Derleme
BibTex RIS Kaynak Göster

Elektrikli Araçlarda Kullanılan Lityum İyon Bataryaların Hava, Sıvı Ve Isı Borulu Termal Yönetim Sistemlerinin İncelenmesi

Yıl 2023, , 36 - 54, 31.12.2023
https://doi.org/10.55024/buyasambid.1339607

Öz

Elektrikli araçlarda kullanılan ve direkt olarak aracın performansına etkileyen bataryalar, kimyasal enerjiyi elektrik enerjisine dönüştürerek elektrik motorunun dönmesini sağlayan en önemli parçadır. Bataryalar içerisinde lityum iyon bataryalar, diğer bataryalara göre yaygın olarak kullanılmasının sebebi, enerji yoğunluğunun, geri dönüştürülebilirliğinin ve özgül gücünün yüksek, ağırlığının ve kendi kendine deşarj oranlarının düşük, daha uzun çevrim ömrü ve daha fazla enerji depolanabilirliğe sahip olmasıdır. Lityum iyon batarya hücrelerinin güvenliği, performansı ve dayanıklılığı sıcaklığa karşı hassas olduğundan optimum çalışma sıcaklığı 20 °C ile 40 °C arasındadır. Optimum çalışma sıcaklığının üzerindeki sıcaklıklarda batarya hücresinin aşırı ısınması termal kaçaklara, bataryalarda yanmalara ve hatta patlamalara sebep olmaktadır. Bataryaların aşırı ısınmasını engellemek amacıyla batarya hücresinin sıcaklığının homojen olarak dağılması, çalışma sıcaklığının öngörülen aralıkta tutulması ve istenilen sıcaklığın sağlanması batarya termal yönetimi için en önemli parametrelerdir. Bu çalışma lityum iyon bataryaların kullanılmasında en çok karşılaşılan sorunlardan biri batarya hücresinin sıcaklığının homojen dağılması ve optimum çalışma sıcaklığı aralığında tutulmasına yönelik yapılan batarya termal yönetim sistemlerine genel bir bakış açısı sunmaktadır. Bu makale son yıllarda kullanılan hava soğutmalı, sıvı soğutmalı ve ısı borulu soğutmalı yöntemleri tanıtır, avantaj ve dezavantajları tartışarak karşılaştırır.

Kaynakça

  • Akinlabi, A. A. H., & Solyali, D. (2020). Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review. Renewable and Sustainable Energy Reviews, 125, 109815. https://doi.org/10.1016/j.rser.2020.109815
  • Angin, D. (t.y.). ASPİR (Charthamus tinctorius L.) TOHUMU PRES KÜSPESİNİN ALTERNATİF ENERJİ KAYNAĞI OLARAK DEĞERLENDİRİLMESİ.
  • Bai, F., Chen, M., Song, W., Li, Y., Feng, Z., & Li, Y. (2019). Thermal performance of pouch Lithium-ion battery module cooled by phase change materials. Energy Procedia, 158, 3682-3689. https://doi.org/10.1016/j.egypro.2019.01.891
  • Baran, V., Mühlbauer, M. J., Schulz, M., Pfanzelt, J., & Senyshyn, A. (2019). In operando studies of rotating prismatic Li-ion batteries using monochromatic wide-angle neutron diffraction. Journal of Energy Storage, 24, 100772. https://doi.org/10.1016/j.est.2019.100772
  • Bernardi, D., Pawlikowski, E., & Newman, J. (1985). A General Energy Balance for Battery Systems. Journal of The Electrochemical Society, 132(1), 5-12. https://doi.org/10.1149/1.2113792
  • Front Matter. (2021). Içinde Uncertainties in Modern Power Systems (s. iii). Elsevier. https://doi.org/10.1016/B978-0-12-820491-7.01001-X
  • Gas emission. (t.y.). Geliş tarihi 10 Haziran 2023, gönderen https://www.wri.org/data/world-greenhouse-gas-emissions-2019
  • Hakeem, A. A. A., & Solyali, D. (2020). Empirical Thermal Performance Investigation of a Compact Lithium Ion Battery Module under Forced Convection Cooling. Applied Sciences, 10(11), 3732. https://doi.org/10.3390/app10113732
  • Han, X., Ouyang, M., Lu, L., & Li, J. (2014). A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation. Journal of Power Sources, 268, 658-669. https://doi.org/10.1016/j.jpowsour.2014.06.111
  • He, T., Zhang, T., Wang, Z., & Cai, Q. (2022). A comprehensive numerical study on electrochemical-thermal models of a cylindrical lithium-ion battery during discharge process. Applied Energy, 313, 118797. https://doi.org/10.1016/j.apenergy.2022.118797
  • Huang, Y., Lu, Y., Huang, R., Chen, J., Chen, F., Liu, Z., Yu, X., & Roskilly, A. P. (2017). Study on the thermal interaction and heat dissipation of cylindrical Lithium-Ion Battery cells. Energy Procedia, 142, 4029-4036. https://doi.org/10.1016/j.egypro.2017.12.321
  • Jaguemont, J., Boulon, L., & Dubé, Y. (2016). A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Applied Energy, 164, 99-114. https://doi.org/10.1016/j.apenergy.2015.11.034
  • Kalkan, O. (t.y.). ELEKTRİKLİ ARAÇ BATARYALARININ FARKLI METODLARLA SOĞUTULMASININ DENEYSEL VE SAYISAL ANALİZİ.
  • Karatepe, Y., Neşe, S. V., Keçebaş, A., & Yumurtacı, M. (2012). The levels of awareness about the renewable energy sources of university students in Turkey. Renewable Energy, 44, 174-179. https://doi.org/10.1016/j.renene.2012.01.099
  • Kartal, M. T. (2022). The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries. Renewable Energy, 184, 871-880. https://doi.org/10.1016/j.renene.2021.12.022
  • Khoshvaght-Aliabadi, M., Abbaszadeh, A., Salimi, A., & Salehi, N. (2023). Structural modifications of sinusoidal wavy minichannels cold plates applied in liquid cooling of lithium-ion batteries. Journal of Energy Storage, 57, 106208. https://doi.org/10.1016/j.est.2022.106208
  • Li, W., Chen, S., Peng, X., Xiao, M., Gao, L., Garg, A., & Bao, N. (2019). A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery Module for Electric Vehicles. Engineering, 5(4), 795-802. https://doi.org/10.1016/j.eng.2019.07.005
  • Li, X., Wang, Z., & Zhang, L. (2019). Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles. Energy, 174, 33-44. https://doi.org/10.1016/j.energy.2019.02.147
  • Ling, Z., Zhang, Z., Shi, G., Fang, X., Wang, L., Gao, X., Fang, Y., Xu, T., Wang, S., & Liu, X. (2014). Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renewable and Sustainable Energy Reviews, 31, 427-438. https://doi.org/10.1016/j.rser.2013.12.017
  • Lyu, Y., Siddique, A. R. M., Majid, S. H., Biglarbegian, M., Gadsden, S. A., & Mahmud, S. (2019). Electric vehicle battery thermal management system with thermoelectric cooling. Energy Reports, 5, 822-827. https://doi.org/10.1016/j.egyr.2019.06.016
  • Malik, M., Dincer, I., Rosen, M. A., Mathew, M., & Fowler, M. (2018). Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling. Applied Thermal Engineering, 129, 472-481. https://doi.org/10.1016/j.applthermaleng.2017.10.029
  • Michaelides, E. E. (2012). Alternative Energy Sources. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-20951-2
  • Na, X., Kang, H., Wang, T., & Wang, Y. (2018). Reverse layered air flow for Li-ion battery thermal management. Applied Thermal Engineering, 143, 257-262. https://doi.org/10.1016/j.applthermaleng.2018.07.080
  • Panchal, S., Khasow, R., Dincer, I., Agelin-Chaab, M., Fraser, R., & Fowler, M. (2017). Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Applied Thermal Engineering, 122, 80-90. https://doi.org/10.1016/j.applthermaleng.2017.05.010
  • Qian, Z., Li, Y., & Rao, Z. (2016). Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management, 126, 622-631. https://doi.org/10.1016/j.enconman.2016.08.063
  • Rao, Z., Huo, Y., & Liu, X. (2014). Experimental study of an OHP-cooled thermal management system for electric vehicle power battery. Experimental Thermal and Fluid Science, 57, 20-26. https://doi.org/10.1016/j.expthermflusci.2014.03.017
  • Rao, Z., & Wang, S. (2011). A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 15(9), 4554-4571. https://doi.org/10.1016/j.rser.2011.07.096
  • Statistical Review of World Energy 2022. (2022).
  • Suri, G., & Onori, S. (2016). A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries. Energy, 96, 644-653. https://doi.org/10.1016/j.energy.2015.11.075
  • Şenel, M. C. (t.y.). DÜNYADA VE TÜRKİYE’DE RÜZGÂR ENERJİSİ DURUMU-GENEL DEĞERLENDİRME.
  • Thakur, A. K., Prabakaran, R., Elkadeem, M. R., Sharshir, S. W., Arıcı, M., Wang, C., Zhao, W., Hwang, J.-Y., & Saidur, R. (2020). A state of art review and future viewpoint on advance cooling techniques for Lithium–ion battery system of electric vehicles. Journal of Energy Storage, 32, 101771. https://doi.org/10.1016/j.est.2020.101771
  • Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., & Chen, C. (2012). Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 208, 210-224. https://doi.org/10.1016/j.jpowsour.2012.02.038
  • Wu, C., Wu, L., Qiu, C., Yang, J., Yuan, X., Cai, Y., & Shi, H. (2023). Experimental and numerical studies on lithium-ion battery heat generation behaviors. Energy Reports, 9, 5064-5074. https://doi.org/10.1016/j.egyr.2023.04.021
  • Wu, W., Wu, W., & Wang, S. (2018). Thermal management optimization of a prismatic battery with shape-stabilized phase change material. International Journal of Heat and Mass Transfer, 121, 967-977. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.062
  • Xie, Y., He, X., Hu, X., Li, W., Zhang, Y., Liu, B., & Sun, Y. (2020). An improved resistance-based thermal model for a pouch lithium-ion battery considering heat generation of posts. Applied Thermal Engineering, 164, 114455. https://doi.org/10.1016/j.applthermaleng.2019.114455
  • Xu, J., Lan, C., Qiao, Y., & Ma, Y. (2017). Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Applied Thermal Engineering, 110, 883-890. https://doi.org/10.1016/j.applthermaleng.2016.08.151
  • Yan, J., Wang, Q., Li, K., & Sun, J. (2016). Numerical study on the thermal performance of a composite board in battery thermal management system. Applied Thermal Engineering, 106, 131-140. https://doi.org/10.1016/j.applthermaleng.2016.05.187
  • Yang, T., Yang, N., Zhang, X., & Li, G. (2016). Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack. International Journal of Thermal Sciences, 108, 132-144. https://doi.org/10.1016/j.ijthermalsci.2016.05.009
  • Ye, Y., Saw, L. H., Shi, Y., & Tay, A. A. O. (2015). Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Applied Thermal Engineering, 86, 281-291. https://doi.org/10.1016/j.applthermaleng.2015.04.066
  • Zhang, W., Qiu, J., Yin, X., & Wang, D. (2020). A novel heat pipe assisted separation type battery thermal management system based on phase change material. Applied Thermal Engineering, 165, 114571. https://doi.org/10.1016/j.applthermaleng.2019.114571
  • Zhou, H., Zhou, F., Xu, L., Kong, J., & QingxinYang. (2019). Thermal performance of cylindrical Lithium-ion battery thermal management system based on air distribution pipe. International Journal of Heat and Mass Transfer, 131, 984-998. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.116
  • Zhou, Z., Lv, Y., Qu, J., Sun, Q., & Grachev, D. (2021). Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling. Applied Thermal Engineering, 196, 117300. https://doi.org/10.1016/j.applthermaleng.2021.117300
  • Zhu, R., Duan, B., Zhang, C., & Gong, S. (2019). Accurate lithium-ion battery modeling with inverse repeat binary sequence for electric vehicle applications. Applied Energy, 251, 113339. https://doi.org/10.1016/j.apenergy.2019.113339
  • Zhu, W. H., Zhu, Y., & Tatarchuk, B. J. (2014). Self-discharge characteristics and performance degradation of Ni-MH batteries for storage applications. International Journal of Hydrogen Energy, 39(34), 19789-19798. https://doi.org/10.1016/j.ijhydene.2014.09.113

Investigation Of Air, Liquid And Heat Pipe Thermal Management Systems Of Lithium-Ion Batteries Used In Electric Vehicles

Yıl 2023, , 36 - 54, 31.12.2023
https://doi.org/10.55024/buyasambid.1339607

Öz

Batteries used in electric vehicles and directly affecting performance are essential parts that enable the electric motor to move by converting chemical energy into electrical energy. Lithium-ion batteries are widely used compared to other rechargeable batteries.; They have high energy density, recyclability and specific power, low weight and self-discharge rates, longer cycle life and more energy storage capacity. While power is generated from the anode and cathode electrodes in the batteries by the movements of the anode electrodes, heat energy is also generated. In lithium-ion batteries, reversible heat production occurs with entropy change, and irreversible heat production occurs with electrical resistance. Since the safety, performance and durability of lithium-ion battery cells are sensitive to temperature, the optimum operating temperature is between 20 °C and 40 °C. Excessive heat production of batteries causes temperatures above the optimum operating temperature and causes the battery cell to overheat. Excessive temperature increases due to heat production cause thermal leaks, burns and even battery explosions. In order to prevent batteries from overheating, distributing the temperature of the battery cell homogeneously, keeping the operating temperature within the prescribed range and ensuring the desired temperature are the most critical parameters for battery thermal management. In this study, air cooling, liquid cooling and heat pipe cooling methods used in the thermal management of lithium-ion batteries were examined. As a result of the examination, the advantages and disadvantages of the cooling methods used are compared.

Kaynakça

  • Akinlabi, A. A. H., & Solyali, D. (2020). Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review. Renewable and Sustainable Energy Reviews, 125, 109815. https://doi.org/10.1016/j.rser.2020.109815
  • Angin, D. (t.y.). ASPİR (Charthamus tinctorius L.) TOHUMU PRES KÜSPESİNİN ALTERNATİF ENERJİ KAYNAĞI OLARAK DEĞERLENDİRİLMESİ.
  • Bai, F., Chen, M., Song, W., Li, Y., Feng, Z., & Li, Y. (2019). Thermal performance of pouch Lithium-ion battery module cooled by phase change materials. Energy Procedia, 158, 3682-3689. https://doi.org/10.1016/j.egypro.2019.01.891
  • Baran, V., Mühlbauer, M. J., Schulz, M., Pfanzelt, J., & Senyshyn, A. (2019). In operando studies of rotating prismatic Li-ion batteries using monochromatic wide-angle neutron diffraction. Journal of Energy Storage, 24, 100772. https://doi.org/10.1016/j.est.2019.100772
  • Bernardi, D., Pawlikowski, E., & Newman, J. (1985). A General Energy Balance for Battery Systems. Journal of The Electrochemical Society, 132(1), 5-12. https://doi.org/10.1149/1.2113792
  • Front Matter. (2021). Içinde Uncertainties in Modern Power Systems (s. iii). Elsevier. https://doi.org/10.1016/B978-0-12-820491-7.01001-X
  • Gas emission. (t.y.). Geliş tarihi 10 Haziran 2023, gönderen https://www.wri.org/data/world-greenhouse-gas-emissions-2019
  • Hakeem, A. A. A., & Solyali, D. (2020). Empirical Thermal Performance Investigation of a Compact Lithium Ion Battery Module under Forced Convection Cooling. Applied Sciences, 10(11), 3732. https://doi.org/10.3390/app10113732
  • Han, X., Ouyang, M., Lu, L., & Li, J. (2014). A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation. Journal of Power Sources, 268, 658-669. https://doi.org/10.1016/j.jpowsour.2014.06.111
  • He, T., Zhang, T., Wang, Z., & Cai, Q. (2022). A comprehensive numerical study on electrochemical-thermal models of a cylindrical lithium-ion battery during discharge process. Applied Energy, 313, 118797. https://doi.org/10.1016/j.apenergy.2022.118797
  • Huang, Y., Lu, Y., Huang, R., Chen, J., Chen, F., Liu, Z., Yu, X., & Roskilly, A. P. (2017). Study on the thermal interaction and heat dissipation of cylindrical Lithium-Ion Battery cells. Energy Procedia, 142, 4029-4036. https://doi.org/10.1016/j.egypro.2017.12.321
  • Jaguemont, J., Boulon, L., & Dubé, Y. (2016). A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Applied Energy, 164, 99-114. https://doi.org/10.1016/j.apenergy.2015.11.034
  • Kalkan, O. (t.y.). ELEKTRİKLİ ARAÇ BATARYALARININ FARKLI METODLARLA SOĞUTULMASININ DENEYSEL VE SAYISAL ANALİZİ.
  • Karatepe, Y., Neşe, S. V., Keçebaş, A., & Yumurtacı, M. (2012). The levels of awareness about the renewable energy sources of university students in Turkey. Renewable Energy, 44, 174-179. https://doi.org/10.1016/j.renene.2012.01.099
  • Kartal, M. T. (2022). The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries. Renewable Energy, 184, 871-880. https://doi.org/10.1016/j.renene.2021.12.022
  • Khoshvaght-Aliabadi, M., Abbaszadeh, A., Salimi, A., & Salehi, N. (2023). Structural modifications of sinusoidal wavy minichannels cold plates applied in liquid cooling of lithium-ion batteries. Journal of Energy Storage, 57, 106208. https://doi.org/10.1016/j.est.2022.106208
  • Li, W., Chen, S., Peng, X., Xiao, M., Gao, L., Garg, A., & Bao, N. (2019). A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery Module for Electric Vehicles. Engineering, 5(4), 795-802. https://doi.org/10.1016/j.eng.2019.07.005
  • Li, X., Wang, Z., & Zhang, L. (2019). Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles. Energy, 174, 33-44. https://doi.org/10.1016/j.energy.2019.02.147
  • Ling, Z., Zhang, Z., Shi, G., Fang, X., Wang, L., Gao, X., Fang, Y., Xu, T., Wang, S., & Liu, X. (2014). Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renewable and Sustainable Energy Reviews, 31, 427-438. https://doi.org/10.1016/j.rser.2013.12.017
  • Lyu, Y., Siddique, A. R. M., Majid, S. H., Biglarbegian, M., Gadsden, S. A., & Mahmud, S. (2019). Electric vehicle battery thermal management system with thermoelectric cooling. Energy Reports, 5, 822-827. https://doi.org/10.1016/j.egyr.2019.06.016
  • Malik, M., Dincer, I., Rosen, M. A., Mathew, M., & Fowler, M. (2018). Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling. Applied Thermal Engineering, 129, 472-481. https://doi.org/10.1016/j.applthermaleng.2017.10.029
  • Michaelides, E. E. (2012). Alternative Energy Sources. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-20951-2
  • Na, X., Kang, H., Wang, T., & Wang, Y. (2018). Reverse layered air flow for Li-ion battery thermal management. Applied Thermal Engineering, 143, 257-262. https://doi.org/10.1016/j.applthermaleng.2018.07.080
  • Panchal, S., Khasow, R., Dincer, I., Agelin-Chaab, M., Fraser, R., & Fowler, M. (2017). Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Applied Thermal Engineering, 122, 80-90. https://doi.org/10.1016/j.applthermaleng.2017.05.010
  • Qian, Z., Li, Y., & Rao, Z. (2016). Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management, 126, 622-631. https://doi.org/10.1016/j.enconman.2016.08.063
  • Rao, Z., Huo, Y., & Liu, X. (2014). Experimental study of an OHP-cooled thermal management system for electric vehicle power battery. Experimental Thermal and Fluid Science, 57, 20-26. https://doi.org/10.1016/j.expthermflusci.2014.03.017
  • Rao, Z., & Wang, S. (2011). A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 15(9), 4554-4571. https://doi.org/10.1016/j.rser.2011.07.096
  • Statistical Review of World Energy 2022. (2022).
  • Suri, G., & Onori, S. (2016). A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries. Energy, 96, 644-653. https://doi.org/10.1016/j.energy.2015.11.075
  • Şenel, M. C. (t.y.). DÜNYADA VE TÜRKİYE’DE RÜZGÂR ENERJİSİ DURUMU-GENEL DEĞERLENDİRME.
  • Thakur, A. K., Prabakaran, R., Elkadeem, M. R., Sharshir, S. W., Arıcı, M., Wang, C., Zhao, W., Hwang, J.-Y., & Saidur, R. (2020). A state of art review and future viewpoint on advance cooling techniques for Lithium–ion battery system of electric vehicles. Journal of Energy Storage, 32, 101771. https://doi.org/10.1016/j.est.2020.101771
  • Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., & Chen, C. (2012). Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 208, 210-224. https://doi.org/10.1016/j.jpowsour.2012.02.038
  • Wu, C., Wu, L., Qiu, C., Yang, J., Yuan, X., Cai, Y., & Shi, H. (2023). Experimental and numerical studies on lithium-ion battery heat generation behaviors. Energy Reports, 9, 5064-5074. https://doi.org/10.1016/j.egyr.2023.04.021
  • Wu, W., Wu, W., & Wang, S. (2018). Thermal management optimization of a prismatic battery with shape-stabilized phase change material. International Journal of Heat and Mass Transfer, 121, 967-977. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.062
  • Xie, Y., He, X., Hu, X., Li, W., Zhang, Y., Liu, B., & Sun, Y. (2020). An improved resistance-based thermal model for a pouch lithium-ion battery considering heat generation of posts. Applied Thermal Engineering, 164, 114455. https://doi.org/10.1016/j.applthermaleng.2019.114455
  • Xu, J., Lan, C., Qiao, Y., & Ma, Y. (2017). Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Applied Thermal Engineering, 110, 883-890. https://doi.org/10.1016/j.applthermaleng.2016.08.151
  • Yan, J., Wang, Q., Li, K., & Sun, J. (2016). Numerical study on the thermal performance of a composite board in battery thermal management system. Applied Thermal Engineering, 106, 131-140. https://doi.org/10.1016/j.applthermaleng.2016.05.187
  • Yang, T., Yang, N., Zhang, X., & Li, G. (2016). Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack. International Journal of Thermal Sciences, 108, 132-144. https://doi.org/10.1016/j.ijthermalsci.2016.05.009
  • Ye, Y., Saw, L. H., Shi, Y., & Tay, A. A. O. (2015). Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Applied Thermal Engineering, 86, 281-291. https://doi.org/10.1016/j.applthermaleng.2015.04.066
  • Zhang, W., Qiu, J., Yin, X., & Wang, D. (2020). A novel heat pipe assisted separation type battery thermal management system based on phase change material. Applied Thermal Engineering, 165, 114571. https://doi.org/10.1016/j.applthermaleng.2019.114571
  • Zhou, H., Zhou, F., Xu, L., Kong, J., & QingxinYang. (2019). Thermal performance of cylindrical Lithium-ion battery thermal management system based on air distribution pipe. International Journal of Heat and Mass Transfer, 131, 984-998. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.116
  • Zhou, Z., Lv, Y., Qu, J., Sun, Q., & Grachev, D. (2021). Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling. Applied Thermal Engineering, 196, 117300. https://doi.org/10.1016/j.applthermaleng.2021.117300
  • Zhu, R., Duan, B., Zhang, C., & Gong, S. (2019). Accurate lithium-ion battery modeling with inverse repeat binary sequence for electric vehicle applications. Applied Energy, 251, 113339. https://doi.org/10.1016/j.apenergy.2019.113339
  • Zhu, W. H., Zhu, Y., & Tatarchuk, B. J. (2014). Self-discharge characteristics and performance degradation of Ni-MH batteries for storage applications. International Journal of Hydrogen Energy, 39(34), 19789-19798. https://doi.org/10.1016/j.ijhydene.2014.09.113
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Ferhat Akkuş 0000-0002-4587-7039

Mehmet Zerrakki Işık 0000-0001-9753-6458

Erken Görünüm Tarihi 26 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 8 Ağustos 2023
Kabul Tarihi 7 Kasım 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Akkuş, F., & Işık, M. Z. (2023). Elektrikli Araçlarda Kullanılan Lityum İyon Bataryaların Hava, Sıvı Ve Isı Borulu Termal Yönetim Sistemlerinin İncelenmesi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 13(2), 36-54. https://doi.org/10.55024/buyasambid.1339607