Araştırma Makalesi
BibTex RIS Kaynak Göster

Thermal Performance Analysis of a Liquid Cooling Plate for Power Electronics

Yıl 2024, , 72 - 81, 29.12.2024
https://doi.org/10.18466/cbayarfbe.1528939

Öz

The need for effective cooling methods has become very critical because of the miniaturization and increasing heat flux density in power electronics equipment. The power electronics systems must have good thermal management engineering for efficiency and safe operation. Due to increasing heat loads, liquid cooling options are more preferred than the air cooling solutions. In this study, thermal performance of a liquid cooling plate is investigated by using computational fluid dynamics (CFD) tools. Different flow path configurations are examined for homogeneous and effective cooling of power electronics equipments with high power density. The pressure losses, surface temperatures and thermal resistances at different coolant flow rates are computed and compared together. Moreover, the influence of the cooling channel height and width on the thermal thermal performance is analyzed.

Kaynakça

  • [1]. Kandlikar, S.G. and Hayner, C.N. 2009. Liquid cooled cold plates for industrial high-power electronic devices thermal design and manufacturing considerations. Heat Transfer Engineering; 30(12), 918–930.
  • [2]. Teng H., Yeow, K. 2012. Design of direct and indirect liquid cooling systems for high- capacity, high-power lithium-ion battery packs. SAE International Journal of Alternative Powertrains; 1(2), 525-536.
  • [3]. Jarrett A, Kim IY. 2011. Design optimization of electric vehicle battery cooling plates for thermal performance. Journal of Power Sources; 196(23):10359–68
  • [4]. Maddipati, U. R., Rajendran, P., & Laxminarayana, P. 2013. Thermal design and analysis of cold plate with various proportions of ethyl glycol water solutions. International Journal of Advanced Trends in Computer Science and Engineering; 2(6), 22-25.
  • [5]. Lu, Z., Zhang, K. 2021. Study on the performance of a Y-shaped liquid cooling heat sink based on constructal law for electronic chip cooling. Journal of Thermal Science and Engineering Applications; 13(3), 034501.
  • [6]. Datta, A.B., Majumdar, A.K. 1980. Flow distribution in parallel and reverse flow manifolds, International Journal of Heat and Fluid Flow; 2(4), 253-262
  • [7]. Chen, D., Jiang J., Kim, G., Yang, C., Pesaran, A. 2016. Comparison of different cooling methods for lithium ion battery cells, Applied Thermal Engineering; 94(1), 846-854.
  • [8]. Panchal, S., Mathewson, S., Fraser, R., Culham, R., Fowler, M. 2015. Thermal management of lithium-ion pouch cell with indirect liquid cooling using dual cold plates approach, SAE International Journal of Alternative Powertrains; 4(2), 293-307.
  • [9]. Teng, H., Ma, Y., Yeow, K., Thelliez, M. 2011. Thermal characterization of a li-ion battery module cooled through aluminum heat-sink plates, SAE International Journal of Passenger Cars—Mechanical Systems; 4(3), 1331-1342.
  • [10]. Yeow, K., Teng, H., Thelliez, M., Tan, E. 2012. Thermal analysis of a li-ion battery system with indirect liquid cooling using finite element analysis approach, SAE International Journal of Alternative Powertrains; 1(1), 65-78.
  • [11]. Yeow, K., Teng, H. 2013. Reducing temperature gradients in high-power, large-capacity lithium-ion cells through ultra-high thermal conductivity heat spreaders embedded in cooling plates for battery systems with indirect liquid cooling, SAE World Congress & Exhibition; Detroit, USA, 1(0234), 1-11.
  • [12]. Ming-Chang, L., Chi-Chuan, W. 2006. Effect of the inlet location on the performance of parallel-channel cold-plate, IEEE Transactions on Components and Packaging Technologies; 29 ,30–38.
  • [13]. Hetsroni G., Mosyak A., Segal Z. 2001. Nonuniform temperature distribution in electronic devices cooled by flow in parallel microchannels, IEEE Transactions on Components and Packaging Technologies; 24, 16–22.
  • [14]. Muratçobanoğlu, B., Mandev, E., Ceviz, M. A., Manay, E., & Afshari, F. 2024. CFD simulation and experimental analysis of cooling performance for thermoelectric cooler with liquid cooling heat sink. Journal of Thermal Analysis and Calorimetry; 149(1), 359-377.
  • [15]. Zhang, F., Huang, Z., Li, S., Sun, S., & Zhao, H. 2024. Design and thermal performance analysis of a new micro-fin liquid cooling plate based on liquid cooling channel finning and bionic limulus-like fins. Applied Thermal Engineering; 237, 121597.
  • [16]. Chu, Y. M., Farooq, U., Mishra, N. K., Ahmad, Z., Zulfiqar, F., Yasmin, S., & Khan, S. A. 2023. CFD analysis of hybrid nanofluid-based microchannel heat sink for electronic chips cooling: applications in nano-energy thermal devices. Case Studies in Thermal Engineering; 44, 102818.
  • [17]. Li, W., Garg, A., Wang, N., Gao, L., Le Phung, M. L., & Tran, V. M. 2022. Computational fluid dynamics-based numerical analysis for studying the effect of mini-channel cooling plate, flow characteristics, and battery arrangement for cylindrical lithium-ion battery pack. Journal of Electrochemical Energy Conversion and Storage; 19(4), 041003.
  • [18]. Zhang, F., Tao, Y., He, Y., & Qiu, S. 2024. Optimization and thermal characterization of a new liquid-cooled plate with branching channels of fractal geometry. Applied Thermal Engineering; 123881.
  • [19]. İlikan A. N., Yaylı, A. 2022. Performance comparison of parallel and series channel cold plates used in electric vehicles by means of CFD simulations. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi; 30(3), 397-404.
  • [20]. Jafarı, R. 2021. Dimensional optimization of two-phase flow boiling in microchannel heat sinks. International Advanced Researches and Engineering Journal; 5(3), 475-483.
  • [21]. Özbektaş S., Sungur B., and Topaloğlu B. 2022. Numerical investigation of the effect of flow circulation pattern and velocity on the performance of water-cooled heat sink. Gümüşhane Üniversitesi Fen Bilimleri Dergisi; 12(1), 151-163.
  • [22]. Jayarajan, S. A., & Azimov, U. 2023. CFD Modeling and Thermal Analysis of a Cold Plate Design with a Zig-Zag Serpentine Flow Pattern for Li-Ion Batteries. Energies; 16(14), 5243.
  • [23]. Akbarzadeh, M., Jaguemont, J., Kalogiannis, T., Karimi, D., He, J., Jin, L., et al., 2021. A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles. Energy Conversion. Management; 231, 113862.
  • [24]. Huo Y, Rao Z, Liu X, Zhao J. 2015. Investigation of power battery thermal management by using mini-channel cold plate. Energy Conversion Management; 89:387–95.
  • [25]. Jin LW, Lee PS, Kong XX, Fan Y, Chou SK. 2014. Ultra-thin minichannel LCP for EV battery thermal management. Applied Energy; 113:1786–94.
  • [26]. Jassem, R. R., & Salem, T. K. 2016. An experimental and Numerical study the performance of finned Liquid cold-plate with different operating conditions. International Journal of Current Research and Review; 9(3), 41-46.
  • [27]. Pan, M. 2021. Study of the performance of an integrated liquid cooling heat sink for high-power IGBTs. Applied Thermal Engineering; 190, 116827..
  • [28]. Reeves, M., Moreno, J., Beucher, P., Loong, S. J., & Brown, D. 2011. Investigation on the impact on thermal performances of new pin and fin geometries applied to liquid cooling of power electronics. In PCIM Europe ; 772-778.
  • [29]. Zhang, Y. P., Yu, X. L., Feng, Q. K., & Zhang, R. T. 2009. Thermal performance study of integrated cold plate with power module. Applied Thermal Engineering; 29(17-18), 3568-3573.
  • [30]. Zhang, H., Ganesan, P., Sharma, R. K., Zubir, M. N. B. M., Badruddin, I. A., & Chong, W. T. 2024. A novel overflow channel design of manifold cold plate for lithium-ion battery: A CFD study. Process Safety and Environmental Protection; 189, 648-663.
  • [31]. Chu, Y. M., Farooq, U., Mishra, N. K., Ahmad, Z., Zulfiqar, F., Yasmin, S., & Khan, S. A. 2023. CFD analysis of hybrid nanofluid-based microchannel heat sink for electronic chips cooling: applications in nano-energy thermal devices. Case Studies in Thermal Engineering; 44, 102818.
  • [32]. Nada, S. A., El-Zoheiry, R. M., Elsharnoby, M., & Osman, O. S. 2022. Enhancing the thermal performance of different flow configuration minichannel heat sink using Al2O3 and CuO-water nanofluids for electronic cooling: An experimental assessment. International Journal of Thermal Sciences; 181, 107767.
  • [33]. User manual of software FloEFD.
Yıl 2024, , 72 - 81, 29.12.2024
https://doi.org/10.18466/cbayarfbe.1528939

Öz

Kaynakça

  • [1]. Kandlikar, S.G. and Hayner, C.N. 2009. Liquid cooled cold plates for industrial high-power electronic devices thermal design and manufacturing considerations. Heat Transfer Engineering; 30(12), 918–930.
  • [2]. Teng H., Yeow, K. 2012. Design of direct and indirect liquid cooling systems for high- capacity, high-power lithium-ion battery packs. SAE International Journal of Alternative Powertrains; 1(2), 525-536.
  • [3]. Jarrett A, Kim IY. 2011. Design optimization of electric vehicle battery cooling plates for thermal performance. Journal of Power Sources; 196(23):10359–68
  • [4]. Maddipati, U. R., Rajendran, P., & Laxminarayana, P. 2013. Thermal design and analysis of cold plate with various proportions of ethyl glycol water solutions. International Journal of Advanced Trends in Computer Science and Engineering; 2(6), 22-25.
  • [5]. Lu, Z., Zhang, K. 2021. Study on the performance of a Y-shaped liquid cooling heat sink based on constructal law for electronic chip cooling. Journal of Thermal Science and Engineering Applications; 13(3), 034501.
  • [6]. Datta, A.B., Majumdar, A.K. 1980. Flow distribution in parallel and reverse flow manifolds, International Journal of Heat and Fluid Flow; 2(4), 253-262
  • [7]. Chen, D., Jiang J., Kim, G., Yang, C., Pesaran, A. 2016. Comparison of different cooling methods for lithium ion battery cells, Applied Thermal Engineering; 94(1), 846-854.
  • [8]. Panchal, S., Mathewson, S., Fraser, R., Culham, R., Fowler, M. 2015. Thermal management of lithium-ion pouch cell with indirect liquid cooling using dual cold plates approach, SAE International Journal of Alternative Powertrains; 4(2), 293-307.
  • [9]. Teng, H., Ma, Y., Yeow, K., Thelliez, M. 2011. Thermal characterization of a li-ion battery module cooled through aluminum heat-sink plates, SAE International Journal of Passenger Cars—Mechanical Systems; 4(3), 1331-1342.
  • [10]. Yeow, K., Teng, H., Thelliez, M., Tan, E. 2012. Thermal analysis of a li-ion battery system with indirect liquid cooling using finite element analysis approach, SAE International Journal of Alternative Powertrains; 1(1), 65-78.
  • [11]. Yeow, K., Teng, H. 2013. Reducing temperature gradients in high-power, large-capacity lithium-ion cells through ultra-high thermal conductivity heat spreaders embedded in cooling plates for battery systems with indirect liquid cooling, SAE World Congress & Exhibition; Detroit, USA, 1(0234), 1-11.
  • [12]. Ming-Chang, L., Chi-Chuan, W. 2006. Effect of the inlet location on the performance of parallel-channel cold-plate, IEEE Transactions on Components and Packaging Technologies; 29 ,30–38.
  • [13]. Hetsroni G., Mosyak A., Segal Z. 2001. Nonuniform temperature distribution in electronic devices cooled by flow in parallel microchannels, IEEE Transactions on Components and Packaging Technologies; 24, 16–22.
  • [14]. Muratçobanoğlu, B., Mandev, E., Ceviz, M. A., Manay, E., & Afshari, F. 2024. CFD simulation and experimental analysis of cooling performance for thermoelectric cooler with liquid cooling heat sink. Journal of Thermal Analysis and Calorimetry; 149(1), 359-377.
  • [15]. Zhang, F., Huang, Z., Li, S., Sun, S., & Zhao, H. 2024. Design and thermal performance analysis of a new micro-fin liquid cooling plate based on liquid cooling channel finning and bionic limulus-like fins. Applied Thermal Engineering; 237, 121597.
  • [16]. Chu, Y. M., Farooq, U., Mishra, N. K., Ahmad, Z., Zulfiqar, F., Yasmin, S., & Khan, S. A. 2023. CFD analysis of hybrid nanofluid-based microchannel heat sink for electronic chips cooling: applications in nano-energy thermal devices. Case Studies in Thermal Engineering; 44, 102818.
  • [17]. Li, W., Garg, A., Wang, N., Gao, L., Le Phung, M. L., & Tran, V. M. 2022. Computational fluid dynamics-based numerical analysis for studying the effect of mini-channel cooling plate, flow characteristics, and battery arrangement for cylindrical lithium-ion battery pack. Journal of Electrochemical Energy Conversion and Storage; 19(4), 041003.
  • [18]. Zhang, F., Tao, Y., He, Y., & Qiu, S. 2024. Optimization and thermal characterization of a new liquid-cooled plate with branching channels of fractal geometry. Applied Thermal Engineering; 123881.
  • [19]. İlikan A. N., Yaylı, A. 2022. Performance comparison of parallel and series channel cold plates used in electric vehicles by means of CFD simulations. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi; 30(3), 397-404.
  • [20]. Jafarı, R. 2021. Dimensional optimization of two-phase flow boiling in microchannel heat sinks. International Advanced Researches and Engineering Journal; 5(3), 475-483.
  • [21]. Özbektaş S., Sungur B., and Topaloğlu B. 2022. Numerical investigation of the effect of flow circulation pattern and velocity on the performance of water-cooled heat sink. Gümüşhane Üniversitesi Fen Bilimleri Dergisi; 12(1), 151-163.
  • [22]. Jayarajan, S. A., & Azimov, U. 2023. CFD Modeling and Thermal Analysis of a Cold Plate Design with a Zig-Zag Serpentine Flow Pattern for Li-Ion Batteries. Energies; 16(14), 5243.
  • [23]. Akbarzadeh, M., Jaguemont, J., Kalogiannis, T., Karimi, D., He, J., Jin, L., et al., 2021. A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles. Energy Conversion. Management; 231, 113862.
  • [24]. Huo Y, Rao Z, Liu X, Zhao J. 2015. Investigation of power battery thermal management by using mini-channel cold plate. Energy Conversion Management; 89:387–95.
  • [25]. Jin LW, Lee PS, Kong XX, Fan Y, Chou SK. 2014. Ultra-thin minichannel LCP for EV battery thermal management. Applied Energy; 113:1786–94.
  • [26]. Jassem, R. R., & Salem, T. K. 2016. An experimental and Numerical study the performance of finned Liquid cold-plate with different operating conditions. International Journal of Current Research and Review; 9(3), 41-46.
  • [27]. Pan, M. 2021. Study of the performance of an integrated liquid cooling heat sink for high-power IGBTs. Applied Thermal Engineering; 190, 116827..
  • [28]. Reeves, M., Moreno, J., Beucher, P., Loong, S. J., & Brown, D. 2011. Investigation on the impact on thermal performances of new pin and fin geometries applied to liquid cooling of power electronics. In PCIM Europe ; 772-778.
  • [29]. Zhang, Y. P., Yu, X. L., Feng, Q. K., & Zhang, R. T. 2009. Thermal performance study of integrated cold plate with power module. Applied Thermal Engineering; 29(17-18), 3568-3573.
  • [30]. Zhang, H., Ganesan, P., Sharma, R. K., Zubir, M. N. B. M., Badruddin, I. A., & Chong, W. T. 2024. A novel overflow channel design of manifold cold plate for lithium-ion battery: A CFD study. Process Safety and Environmental Protection; 189, 648-663.
  • [31]. Chu, Y. M., Farooq, U., Mishra, N. K., Ahmad, Z., Zulfiqar, F., Yasmin, S., & Khan, S. A. 2023. CFD analysis of hybrid nanofluid-based microchannel heat sink for electronic chips cooling: applications in nano-energy thermal devices. Case Studies in Thermal Engineering; 44, 102818.
  • [32]. Nada, S. A., El-Zoheiry, R. M., Elsharnoby, M., & Osman, O. S. 2022. Enhancing the thermal performance of different flow configuration minichannel heat sink using Al2O3 and CuO-water nanofluids for electronic cooling: An experimental assessment. International Journal of Thermal Sciences; 181, 107767.
  • [33]. User manual of software FloEFD.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji
Bölüm Makaleler
Yazarlar

M. Bahattin Akgül 0000-0002-8916-1171

Furkan Sinan Erçel 0009-0009-6578-5068

Yayımlanma Tarihi 29 Aralık 2024
Gönderilme Tarihi 6 Ağustos 2024
Kabul Tarihi 16 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Akgül, M. B., & Erçel, F. S. (2024). Thermal Performance Analysis of a Liquid Cooling Plate for Power Electronics. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 20(4), 72-81. https://doi.org/10.18466/cbayarfbe.1528939
AMA Akgül MB, Erçel FS. Thermal Performance Analysis of a Liquid Cooling Plate for Power Electronics. CBUJOS. Aralık 2024;20(4):72-81. doi:10.18466/cbayarfbe.1528939
Chicago Akgül, M. Bahattin, ve Furkan Sinan Erçel. “Thermal Performance Analysis of a Liquid Cooling Plate for Power Electronics”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20, sy. 4 (Aralık 2024): 72-81. https://doi.org/10.18466/cbayarfbe.1528939.
EndNote Akgül MB, Erçel FS (01 Aralık 2024) Thermal Performance Analysis of a Liquid Cooling Plate for Power Electronics. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20 4 72–81.
IEEE M. B. Akgül ve F. S. Erçel, “Thermal Performance Analysis of a Liquid Cooling Plate for Power Electronics”, CBUJOS, c. 20, sy. 4, ss. 72–81, 2024, doi: 10.18466/cbayarfbe.1528939.
ISNAD Akgül, M. Bahattin - Erçel, Furkan Sinan. “Thermal Performance Analysis of a Liquid Cooling Plate for Power Electronics”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20/4 (Aralık 2024), 72-81. https://doi.org/10.18466/cbayarfbe.1528939.
JAMA Akgül MB, Erçel FS. Thermal Performance Analysis of a Liquid Cooling Plate for Power Electronics. CBUJOS. 2024;20:72–81.
MLA Akgül, M. Bahattin ve Furkan Sinan Erçel. “Thermal Performance Analysis of a Liquid Cooling Plate for Power Electronics”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 20, sy. 4, 2024, ss. 72-81, doi:10.18466/cbayarfbe.1528939.
Vancouver Akgül MB, Erçel FS. Thermal Performance Analysis of a Liquid Cooling Plate for Power Electronics. CBUJOS. 2024;20(4):72-81.