Araştırma Makalesi
BibTex RIS Kaynak Göster

On Parafree Leibniz Algebras

Yıl 2022, , 275 - 278, 29.09.2022
https://doi.org/10.18466/cbayarfbe.1072438

Öz

The parafree Leibniz algebras are a special class of Leibniz algebras which have many properties with a free Leibniz algebra. In this note, we introduce the structure of parafree Leibniz algebras. We survey the
important results in parafree Leibniz algebras which are analogs of corresponding results in parafree Lie algebras. We first investigate some properties of subalgebras and quotient algebras of parafree Leibniz algebras. Then, we describe the direct sum of parafree Leibniz algebras. We show that the direct sum of two parafree Leibniz algebras is a Leibniz algebra. Furthermore, we prove that the direct sum of two parafree Leibniz algebras is again parafree.

Kaynakça

  • 1. Bahturin, Y. Identity relations in Lie algebras, VNU Science Press, Utrecht, 1987.
  • 2. Baur, H. 1980. A note on parafree Lie algebras, Commun. in Alg.; 8(10): 953-960.
  • 3. Baur, H. 1978. Parafreie Lie algebren and homologie, Diss. Eth Nr.; 6126: 60 pp.
  • 4. Bloh, A.M. 1965. A generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR; 165: 471-473.
  • 5. A.M. Bloh, A.M. 1971. A certain generalization of the concept of Lie algebra, Algebra and Number Theory, Moskow. Gos. Ped. Inst. U`cen; 375: 9-20.
  • 6. Ekici, N, Velioğlu, Z. 2014. Unions of Parafree Lie algebras, Algebra; Article ID 385397.
  • 7. Ekici, N, Velioğlu, Z. 2015. Direct Limit of Parafree Lie algebras, Journal of Lie Theory; 25(2): 477-484.
  • 8. Evans, T. 1969. Finitely presented loops, lattices, etc. are Hopfian, J. London Math. Soc.; 44: 551-552.
  • 9. Loday, J.L., Pirashvili, T. 1993. Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann.; 269(1): 139-158.
  • 10. Velioğlu, Z. 2013. Subalgebras and Quotient algebras of Parafree Lie algebras, I. Journal Pure and Applied Maths.; 83(3) 507-514.
Yıl 2022, , 275 - 278, 29.09.2022
https://doi.org/10.18466/cbayarfbe.1072438

Öz

Kaynakça

  • 1. Bahturin, Y. Identity relations in Lie algebras, VNU Science Press, Utrecht, 1987.
  • 2. Baur, H. 1980. A note on parafree Lie algebras, Commun. in Alg.; 8(10): 953-960.
  • 3. Baur, H. 1978. Parafreie Lie algebren and homologie, Diss. Eth Nr.; 6126: 60 pp.
  • 4. Bloh, A.M. 1965. A generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR; 165: 471-473.
  • 5. A.M. Bloh, A.M. 1971. A certain generalization of the concept of Lie algebra, Algebra and Number Theory, Moskow. Gos. Ped. Inst. U`cen; 375: 9-20.
  • 6. Ekici, N, Velioğlu, Z. 2014. Unions of Parafree Lie algebras, Algebra; Article ID 385397.
  • 7. Ekici, N, Velioğlu, Z. 2015. Direct Limit of Parafree Lie algebras, Journal of Lie Theory; 25(2): 477-484.
  • 8. Evans, T. 1969. Finitely presented loops, lattices, etc. are Hopfian, J. London Math. Soc.; 44: 551-552.
  • 9. Loday, J.L., Pirashvili, T. 1993. Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann.; 269(1): 139-158.
  • 10. Velioğlu, Z. 2013. Subalgebras and Quotient algebras of Parafree Lie algebras, I. Journal Pure and Applied Maths.; 83(3) 507-514.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nil Mansuroğlu 0000-0002-6400-2115

Yayımlanma Tarihi 29 Eylül 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Mansuroğlu, N. (2022). On Parafree Leibniz Algebras. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18(3), 275-278. https://doi.org/10.18466/cbayarfbe.1072438
AMA Mansuroğlu N. On Parafree Leibniz Algebras. CBUJOS. Eylül 2022;18(3):275-278. doi:10.18466/cbayarfbe.1072438
Chicago Mansuroğlu, Nil. “On Parafree Leibniz Algebras”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18, sy. 3 (Eylül 2022): 275-78. https://doi.org/10.18466/cbayarfbe.1072438.
EndNote Mansuroğlu N (01 Eylül 2022) On Parafree Leibniz Algebras. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18 3 275–278.
IEEE N. Mansuroğlu, “On Parafree Leibniz Algebras”, CBUJOS, c. 18, sy. 3, ss. 275–278, 2022, doi: 10.18466/cbayarfbe.1072438.
ISNAD Mansuroğlu, Nil. “On Parafree Leibniz Algebras”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18/3 (Eylül 2022), 275-278. https://doi.org/10.18466/cbayarfbe.1072438.
JAMA Mansuroğlu N. On Parafree Leibniz Algebras. CBUJOS. 2022;18:275–278.
MLA Mansuroğlu, Nil. “On Parafree Leibniz Algebras”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 18, sy. 3, 2022, ss. 275-8, doi:10.18466/cbayarfbe.1072438.
Vancouver Mansuroğlu N. On Parafree Leibniz Algebras. CBUJOS. 2022;18(3):275-8.