Araştırma Makalesi
BibTex RIS Kaynak Göster

Potentiometric Determination of Potassium in Environmental Samples by Flow Injection Analysis with Ion Selective Electrode

Yıl 2020, Cilt: 10 Sayı: 2, 136 - 150, 31.12.2020

Öz

In this study, K+-selective potentiometric PVC-membrane electrode was developed with the commercially purchased ionophore substance to be used to determine potassium concentration in water samples. The potentiometric performance characteristics of the electrode were determined and their suitability for environmental analysis was investigated. For the measurements taken with the K+-selective electrode, a potential difference of 50,2±1,4 mV was observed for each 10 fold concentration change against the main ion solution. The electrode showed linear behavior against the main ion solution in the concentration range of 1x10-5-1x10-1 mol L-1, and it was found to be highly selective against the main ion besides the alkali and alkaline earth metal ions. Micro dead volume flow cells were prepared in the laboratory and the sodium determination was made in environmental water samples by using these electrodes developed as a detector in the flow injection analysis (FIA) system (as the mobile phase 5x10-5 M CaSO4 and MgSO4; 1x10-6 M NaCl, KNO3, LiNO3 and NH4Cl solution mixture, flow rate: 1,0 mL min-1 and injection volume 20 μL). In addition, potassium determination in water samples was done by standard addition method and all measurements were compared with potentiometric results. The results show that the K+-selective micro-potentiometric PVC-membrane electrode can effectively be used for routine determination of potassium ion in water in environmental samples.

Kaynakça

  • Alysson, V.F.S., Daniel, A.S., Maurício, D., Waldemar, P.O.F., Tatiana D.S.P., Marcone, A.L. de O., Gustavo, A.M. (2018). Dual-opposite end multiple injection method applied to sequentialdetermination of Na+, K+, Ca+2, Mg+2 ions and free and total glycerol inbiodiesel by capillary zone electrophoresis. J. Chromatogr. A, 1570,148–154.
  • Amini, M.K., Ghaedi, M., Rafi, A., Habibi, M.H. Zohory, M.M. (2003). Iodide selective electrodes based on bis(2-mercaptobenzothiazolato) mercury(II) and bis(4-chlorothiophenolato) mercury(II) carriers. Sensors, 3(11): 509-523.
  • Belitz, H.D., Grosch, W. Schieberle, P. (2009). Food Chemistry, Springer-Verlag, Heildelberg, Germany, 4th edn, p. 1070.
  • Captian-Vallvey, L.F. Fernandez-Ramos, M.D. (2003). Characterization of a transparent optical test strip for quantification of water hardness. Analytica Chimica Acta, 481: 139-148.
  • Cardwell, T.J., Cattrall, R.W., Hauser, P.C. Hamilton, I.C. (1988). A multi-ion sensor cell and dataacquisition system for flow injection analysis. Anal. Chim. Acta, 214: 359-366.
  • Day, C., Søpstad,S., Ma,H., Jiang, C., Nathan, A., Elliott, S.R., Frankle,F.E.K., Hutter, T. (2018). Impedance-based sensor for potassium ions. Analytica Chimica Acta, 1034: 39-45.
  • Dominic, B., Franka E-R., Sarah, V.W., Tobias, H. Mathias, U. (2018). Potassium-sensitive poly(N-isopropylacrylamide)-based hydrogels for sensor applications. Polym. Chem., 9: 3600–3614.
  • Ethke, P.C.B. Ansky, S.H.J. (2008). Effects of boiling and leaching on the content of potassium and other minerals in potatoes. J. Food Sci., 75(5): 80-85.
  • Flavio, O.L., Daniel, M.S., Angerson, N.N. Cassiana, S.N. (2018). Feasibility of using laser induced breakdown spectroscopy for quantitative measurement of calcium, magnesium, potassium and sodium in meat. J. Anal. At. Spectrom., 33: 1322–1329.
  • Gallardo, J.S., Alegret M.A.D., Roman, R., Munoz, P.R., Hernandez, L., Leija, L. del Valle, M. (2003). Determination of ammonium ion employing an electronic tongue based on potentiometric sensors. Analytical Letter, 36(14): 2893-2908.
  • Gismera, M.J., Arias, S., Sevilla, M.T. Procopio, J.R. (2009). Simultaneous quantification of heavy metals using a solid state potentiometric sensor array. Electroanalysis, 21: 979-987.
  • Gutierrez, M., Alegret, S., Caceres, R., Casadesus, J., Marfa, O. del Valle, M. (2008). Nutrient solution monitoring in greenhouse cultivation employing a potentiometric electronic tongue. J. Agric. Food Chem., 56: 1810-1817.
  • Hassan, S.S., Sayour, H.E. Al-Mehrezi, S.S. (2007). A novel planar miniaturized potentiometric sensor for flow injection analysis of nitrates in wastewaters, fertilizers and pharmaceuticals. Anal. Chim. Acta, 581: 13-18.
  • Kabaa, E.A., Abdulateef, S.A., Ahmed, N.M., Hassan, Z., Sabah, F.A. (2019). A novel porous silicon multi-ions selective electrode based extended gate field effect transistor for sodium, potassium, calcium, and magnesium sensor. Applied Physics a-Materials Science & Processing, 125(11): 753-763.
  • Kopytin, A.V., German, K.E., Zhizhin, K.Y., Zhukov, A.F., Ilyin, E.G., Zhukova,T.V. (2016). Ion selective potentiometric sensor based on single crystalline KTiOPO4 for determination of K+-ions. Proceedings of the 30th Anniversary Eurosensors Conference-Eurosensors. 168: 440-443.
  • Lukov, S. Kounaves, S. (2005). Analyses of simulated martian regolith using an array of ion selective electrodes, Electroanalyses, 17: 15-16.
  • Megahed, A.A, Hiew M.W.H., Grünberg, W., Constable P.D. (2016). Evaluation of 2 portable ion-selective electrode meters for determining whole blood, plasma, urine, milk, and abomasal fluid potassium concentrations in dairy cattle. Journal of Dairy Science, 99(9): 7330-7343.
  • Moreno, L., Merlos, A.Abramova, N. (2006). Multi-sensor array used as an “electronic tonque” for mineral water analyses, Sensors and Actuators B, 116: 130-134.
  • Paczosa-Bator, B., Cabaj, L., Pięk, M., Piech, R. & Kubiak, W.W. (2015). Carbon-supported platinum nanoparticle solid-state ion selective electrodes for the determination of potassium. Analytical Letters, 48(17): 2773-2785.
  • Rius, A. Callao, M. (2001). Application of time series models to the monitoring of a sensor array analytical system, Trends in Analytical Chemistry, 20: 168-177.
  • Saurina, J., Lopez-Aviles, E., Le, M. Santiago, A. (2002). Determination of calcium and total hardness in natural waters using a potentiometric sensor array, Analytica Chimica Acta, 464: 89–98.
  • Shamsipur, M., Mizani, F., Mousavi, M.F., Alizadeh, N., Alizadeh, K., Eshghi, H. Karami, H. (2007). A novel flow injection potentiometric graphite coated ionselective electrode for the low level determination of uranyl ion. Anal. Chim. Acta, 589: 22-32.
  • Siswanta, D.; Wulandari, Y.D., Jumina, J. (2016). Synthesis of poly(benzyl-eugenol) and its application as an ionophore for a potassium ion-selective electrode. Eurasian Journal of Analytical Chemistry, 11(3): 115-125.
  • Soetan, K.O., Olaiya, C.O. Oyewole, O.E. (2010). Importance of mineral elements for humans, domestic animals and plants. Afr J. Food Sci., 4(5): 200-222.
  • Son, S.G., Park, H.J., Kim, Y.K., Cho, H-S., Choi, B.G. (2019). Fabrication of low-cost and flexible potassium ion sensors based on screen printing and their electrochemical characteristics. Applied Chemistry for Engineering, 30(6): 737-741.
  • Tran, T.N.T., Qiu, S.; Chung, H-J. (2018). Potassium ion selective electrode using polyaniline and matrix-supported ion-selective PVC membrane. Ieee Sensors Journal, 18(22): 9081-9087. Trefz, F. M.; Lorenz, I.; Constable, P.D. (2018). Evaluation of a portable ion-selective electrode meter for measuring potassium concentrations in whole blood and plasma of calves. Veterinary Journal, 238: 10-14.
  • Yang, C., Song, C-Q., Zhang, Y-Q., Qu, Y. (2019). Determination of concentration of serum potassium ion using all-solid-state potassium ion selective electrode based on two-dimensional manganese dioxide nanosheet. Chinese Journal of Analytical Chemistry, 47(5): 765-771.
  • Xu, J., Li, F., Tian, C., Song, Z., An, Q., Wang, J., Han, D., Niu, L. (2019). Tubular Au-TTF solid contact layer synthesized in a microfluidic device improving electrochemical behaviors of paper-based potassium potentiometric sensors, 322: 134683
  • Yang, X., Hibberta, D.B. Alexanderb, P.W. (1998). Flow injection potentiometry by poly(vinyl chloride)membrane electrodes with substituted azacrown ionophores for the determination of lead(II) and mercury(II) ions. Anal. Chim. Acta, 372: 387-398.
  • Zeng, X.; Qin, W. (2017). A solid-contact potassium-selective electrode with MoO2 microspheres as ion-to-electron transducer. Analytica Chimica Acta, 982: 72-77.

Çevre Numunelerindeki Potasyumun Akış Enjeksiyon Analiz Yöntemi ile İyon Seçici Elektrot Kullanarak Potansiyometrik Tayini

Yıl 2020, Cilt: 10 Sayı: 2, 136 - 150, 31.12.2020

Öz

Bu çalışmada, su numunelerindeki potasyum derişiminin belirlenmesinde kullanılmak üzere ticari olarak satın alınan iyonofor madde ile K+-seçici mikro potansiyometrik PVC-membran elektrot geliştirildi. Elektrotun potansiyometrik performans karakteristikleri belirlendi ve çevresel analizlere uygunluğu araştırıldı. Hazırlanan K+-seçici elektrot ile alınan ölçümlerde ana iyon çözeltisine karşı her 10 kat konsantrasyon değişimi için 50.2±1.4 mV potansiyel farkı gözlendi. Elektrot, 1x10-1-1x10-5 mol L-1 derişim aralığında ana iyon çözeltisine karşı doğrusal davranış sergilediği, alkali ve toprak alkali metal iyonlarının yanında ana iyona karşı oldukça seçici olduğu belirlendi. Laboratuvarda mikro ölü hacme sahip akış hücreleri hazırlandı ve akış enjeksiyon analizi (AEA) sisteminde (hareketli faz olarak 5x10-5 M CaSO4 ve MgSO4; 1x10-6 M NaCl, KNO3, LiNO3 ve NH4Cl çözelti karışımı, akış hızı: 1,0 mL dak-1ve enjeksiyon hacmi 20 μL) geliştirilen bu elektrotların detektör olarak kullanılması ile çevresel su numunelerinde sodyum tayini yapıldı. Ayrıca, su numunelerindeki potasyum tayini standart ekleme yöntemi ile de yapıldı ve tüm ölçümler potansiyometrik sonuçlarla karşılaştırmalı olarak verildi. Elde edilen sonuçlar, geliştirilen K+-seçici mikro potansiyometrik PVC-membran elektrot ile çevre numunelerindeki sularda potasyum iyonunun rutin tayininde etkin bir şekilde kullanılabileceğini göstermektedir.

Kaynakça

  • Alysson, V.F.S., Daniel, A.S., Maurício, D., Waldemar, P.O.F., Tatiana D.S.P., Marcone, A.L. de O., Gustavo, A.M. (2018). Dual-opposite end multiple injection method applied to sequentialdetermination of Na+, K+, Ca+2, Mg+2 ions and free and total glycerol inbiodiesel by capillary zone electrophoresis. J. Chromatogr. A, 1570,148–154.
  • Amini, M.K., Ghaedi, M., Rafi, A., Habibi, M.H. Zohory, M.M. (2003). Iodide selective electrodes based on bis(2-mercaptobenzothiazolato) mercury(II) and bis(4-chlorothiophenolato) mercury(II) carriers. Sensors, 3(11): 509-523.
  • Belitz, H.D., Grosch, W. Schieberle, P. (2009). Food Chemistry, Springer-Verlag, Heildelberg, Germany, 4th edn, p. 1070.
  • Captian-Vallvey, L.F. Fernandez-Ramos, M.D. (2003). Characterization of a transparent optical test strip for quantification of water hardness. Analytica Chimica Acta, 481: 139-148.
  • Cardwell, T.J., Cattrall, R.W., Hauser, P.C. Hamilton, I.C. (1988). A multi-ion sensor cell and dataacquisition system for flow injection analysis. Anal. Chim. Acta, 214: 359-366.
  • Day, C., Søpstad,S., Ma,H., Jiang, C., Nathan, A., Elliott, S.R., Frankle,F.E.K., Hutter, T. (2018). Impedance-based sensor for potassium ions. Analytica Chimica Acta, 1034: 39-45.
  • Dominic, B., Franka E-R., Sarah, V.W., Tobias, H. Mathias, U. (2018). Potassium-sensitive poly(N-isopropylacrylamide)-based hydrogels for sensor applications. Polym. Chem., 9: 3600–3614.
  • Ethke, P.C.B. Ansky, S.H.J. (2008). Effects of boiling and leaching on the content of potassium and other minerals in potatoes. J. Food Sci., 75(5): 80-85.
  • Flavio, O.L., Daniel, M.S., Angerson, N.N. Cassiana, S.N. (2018). Feasibility of using laser induced breakdown spectroscopy for quantitative measurement of calcium, magnesium, potassium and sodium in meat. J. Anal. At. Spectrom., 33: 1322–1329.
  • Gallardo, J.S., Alegret M.A.D., Roman, R., Munoz, P.R., Hernandez, L., Leija, L. del Valle, M. (2003). Determination of ammonium ion employing an electronic tongue based on potentiometric sensors. Analytical Letter, 36(14): 2893-2908.
  • Gismera, M.J., Arias, S., Sevilla, M.T. Procopio, J.R. (2009). Simultaneous quantification of heavy metals using a solid state potentiometric sensor array. Electroanalysis, 21: 979-987.
  • Gutierrez, M., Alegret, S., Caceres, R., Casadesus, J., Marfa, O. del Valle, M. (2008). Nutrient solution monitoring in greenhouse cultivation employing a potentiometric electronic tongue. J. Agric. Food Chem., 56: 1810-1817.
  • Hassan, S.S., Sayour, H.E. Al-Mehrezi, S.S. (2007). A novel planar miniaturized potentiometric sensor for flow injection analysis of nitrates in wastewaters, fertilizers and pharmaceuticals. Anal. Chim. Acta, 581: 13-18.
  • Kabaa, E.A., Abdulateef, S.A., Ahmed, N.M., Hassan, Z., Sabah, F.A. (2019). A novel porous silicon multi-ions selective electrode based extended gate field effect transistor for sodium, potassium, calcium, and magnesium sensor. Applied Physics a-Materials Science & Processing, 125(11): 753-763.
  • Kopytin, A.V., German, K.E., Zhizhin, K.Y., Zhukov, A.F., Ilyin, E.G., Zhukova,T.V. (2016). Ion selective potentiometric sensor based on single crystalline KTiOPO4 for determination of K+-ions. Proceedings of the 30th Anniversary Eurosensors Conference-Eurosensors. 168: 440-443.
  • Lukov, S. Kounaves, S. (2005). Analyses of simulated martian regolith using an array of ion selective electrodes, Electroanalyses, 17: 15-16.
  • Megahed, A.A, Hiew M.W.H., Grünberg, W., Constable P.D. (2016). Evaluation of 2 portable ion-selective electrode meters for determining whole blood, plasma, urine, milk, and abomasal fluid potassium concentrations in dairy cattle. Journal of Dairy Science, 99(9): 7330-7343.
  • Moreno, L., Merlos, A.Abramova, N. (2006). Multi-sensor array used as an “electronic tonque” for mineral water analyses, Sensors and Actuators B, 116: 130-134.
  • Paczosa-Bator, B., Cabaj, L., Pięk, M., Piech, R. & Kubiak, W.W. (2015). Carbon-supported platinum nanoparticle solid-state ion selective electrodes for the determination of potassium. Analytical Letters, 48(17): 2773-2785.
  • Rius, A. Callao, M. (2001). Application of time series models to the monitoring of a sensor array analytical system, Trends in Analytical Chemistry, 20: 168-177.
  • Saurina, J., Lopez-Aviles, E., Le, M. Santiago, A. (2002). Determination of calcium and total hardness in natural waters using a potentiometric sensor array, Analytica Chimica Acta, 464: 89–98.
  • Shamsipur, M., Mizani, F., Mousavi, M.F., Alizadeh, N., Alizadeh, K., Eshghi, H. Karami, H. (2007). A novel flow injection potentiometric graphite coated ionselective electrode for the low level determination of uranyl ion. Anal. Chim. Acta, 589: 22-32.
  • Siswanta, D.; Wulandari, Y.D., Jumina, J. (2016). Synthesis of poly(benzyl-eugenol) and its application as an ionophore for a potassium ion-selective electrode. Eurasian Journal of Analytical Chemistry, 11(3): 115-125.
  • Soetan, K.O., Olaiya, C.O. Oyewole, O.E. (2010). Importance of mineral elements for humans, domestic animals and plants. Afr J. Food Sci., 4(5): 200-222.
  • Son, S.G., Park, H.J., Kim, Y.K., Cho, H-S., Choi, B.G. (2019). Fabrication of low-cost and flexible potassium ion sensors based on screen printing and their electrochemical characteristics. Applied Chemistry for Engineering, 30(6): 737-741.
  • Tran, T.N.T., Qiu, S.; Chung, H-J. (2018). Potassium ion selective electrode using polyaniline and matrix-supported ion-selective PVC membrane. Ieee Sensors Journal, 18(22): 9081-9087. Trefz, F. M.; Lorenz, I.; Constable, P.D. (2018). Evaluation of a portable ion-selective electrode meter for measuring potassium concentrations in whole blood and plasma of calves. Veterinary Journal, 238: 10-14.
  • Yang, C., Song, C-Q., Zhang, Y-Q., Qu, Y. (2019). Determination of concentration of serum potassium ion using all-solid-state potassium ion selective electrode based on two-dimensional manganese dioxide nanosheet. Chinese Journal of Analytical Chemistry, 47(5): 765-771.
  • Xu, J., Li, F., Tian, C., Song, Z., An, Q., Wang, J., Han, D., Niu, L. (2019). Tubular Au-TTF solid contact layer synthesized in a microfluidic device improving electrochemical behaviors of paper-based potassium potentiometric sensors, 322: 134683
  • Yang, X., Hibberta, D.B. Alexanderb, P.W. (1998). Flow injection potentiometry by poly(vinyl chloride)membrane electrodes with substituted azacrown ionophores for the determination of lead(II) and mercury(II) ions. Anal. Chim. Acta, 372: 387-398.
  • Zeng, X.; Qin, W. (2017). A solid-contact potassium-selective electrode with MoO2 microspheres as ion-to-electron transducer. Analytica Chimica Acta, 982: 72-77.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Halk Sağlığı, Çevre Sağlığı
Bölüm Araştırma Makale
Yazarlar

Adem Asan 0000-0002-0282-3874

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 17 Şubat 2020
Kabul Tarihi 28 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 2

Kaynak Göster

APA Asan, A. (2020). Çevre Numunelerindeki Potasyumun Akış Enjeksiyon Analiz Yöntemi ile İyon Seçici Elektrot Kullanarak Potansiyometrik Tayini. Batman Üniversitesi Yaşam Bilimleri Dergisi, 10(2), 136-150.