Araştırma Makalesi
BibTex RIS Kaynak Göster

Revealing Tacit Knowledge In Organizations Through Recommender Systems, Supported By Artificial Intelligence

Yıl 2019, Cilt: 2 Sayı: 1, 34 - 43, 28.06.2019
https://doi.org/10.33721/by.544239

Öz

The current and
future success of organizations depends on identifying, revealing and making
more use of tacit knowledge, as part of the internal knowledge held within
organizations. In the current competitive environment, where every product and
service can be imitated with great speed and ease in complex and demanding
markets, organizations need knowledge more than ever. The knowledge of the
employees of an organization has a direct effect on the creation and
maintenance of organizational knowledge. Artificial intelligence technologies
allow organizations to access and make better use of tacit knowledge that may
remain hidden, but which is strategically important. Recommender systems
supported by artificial intelligence uncover tacit knowledge, individual
characteristics, and the personal tastes and interests of the employees, making
it possible to reveal, share and utilize tacit knowledge.  Making use of
tacit knowledge, which is a form of internal knowledge within an organization,
makes it easier to achieve goals. Making use of artificial intelligence can
offer further benefits, leading organizations to develop more effective and
efficient knowledge systems by adopting a more holistic approach to knowledge.
Improving the quality and the performance of the organization requires the
uncovering of tacit knowledge through recommender systems, supported by
artificial intelligence, and thus creates added value for the organization.
This requirement explains why organizations today are in greater need of
quality management and process improvement. The aim of the present study was to
demonstrate the benefits of using recommender systems supported by artificial
intelligence in knowledge management for the revealing, sharing, and utilizing
of tacit knowledge. In line with this purpose, a review of the literature was
performed, which showed that recommender systems can be used to reveal tacit
knowledge held within organizations. This study also presents the Profile
Learning Model, discussing its role in the revealing of tacit knowledge via
recommender systems.

Kaynakça

  • Adomavicius, G. ve Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge & Data Engineering, 17(6), 734-749. doi:10.1109/TKDE.2005.99
  • Akerkar, R. (2019). Artificial İntelligence For Business. Switzerland: Springer International Publishing.
  • Ali, S., El Desouky, A. ve Saleh, A. (2016). A new profile learning model for recommendation system based on machine learning technique. Indonesian Journal of Electrical Engineering and Informatics, 4(1), 81-92. doi:10.4172/2165-7866.1000170
  • Bateson, G. (1973). Steps To An Ecology Of Mind. London: Paladin Books.
  • Bock, G. W., Zmud, R. W., Kim, Y. G. ve Lee, J. N. (2005). Behavioral intention formation in knowledge sharing: Examining the roles of extrinsic motivators, social-psychological forces, and organizational climate. MIS Quarterly, 29(1), 87-111. Erişim Adresi: https://www.jstor.org/stable/25148669
  • Burgess, D. (2005). What motivates employees to transfer knowledge outside their work unit?. Journal of Business Communication, 42(4), 324-348. doi: 10.1177/0021943605279485
  • Craft, J. A. (2018). Artificial intelligence and the softer side of medicine. Missouri Medicine, 115(5), 406. Erişim Adresi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205273/
  • Duan, Y., Edwards, J. S. ve Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of big data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. Erişim Adresi: https://doi.org/10.1016/j.ijinfomgt.2019.01.021
  • Glance, N., Arregui, D. ve Dardenne, M. (1999). Making recommender systems work for organizations. PAAM 99 Konferansında sunulan bildiri, London, UK. Erişim Adresi: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.571
  • Kakabadse, M. K., Kouzmin, A. ve Kakabadse, A. (2001). From tacit knowledge to knowledge management: Leveraging invisible assets. Knowledge and Process Management, 8(3), 137–154. Erişim Adresi: https://doi.org/10.1002/kpm.120
  • Lampropoulos, A. S. ve Tsihrintzis, G. A. (2015). Machine Learning Paradigms. Applications İn Recommender Systems. Switzerland: Springer International Publishing.
  • Lim, K. K., Ahmed, P. K. ve Zairi, M. (1999). Managing for quality through knowledge management. Total Quality Management, 10(4-5), 615-621. Erişim Adresi: https://doi.org/10.1080/0954412997596
  • Lin, H. F. (2007). Effects of extrinsic and intrinsic motivation on employee knowledge sharing intentions. Journal of Information Science, 33(2), 135-149.doi: 10.1177/0165551506068174
  • López-Nicolás, C. ve Meroño-Cerdán, Á. L. (2011). Strategic knowledge management, innovation and performance. International Journal of Information Management, 31(6), 502–509. doi:10.1016/j.ijinfomgt.2011.02.003
  • Lynch, C. (2001). Personalization and recommender systems in the larger context: New directions and research questions. 2. DELOS Network of Excellence on Recommender Systems in Digital Libraries Çalıştayında sunulan bildiri, Dublin City University, Ireland. Erişim Adresi: https://www.ercim.eu/publication/ws-proceedings/DelNoe02/
  • Maes, P. (2005). User modeling, recommender systems & personalization. Erişim Adresi: https://ocw.mit.edu/courses/media-arts-and-sciences/mas-961-ambient-intelligence-spring-2005/lecture-notes/week6_pm_recosys.pdf
  • Nonaka, I. (1991). The knowledge-creating company. Harvard Business Review, 69(6), 96-104. Erişim Adresi: https://hbr.org/archive-toc/3916
  • Nonaka, I. ve Takeuchi, H. (1995). The Knowledge creating company: How Japanese companies create the Dynamics of innovation. New York: Oxford University Press.
  • Özdemirci, F. (2018). Sağlık bilgi sistemleri yönetimi ve toplumsal bellek/gelecek açısından değerlendirilmesi. Bilgi Yönetimi, 1 (2), 149-155. Erişim Adresi: http://dergipark.gov.tr/by/issue/40526/500294
  • Özdemirci, F. ve Aydın, C. (2008). Kurumsal bilgi kaynakları ve bilgi yönetimi. Türk Kütüphaneciliği, 22(1), 59-81. Erişim Adresi: http://www.tk.org.tr/index.php/TK/article/view/392/385
  • Özgöbek Ö., Çiloğlugil B. ve Alatlı O. (2017). Kişiselleştirilmiş sistemlerde kullanıcı gizliliği: E-öğrenme ve öneri sistemleri. Akademik Bilişim Konferansında sunulan bildiri, Aksaray, Türkiye. Erişim Adresi: https://ab.org.tr/ab17/bildiri/138.pdf
  • Polanyi, M. (1966). The tacit dimension. Garden City, New York: Doubleday & Company. [Adobe Acrobat Reader sürümü]. Erişim Adresi: https://monoskop.org/images/1/11/Polanyi_Michael_The_Tacit_Dimension.pdf
  • Ravetz, J. R. (1971). Scientific knowledge and its social problems. Oxford: Clarendon Press. [Adobe Acrobat Reader sürümü]. Erişim Adresi: http://www.andreasaltelli.eu/file/repository/Scientific_Knowledge_and_Its_Social_Problems.pdf
  • Riege, A. (2005). Three‐dozen knowledge‐sharing barriers managers must consider. Journal of Knowledge Management, 9(3), 18-35. Erişim Adresi: https://doi.org/10.1108/13673270510602746
  • Sarwar, B., Karypis, G., Konstan, J. ve Riedl, J. (2000). Analysis of recommendation algorithms for e-commerce. 2. ACM Elektronik Ticaret Konferansında sunulan bildiri, Minnesota, USA. Erişim Adresi: http://glaros.dtc.umn.edu/gkhome/node/123
  • Skrzypczyk, W., Bleimann, U., Wentzel, C. ve Clarke, N. (2009). How recommender systems applied in personal knowledge management environments can improve learning processes. 4. Plymouth E-öğrenme Konferansında sunulan bildiri, Plymouth, UK. Erişim Adresi: http://citeseerx.ist.psu.edu/viewdoc/download doi=10.1.1.677.5518&rep=rep1&type=pdf
  • Stenmark, D. (1999). Using intranet agents to capture tacit knowledge. WebNet World Konferansında sunulan bildiri. Hawaii, USA. Erişim Adresi: http://www.editlib.org/index.cfm?fuseaction=Reader.ViewAbstract&paper_id=7374&from=NEWDL
  • Stenmark, D. (2000). Leveraging tacit organizational knowledge. Journal of Management Information Systems, 17(3), 9-24. Erişim Adresi: https://doi.org/10.1080/07421222.2000.11045655
  • Sternberg, R. J. (1994). Tacit knowledge and job success. anderson, N. ve Herriot, P. (Ed.), Assessment and Selection in Organizations: Methods and Practice for Recruitment and Appraisal içinde (s. 27-39) London: John Wiley.
  • Taşcı, S. (2015). İçerik bazlı medya takip ve haber tavsiye sistemi. (Yayımlanmamış yüksek lisans tezi). Hacettepe Üniversitesi, Ankara.
  • Utku, A. ve Akcayol, M. A. (2017). Öğrenebilen ve adaptif tavsiye sistemleri için karşılaştırmalı ve kapsamlı bir inceleme. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 33(3), 13-34. Erişim Adresi: http://dergipark.gov.tr/download/article-file/437577
  • Ünal, M. A. ve Özdemirci, F. (2017). EBYS (e-BEYAS) ve E-Arşiv sistemlerinde/ uygulamalarında yapay zekâ yaklaşımı. Bilgi Sistemleri ve Bilişim Yönetimi: Beklentiler ve Yeni Yaklaşımlar (s.57-63) içinde. Ankara: BİL-BEM.

Kurumlarda Örtük Bilginin Yapay Zekâ Destekli Tavsiye Sistemleri Aracılığıyla Ortaya Çıkarılması

Yıl 2019, Cilt: 2 Sayı: 1, 34 - 43, 28.06.2019
https://doi.org/10.33721/by.544239

Öz

Kurumların
şimdiki ve gelecekteki başarısı kurumsal iç bilgi kaynaklarından olan örtük
bilgilerinin neler olduğunun tespitine, ortaya çıkarılmasına ve bu bilgilerden
daha fazla yararlanılmasına bağlıdır. Günümüz rekabet ortamında kurumlar;
karmaşık bir yapıya sahip, talepkâr ve her ürün ve hizmetin hızla ve kolaylıkla
taklit edilebildiği pazar ortamında bir yer bulabilmek için bilgiye her
zamankinden daha fazla ihtiyaç duymaktadır. Bir kurumda çalışanların ne
bildiği, kurumsal bilginin yaratılması ve sürdürülebilmesinde doğrudan
etkilidir. Kurumların keşfedilmemiş fakat aynı zamanda stratejik önem taşıyan
örtük bilgilerine erişimin mümkün hale gelmesi ve örtük bilgilerinden daha
fazla yararlanabilmeleri yapay zekâ teknolojileri ile mümkündür. Yapay zekâ
destekli tavsiye sistemleri; kurum çalışanlarının örtük bilgilerini, kişisel
özelliklerini, kişisel beğeni ve ilgi alanlarını keşfetmekte olup örtük
bilgilerin ortaya çıkarılması, paylaşılması ve kullanılmasını
sağlamaktadır.  Kurumların iç bilgi kaynaklarından olan örtük
bilgilerinden yarar sağlamaları kurumsal hedeflere ulaşmalarında da etkili
olmaktadır. Kurumlarda yapay zekâ tekniklerini kullanmak sadece bununla sınırlı
kalmayacak, kurumların bilgiye bütüncül bir bakış açısıyla yaklaşmaları daha etkin
ve verimli bilgi sistemlerinin geliştirilmesini olanaklı hale getirecektir.
Kurumlarda örtük bilginin yapay zekâ destekli tavsiye sistemleri aracılığı ile
ortaya çıkarılması ve kurumsal bir değere dönüştürülmesi, kurum performansının
arttırılması ve kalitenin yükseltilmesi için bir gerekliliktir. Günümüzde
kurumların kalite yönetimine ve süreç iyileştirmesine daha fazla ihtiyaç
duymaları da bu gereklilikten kaynaklanmaktadır. Bu çalışmanın amacı,
kurumlarda örtük bilginin yapay zekâ destekli tavsiye sistemleri aracılığıyla
ortaya çıkarılması, paylaşımı, kullanımı ve bilgi yönetimi açısından kurum ve
kuruluşlara sağladığı avantajları ortaya koymaktır. Bu amaç doğrultusunda
konuyla ilgili literatür üzerine bir derleme çalışması yapılmış ve yapılan
derleme çalışması sonucunda kurum ve kuruluşlarda tavsiye sistemlerinin örtük
bilginin ortaya çıkmasında kullanılabileceği vurgulanmıştır. Çalışmada Profil
Öğrenme Modeli tanıtılarak örtük bilginin tavsiye sistemleri aracılığı ile
ortaya çıkarılmasındaki rolüne değinilmektedir.

Kaynakça

  • Adomavicius, G. ve Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge & Data Engineering, 17(6), 734-749. doi:10.1109/TKDE.2005.99
  • Akerkar, R. (2019). Artificial İntelligence For Business. Switzerland: Springer International Publishing.
  • Ali, S., El Desouky, A. ve Saleh, A. (2016). A new profile learning model for recommendation system based on machine learning technique. Indonesian Journal of Electrical Engineering and Informatics, 4(1), 81-92. doi:10.4172/2165-7866.1000170
  • Bateson, G. (1973). Steps To An Ecology Of Mind. London: Paladin Books.
  • Bock, G. W., Zmud, R. W., Kim, Y. G. ve Lee, J. N. (2005). Behavioral intention formation in knowledge sharing: Examining the roles of extrinsic motivators, social-psychological forces, and organizational climate. MIS Quarterly, 29(1), 87-111. Erişim Adresi: https://www.jstor.org/stable/25148669
  • Burgess, D. (2005). What motivates employees to transfer knowledge outside their work unit?. Journal of Business Communication, 42(4), 324-348. doi: 10.1177/0021943605279485
  • Craft, J. A. (2018). Artificial intelligence and the softer side of medicine. Missouri Medicine, 115(5), 406. Erişim Adresi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205273/
  • Duan, Y., Edwards, J. S. ve Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of big data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. Erişim Adresi: https://doi.org/10.1016/j.ijinfomgt.2019.01.021
  • Glance, N., Arregui, D. ve Dardenne, M. (1999). Making recommender systems work for organizations. PAAM 99 Konferansında sunulan bildiri, London, UK. Erişim Adresi: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.571
  • Kakabadse, M. K., Kouzmin, A. ve Kakabadse, A. (2001). From tacit knowledge to knowledge management: Leveraging invisible assets. Knowledge and Process Management, 8(3), 137–154. Erişim Adresi: https://doi.org/10.1002/kpm.120
  • Lampropoulos, A. S. ve Tsihrintzis, G. A. (2015). Machine Learning Paradigms. Applications İn Recommender Systems. Switzerland: Springer International Publishing.
  • Lim, K. K., Ahmed, P. K. ve Zairi, M. (1999). Managing for quality through knowledge management. Total Quality Management, 10(4-5), 615-621. Erişim Adresi: https://doi.org/10.1080/0954412997596
  • Lin, H. F. (2007). Effects of extrinsic and intrinsic motivation on employee knowledge sharing intentions. Journal of Information Science, 33(2), 135-149.doi: 10.1177/0165551506068174
  • López-Nicolás, C. ve Meroño-Cerdán, Á. L. (2011). Strategic knowledge management, innovation and performance. International Journal of Information Management, 31(6), 502–509. doi:10.1016/j.ijinfomgt.2011.02.003
  • Lynch, C. (2001). Personalization and recommender systems in the larger context: New directions and research questions. 2. DELOS Network of Excellence on Recommender Systems in Digital Libraries Çalıştayında sunulan bildiri, Dublin City University, Ireland. Erişim Adresi: https://www.ercim.eu/publication/ws-proceedings/DelNoe02/
  • Maes, P. (2005). User modeling, recommender systems & personalization. Erişim Adresi: https://ocw.mit.edu/courses/media-arts-and-sciences/mas-961-ambient-intelligence-spring-2005/lecture-notes/week6_pm_recosys.pdf
  • Nonaka, I. (1991). The knowledge-creating company. Harvard Business Review, 69(6), 96-104. Erişim Adresi: https://hbr.org/archive-toc/3916
  • Nonaka, I. ve Takeuchi, H. (1995). The Knowledge creating company: How Japanese companies create the Dynamics of innovation. New York: Oxford University Press.
  • Özdemirci, F. (2018). Sağlık bilgi sistemleri yönetimi ve toplumsal bellek/gelecek açısından değerlendirilmesi. Bilgi Yönetimi, 1 (2), 149-155. Erişim Adresi: http://dergipark.gov.tr/by/issue/40526/500294
  • Özdemirci, F. ve Aydın, C. (2008). Kurumsal bilgi kaynakları ve bilgi yönetimi. Türk Kütüphaneciliği, 22(1), 59-81. Erişim Adresi: http://www.tk.org.tr/index.php/TK/article/view/392/385
  • Özgöbek Ö., Çiloğlugil B. ve Alatlı O. (2017). Kişiselleştirilmiş sistemlerde kullanıcı gizliliği: E-öğrenme ve öneri sistemleri. Akademik Bilişim Konferansında sunulan bildiri, Aksaray, Türkiye. Erişim Adresi: https://ab.org.tr/ab17/bildiri/138.pdf
  • Polanyi, M. (1966). The tacit dimension. Garden City, New York: Doubleday & Company. [Adobe Acrobat Reader sürümü]. Erişim Adresi: https://monoskop.org/images/1/11/Polanyi_Michael_The_Tacit_Dimension.pdf
  • Ravetz, J. R. (1971). Scientific knowledge and its social problems. Oxford: Clarendon Press. [Adobe Acrobat Reader sürümü]. Erişim Adresi: http://www.andreasaltelli.eu/file/repository/Scientific_Knowledge_and_Its_Social_Problems.pdf
  • Riege, A. (2005). Three‐dozen knowledge‐sharing barriers managers must consider. Journal of Knowledge Management, 9(3), 18-35. Erişim Adresi: https://doi.org/10.1108/13673270510602746
  • Sarwar, B., Karypis, G., Konstan, J. ve Riedl, J. (2000). Analysis of recommendation algorithms for e-commerce. 2. ACM Elektronik Ticaret Konferansında sunulan bildiri, Minnesota, USA. Erişim Adresi: http://glaros.dtc.umn.edu/gkhome/node/123
  • Skrzypczyk, W., Bleimann, U., Wentzel, C. ve Clarke, N. (2009). How recommender systems applied in personal knowledge management environments can improve learning processes. 4. Plymouth E-öğrenme Konferansında sunulan bildiri, Plymouth, UK. Erişim Adresi: http://citeseerx.ist.psu.edu/viewdoc/download doi=10.1.1.677.5518&rep=rep1&type=pdf
  • Stenmark, D. (1999). Using intranet agents to capture tacit knowledge. WebNet World Konferansında sunulan bildiri. Hawaii, USA. Erişim Adresi: http://www.editlib.org/index.cfm?fuseaction=Reader.ViewAbstract&paper_id=7374&from=NEWDL
  • Stenmark, D. (2000). Leveraging tacit organizational knowledge. Journal of Management Information Systems, 17(3), 9-24. Erişim Adresi: https://doi.org/10.1080/07421222.2000.11045655
  • Sternberg, R. J. (1994). Tacit knowledge and job success. anderson, N. ve Herriot, P. (Ed.), Assessment and Selection in Organizations: Methods and Practice for Recruitment and Appraisal içinde (s. 27-39) London: John Wiley.
  • Taşcı, S. (2015). İçerik bazlı medya takip ve haber tavsiye sistemi. (Yayımlanmamış yüksek lisans tezi). Hacettepe Üniversitesi, Ankara.
  • Utku, A. ve Akcayol, M. A. (2017). Öğrenebilen ve adaptif tavsiye sistemleri için karşılaştırmalı ve kapsamlı bir inceleme. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 33(3), 13-34. Erişim Adresi: http://dergipark.gov.tr/download/article-file/437577
  • Ünal, M. A. ve Özdemirci, F. (2017). EBYS (e-BEYAS) ve E-Arşiv sistemlerinde/ uygulamalarında yapay zekâ yaklaşımı. Bilgi Sistemleri ve Bilişim Yönetimi: Beklentiler ve Yeni Yaklaşımlar (s.57-63) içinde. Ankara: BİL-BEM.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kütüphane ve Bilgi Çalışmaları
Bölüm Hakemli Makaleler
Yazarlar

Banu Fulya Yıldırım 0000-0002-4988-7584

Fahrettin Özdemirci 0000-0001-5861-9779

Yayımlanma Tarihi 28 Haziran 2019
Gönderilme Tarihi 25 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 1

Kaynak Göster

APA Yıldırım, B. F., & Özdemirci, F. (2019). Kurumlarda Örtük Bilginin Yapay Zekâ Destekli Tavsiye Sistemleri Aracılığıyla Ortaya Çıkarılması. Bilgi Yönetimi, 2(1), 34-43. https://doi.org/10.33721/by.544239

15529