Carbon Footprint Calculation: A Case Study from Textile Industry
Yıl 2025,
Cilt: 21 Sayı: 4, 16 - 22, 29.12.2025
Sümeyye Işık
,
Mehmet Alperen Ergün
,
Muath Njjar
,
Ezgi Zekiye Yiğit
,
Umut Başkurt
,
Abdullah Akdoğan
Öz
This study investigates the carbon footprint (CFP) of a textile manufacturing plant located in Denizli province for the year 2021. The analysis employs the Tier Method to estimate greenhouse gas emissions across Scope 1, Scope 2, and Scope 3 categories, utilizing data on energy consumption, waste management, and transportation. The results reveal that Scope 2 emissions, primarily from electricity consumption, constitute the largest portion of the plant’s CFP. In contrast, Scope 1 emissions are mainly driven by diesel and natural gas use, with negligible contributions from gasoline and fire extinguisher leakage. Scope 3 emissions are significantly influenced by wastewater treatment and water supply. The findings underscore the importance of focusing on electricity efficiency and renewable energy sources to mitigate emissions and highlight potential areas for improvement in water management and waste processing. The study provides a baseline for developing targeted strategies to reduce the plant's environmental impact and enhance sustainability practices in the textile industry.
Kaynakça
-
[1]. Güler, Y. 2018. Sera gazları, iklim değişikliğinde sera gazı emisyonlarının rolü ve emisyon ticareti. In: 2nd International Symposium on Natural Hazards and Disaster Management, Sakarya University Culture and Congress Center, Sakarya-Turkey 04-06 May 2018.
-
[2]. Awanthi, M, Navaratne, C. 2018. Carbon footprint of an organization: A tool for monitoring impacts on global warming. Procedia Engineering; 212: 729-735.
-
[3]. Kayakuş, M, Terzioğlu, M, Erdoğan, D, Zetter, SA, Kabas, O, Moiceanu, G. 2023. European Union 2030 carbon emission target: The case of Turkey. Sustainability; 15(17): 13025.
-
[4]. Wakeland, W, Cholette, S, Venkat, K. Food transportation issues and reducing carbon footprint. In: Green technologies in food production and processing. Springer, 2011, pp 211-236.
-
[5]. Pachauri, RK, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, 2014.
-
[6]. Amaratunga, D, Haigh, R. 2018. Using scientific knowledge to inform policy and practice in disaster risk reduction. Procedia Engineering; 212: 1-6.
-
[7]. Gao, T, Liu, Q, Wang, J. 2014. A comparative study of carbon footprint and assessment standards. International Journal of Low-Carbon Technologies; 9(3): 237-243.
-
[8]. Yan, Y, et al. 2016. Industrial carbon footprint of several typical Chinese textile fabrics. Acta Ecologica Sinica; 36(3): 119-125.
-
[9]. Wang, C, et al. 2015. Carbon footprint of textile throughout its life cycle: a case study of Chinese cotton shirts. Journal of Cleaner Production; 108: 464-475.
-
[10]. Yiğit, M, Şeneren, M. 2023. The Effects of the Covid-19 Period on Carbon Footprint in Sakarya University Esentepe Campus. Sakarya University Journal of Science; 27(1): 14-21.
-
[11]. European Parliament. 2021. The impact of textile production and waste on the environment (infographic). European Parliament; 3(03).
-
[12]. Efendy, RP, Dewi, K. 2024. Greenhouse Gasses Inventory on Textile Finishing Industry PT X. Journal of Community Based Environmental Engineering and Management; 8(1): 1-8.
-
[13]. IPCC. 2006 IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies: Hayama, Kanagawa, Japan, 2006.
-
[14]. Dangayach, GS, Gaurav, G. 2020. Assessment of greenness through carbon footprint. MATTER International Journal of Science and Technology; 6(1).
-
[15]. Türkay, M. Karayolu ulaşımından kaynaklanan sera gazı emisyonunun (karbon ayak izinin) hesaplanması: Eskişehir ili örneği. Fen Bilimleri Enstitüsü, 2018.
-
[16]. UK Government, Department for Energy Security and Net Zero. 2023. AI to Help UK Industries Cut Carbon Emissions on Path to Net Zero. https://www.gov.uk (accessed 15.2023).
-
[17]. T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Çevre ve İklim Değişikliği Başkanlığı. Türkiye Elektrik Üretimi ve Elektrik Tüketim Noktası Emisyon Faktörleri. https://enerji.gov.tr/evced-cevre-ve-iklim-elektrik-uretim-tuketim-emisyon-faktorleri (accessed 10.02.2023).
-
[18]. İGDAŞ. Kaynaktan eve doğal gaz. https://www.igdas.istanbul/kaynaktan-eve-dogal-gaz (accessed).
-
[19]. Seyhan, AK, Çerçi, M. 2022. IPCC Tier 1 ve DEFRA Metotları ile Karbon Ayak İzinin Belirlenmesi: Erzincan Binali Yıldırım Üniversitesi'nin Yakıt ve Elektrik Tüketimi Örneği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi; 26(3): 386-397.
-
[20]. Başoğul, Y, Göksu, TT, Baran, MF. 2021. Bir Tekstil Fabrikasının Karbon Ayak İzinin Değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi; 31: 146-150.
-
[21]. Ramírez-Escamilla, HG, Martínez-Rodríguez, MC, Padilla-Rivera, A, Domínguez-Solís, D, Campos-Villegas, LE. 2024. Advancing Toward Sustainability: A Systematic Review of Circular Economy Strategies in the Textile Industry. Recycling; 9(5): 95.
-
[22]. Begum, N, Ahmed, M, Ali, M. 2024. Sustainable merchandising practices in the textile sector: Challenges and opportunities. Academic Journal on Business Administration, Innovation & Sustainability; 4(04): 127-138.
Yıl 2025,
Cilt: 21 Sayı: 4, 16 - 22, 29.12.2025
Sümeyye Işık
,
Mehmet Alperen Ergün
,
Muath Njjar
,
Ezgi Zekiye Yiğit
,
Umut Başkurt
,
Abdullah Akdoğan
Kaynakça
-
[1]. Güler, Y. 2018. Sera gazları, iklim değişikliğinde sera gazı emisyonlarının rolü ve emisyon ticareti. In: 2nd International Symposium on Natural Hazards and Disaster Management, Sakarya University Culture and Congress Center, Sakarya-Turkey 04-06 May 2018.
-
[2]. Awanthi, M, Navaratne, C. 2018. Carbon footprint of an organization: A tool for monitoring impacts on global warming. Procedia Engineering; 212: 729-735.
-
[3]. Kayakuş, M, Terzioğlu, M, Erdoğan, D, Zetter, SA, Kabas, O, Moiceanu, G. 2023. European Union 2030 carbon emission target: The case of Turkey. Sustainability; 15(17): 13025.
-
[4]. Wakeland, W, Cholette, S, Venkat, K. Food transportation issues and reducing carbon footprint. In: Green technologies in food production and processing. Springer, 2011, pp 211-236.
-
[5]. Pachauri, RK, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, 2014.
-
[6]. Amaratunga, D, Haigh, R. 2018. Using scientific knowledge to inform policy and practice in disaster risk reduction. Procedia Engineering; 212: 1-6.
-
[7]. Gao, T, Liu, Q, Wang, J. 2014. A comparative study of carbon footprint and assessment standards. International Journal of Low-Carbon Technologies; 9(3): 237-243.
-
[8]. Yan, Y, et al. 2016. Industrial carbon footprint of several typical Chinese textile fabrics. Acta Ecologica Sinica; 36(3): 119-125.
-
[9]. Wang, C, et al. 2015. Carbon footprint of textile throughout its life cycle: a case study of Chinese cotton shirts. Journal of Cleaner Production; 108: 464-475.
-
[10]. Yiğit, M, Şeneren, M. 2023. The Effects of the Covid-19 Period on Carbon Footprint in Sakarya University Esentepe Campus. Sakarya University Journal of Science; 27(1): 14-21.
-
[11]. European Parliament. 2021. The impact of textile production and waste on the environment (infographic). European Parliament; 3(03).
-
[12]. Efendy, RP, Dewi, K. 2024. Greenhouse Gasses Inventory on Textile Finishing Industry PT X. Journal of Community Based Environmental Engineering and Management; 8(1): 1-8.
-
[13]. IPCC. 2006 IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies: Hayama, Kanagawa, Japan, 2006.
-
[14]. Dangayach, GS, Gaurav, G. 2020. Assessment of greenness through carbon footprint. MATTER International Journal of Science and Technology; 6(1).
-
[15]. Türkay, M. Karayolu ulaşımından kaynaklanan sera gazı emisyonunun (karbon ayak izinin) hesaplanması: Eskişehir ili örneği. Fen Bilimleri Enstitüsü, 2018.
-
[16]. UK Government, Department for Energy Security and Net Zero. 2023. AI to Help UK Industries Cut Carbon Emissions on Path to Net Zero. https://www.gov.uk (accessed 15.2023).
-
[17]. T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Çevre ve İklim Değişikliği Başkanlığı. Türkiye Elektrik Üretimi ve Elektrik Tüketim Noktası Emisyon Faktörleri. https://enerji.gov.tr/evced-cevre-ve-iklim-elektrik-uretim-tuketim-emisyon-faktorleri (accessed 10.02.2023).
-
[18]. İGDAŞ. Kaynaktan eve doğal gaz. https://www.igdas.istanbul/kaynaktan-eve-dogal-gaz (accessed).
-
[19]. Seyhan, AK, Çerçi, M. 2022. IPCC Tier 1 ve DEFRA Metotları ile Karbon Ayak İzinin Belirlenmesi: Erzincan Binali Yıldırım Üniversitesi'nin Yakıt ve Elektrik Tüketimi Örneği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi; 26(3): 386-397.
-
[20]. Başoğul, Y, Göksu, TT, Baran, MF. 2021. Bir Tekstil Fabrikasının Karbon Ayak İzinin Değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi; 31: 146-150.
-
[21]. Ramírez-Escamilla, HG, Martínez-Rodríguez, MC, Padilla-Rivera, A, Domínguez-Solís, D, Campos-Villegas, LE. 2024. Advancing Toward Sustainability: A Systematic Review of Circular Economy Strategies in the Textile Industry. Recycling; 9(5): 95.
-
[22]. Begum, N, Ahmed, M, Ali, M. 2024. Sustainable merchandising practices in the textile sector: Challenges and opportunities. Academic Journal on Business Administration, Innovation & Sustainability; 4(04): 127-138.