Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 21 Sayı: 4, 70 - 78, 29.12.2025
https://doi.org/10.18466/cbayarfbe.1633397

Öz

Kaynakça

  • [1]. Balog J, Olivera G, Kapatoes J. 2003. Clinical helical tomotherapy commissioning dosimetry. Med Phys;30(12):3097–106.
  • [2]. Jeraj R, Mackie TR, Balog J, John Balog, 2004. Gustavo Olivera, Dave Pearson, Jeff Kapatoes, Ken Ruchala, Paul Reckwerdt. Radiation characteristics of helical tomotherapy. Med Phys; 31(2):396–404.
  • [3]. Langen KM, Papanikolaou N, Balog J, Crilly R, Followill D, Goddu SM, Grant W, Olivera G, Ramsey CR, Shi C. 2010. QA for helical tomotherapy: report of the AAPM Task Group 148. Med Phys. Sep;37(9):4817-53.
  • [4]. Zhao YL, Mackenzie M, Kirkby C, Fallone BG. 2008. Monte Carlo calculation of helical tomotherapy dose delivery. Med Phys; 35(8):3491–500.
  • [5]. Jean L. Peng,a Michael S. Ashenafi, Daniel G. McDonald, Kenneth N. Vanek. 2015. Assessment of a three-dimensional (3D) water scanning system for beam commissioning and measurements on a helical tomotherapy unit. Journal Of Applıed Clınıcal Medıcal Physıcs, Volume 16, Number 1.
  • [6]. Göksel E, Barlaz Us S, Akdeniz Y, Bozca R, Elçim Y, Gani Z, Güray G, Dede Karakoç N, Nalbant N, Toksoy T, Yeşil A. 2024. Guide For Quality Control and Quality Assurance Tests in Tomotherapy/Radixact Systems. Turk J Oncol 2024;39(Supp 1):31–5.
  • [7]. Günhan B. 2010. Helikal Tomoterapi’de Hasta Kalite Kontrolünde Dozimetrik Yöntemlerin Karşılaştırılması. İstanbul Ünversitesi Sağlık Bilimleri Enstitüsü Doktora Tezi İstanbul.
  • [8]. Sharma SD. 2011. Unflattened photon beams from the standard flattening filter free accelerators for radiotherapy: Advantages, limitations and challenges Med Phys. 2011 Jul-Sep;36(3):123–125.
  • [9]. İmran B. 2018. Tomoterapide Kalite Kontrol. www.medfizonline.org.
  • [10]. Das IJ, Cheng CW, Watts RJ, Watts RJ, Ahnesjö A, Gibbons J, Li XA, Lowenstein J, Mitra RK, Simon WE, Zhu TC. 2008. Accelerator beam data commissioning equipment and procedures: report of the TG-106 of the Therapy Physics Committee of the AAPM. . Med Phys;35(9):4186–215.
  • [11]. Fox C, Simon T, Simon B, Dempsey JF, Kahler D, Palta JR, Liu C, Yan G. 2010. Assessment of the setup dependence of detector response functions for megavoltage linear accelerators. Med Phys;37(2):477–84.
  • [12]. Chen, Y., Wang, L., Zhang, X., & Hu, W. 2023. Evaluation of photon beam energy consistency after linear accelerator replacement using depth-dose ratios and gamma analysis. Journal of Applied Clinical Medical Physics, 24(1), e13829.
  • [13]. Rajesh KA, Swamidas JV, Reenadevi, Rajeshri P, Master Z, Tejpal G, Deepak DS, Deepak DD, Shyam SK, Rajiv S. 2009. Dosimetric validation of first helical tomotherapy Hi-Art II machine in India. Journal of Medical Physics, Vol. 34, No. 1, 23-30.
  • [14]. Martínez-Rovira, I., Saez, J., Delgado-Miguel, C., & Ribas, M. 2022. Impact of beam profile consistency on dose delivery accuracy in helical tomotherapy. Medical Physics, 49(11), 7220–7230.
  • [15]. Esch AV, Clermont C, Devillers M, Iori M, Huyskens DP. 2007. On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom. Med. Phys. 34 „10 October.

Assessing Tomotherapy Performance Post-Linac Replacement: A Dosimetric Comparison with Manufacturer's Gold Data

Yıl 2025, Cilt: 21 Sayı: 4, 70 - 78, 29.12.2025
https://doi.org/10.18466/cbayarfbe.1633397

Öz

This study aimed to experimentally compare dosimetric measurement data obtained after linac replacement in a Tomotherapy HiArt system with the "gold data" provided by the manufacturer, according to the acceptance criteria recommended by AAPM TG-148. Energy quality (TPR1.5/10), percentage depth dose (PDD), transverse and longitudinal beam profiles, and patient treatment plan quality assurance (QA) measurements were performed and compared with gold data. The difference between the gold and measured data in the energy quality measurement was 0.5%. In the PDD measurements, the difference in dmax values remained at a maximum of 0.9 mm, and the PDD20/10 ratio remained below 1%. Agreement within the 1% tolerance limits was also observed in the transverse and longitudinal profiles. Furthermore, the patient QA measurements were in agreement with the results obtained using the previous linac. The findings demonstrated that all measurements remained within the TG-148 criteria, indicating that linac replacement did not significantly affect system performance. These results confirmed that the TomoTherapy HiArt system provides reliable and accurate dosimetric measurements following linac replacement, ensuring consistent and high-quality patient treatment delivery.

Kaynakça

  • [1]. Balog J, Olivera G, Kapatoes J. 2003. Clinical helical tomotherapy commissioning dosimetry. Med Phys;30(12):3097–106.
  • [2]. Jeraj R, Mackie TR, Balog J, John Balog, 2004. Gustavo Olivera, Dave Pearson, Jeff Kapatoes, Ken Ruchala, Paul Reckwerdt. Radiation characteristics of helical tomotherapy. Med Phys; 31(2):396–404.
  • [3]. Langen KM, Papanikolaou N, Balog J, Crilly R, Followill D, Goddu SM, Grant W, Olivera G, Ramsey CR, Shi C. 2010. QA for helical tomotherapy: report of the AAPM Task Group 148. Med Phys. Sep;37(9):4817-53.
  • [4]. Zhao YL, Mackenzie M, Kirkby C, Fallone BG. 2008. Monte Carlo calculation of helical tomotherapy dose delivery. Med Phys; 35(8):3491–500.
  • [5]. Jean L. Peng,a Michael S. Ashenafi, Daniel G. McDonald, Kenneth N. Vanek. 2015. Assessment of a three-dimensional (3D) water scanning system for beam commissioning and measurements on a helical tomotherapy unit. Journal Of Applıed Clınıcal Medıcal Physıcs, Volume 16, Number 1.
  • [6]. Göksel E, Barlaz Us S, Akdeniz Y, Bozca R, Elçim Y, Gani Z, Güray G, Dede Karakoç N, Nalbant N, Toksoy T, Yeşil A. 2024. Guide For Quality Control and Quality Assurance Tests in Tomotherapy/Radixact Systems. Turk J Oncol 2024;39(Supp 1):31–5.
  • [7]. Günhan B. 2010. Helikal Tomoterapi’de Hasta Kalite Kontrolünde Dozimetrik Yöntemlerin Karşılaştırılması. İstanbul Ünversitesi Sağlık Bilimleri Enstitüsü Doktora Tezi İstanbul.
  • [8]. Sharma SD. 2011. Unflattened photon beams from the standard flattening filter free accelerators for radiotherapy: Advantages, limitations and challenges Med Phys. 2011 Jul-Sep;36(3):123–125.
  • [9]. İmran B. 2018. Tomoterapide Kalite Kontrol. www.medfizonline.org.
  • [10]. Das IJ, Cheng CW, Watts RJ, Watts RJ, Ahnesjö A, Gibbons J, Li XA, Lowenstein J, Mitra RK, Simon WE, Zhu TC. 2008. Accelerator beam data commissioning equipment and procedures: report of the TG-106 of the Therapy Physics Committee of the AAPM. . Med Phys;35(9):4186–215.
  • [11]. Fox C, Simon T, Simon B, Dempsey JF, Kahler D, Palta JR, Liu C, Yan G. 2010. Assessment of the setup dependence of detector response functions for megavoltage linear accelerators. Med Phys;37(2):477–84.
  • [12]. Chen, Y., Wang, L., Zhang, X., & Hu, W. 2023. Evaluation of photon beam energy consistency after linear accelerator replacement using depth-dose ratios and gamma analysis. Journal of Applied Clinical Medical Physics, 24(1), e13829.
  • [13]. Rajesh KA, Swamidas JV, Reenadevi, Rajeshri P, Master Z, Tejpal G, Deepak DS, Deepak DD, Shyam SK, Rajiv S. 2009. Dosimetric validation of first helical tomotherapy Hi-Art II machine in India. Journal of Medical Physics, Vol. 34, No. 1, 23-30.
  • [14]. Martínez-Rovira, I., Saez, J., Delgado-Miguel, C., & Ribas, M. 2022. Impact of beam profile consistency on dose delivery accuracy in helical tomotherapy. Medical Physics, 49(11), 7220–7230.
  • [15]. Esch AV, Clermont C, Devillers M, Iori M, Huyskens DP. 2007. On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom. Med. Phys. 34 „10 October.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomedikal Enstrümantasyon
Bölüm Araştırma Makalesi
Yazarlar

Eda Kaya Pepele 0000-0002-9193-0961

Gönderilme Tarihi 4 Şubat 2025
Kabul Tarihi 29 Mayıs 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 21 Sayı: 4

Kaynak Göster

APA Kaya Pepele, E. (2025). Assessing Tomotherapy Performance Post-Linac Replacement: A Dosimetric Comparison with Manufacturer’s Gold Data. Celal Bayar University Journal of Science, 21(4), 70-78. https://doi.org/10.18466/cbayarfbe.1633397
AMA Kaya Pepele E. Assessing Tomotherapy Performance Post-Linac Replacement: A Dosimetric Comparison with Manufacturer’s Gold Data. Celal Bayar University Journal of Science. Aralık 2025;21(4):70-78. doi:10.18466/cbayarfbe.1633397
Chicago Kaya Pepele, Eda. “Assessing Tomotherapy Performance Post-Linac Replacement: A Dosimetric Comparison with Manufacturer’s Gold Data”. Celal Bayar University Journal of Science 21, sy. 4 (Aralık 2025): 70-78. https://doi.org/10.18466/cbayarfbe.1633397.
EndNote Kaya Pepele E (01 Aralık 2025) Assessing Tomotherapy Performance Post-Linac Replacement: A Dosimetric Comparison with Manufacturer’s Gold Data. Celal Bayar University Journal of Science 21 4 70–78.
IEEE E. Kaya Pepele, “Assessing Tomotherapy Performance Post-Linac Replacement: A Dosimetric Comparison with Manufacturer’s Gold Data”, Celal Bayar University Journal of Science, c. 21, sy. 4, ss. 70–78, 2025, doi: 10.18466/cbayarfbe.1633397.
ISNAD Kaya Pepele, Eda. “Assessing Tomotherapy Performance Post-Linac Replacement: A Dosimetric Comparison with Manufacturer’s Gold Data”. Celal Bayar University Journal of Science 21/4 (Aralık2025), 70-78. https://doi.org/10.18466/cbayarfbe.1633397.
JAMA Kaya Pepele E. Assessing Tomotherapy Performance Post-Linac Replacement: A Dosimetric Comparison with Manufacturer’s Gold Data. Celal Bayar University Journal of Science. 2025;21:70–78.
MLA Kaya Pepele, Eda. “Assessing Tomotherapy Performance Post-Linac Replacement: A Dosimetric Comparison with Manufacturer’s Gold Data”. Celal Bayar University Journal of Science, c. 21, sy. 4, 2025, ss. 70-78, doi:10.18466/cbayarfbe.1633397.
Vancouver Kaya Pepele E. Assessing Tomotherapy Performance Post-Linac Replacement: A Dosimetric Comparison with Manufacturer’s Gold Data. Celal Bayar University Journal of Science. 2025;21(4):70-8.