019. 16:129.
  • Sarı R. Some Properties Curvture of Lorentzian Kenmotsu Manifolds. Applied Mathematics and Nonlinear Sciences. 2020. 5(1): 283–292.
  • Sinha BB, Srivastava AK. Semi-invariant submanifolds of a Kenmotsu manifold with constant φ-holomorphic sectional curvature. Indian J. pure appl. Math. 1992. 23(11): 783-789.
  • Takahashi T. Sasakian manifold with pseudo-Riemannian metric. Tohoku Math. J. 1969. 21(2): 271-290.
  • Turgut Vanli A, Sari R. On semi invariant submanifolds of generalized Kenmotsu manifolds with semi symmetric metric connection. Acta Universitatis Apulensis. 2015. 43: 79-92.
  • Yano K. On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl. 1970. 15: 1579-1586.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Ramazan Sarı Bu kişi benim

İnan Ünal

Yayımlanma Tarihi 9 Temmuz 2021
Gönderilme Tarihi 21 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 1

Kaynak Göster

Vancouver Sarı R, Ünal İ. Semi-Invariant Submanifolds A Lorentzian Kenmotsu Manifold With Semi-Symmetric Metric Connection. BUTS. 2021;2(1):36-42.
Bu dergi; Bingöl Üniversitesi Teknik Bilimler dergi ekibi tarafından hazırlanmakta ve yayınlanmaktadır.