Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 21 Sayı: 4, 118 - 127, 29.12.2025
https://doi.org/10.18466/cbayarfbe.1666717

Öz

Proje Numarası

TUBİTAK 1002 - 224M442

Kaynakça

  • [1] Uygur, İ. Environmentally assisted fatigue response of Al-Cu-Mg-Mn with SiC particulate metal matrix composites; University of Wales Swansea,1999.
  • [2] Chen Y. S., Chen T. J., Zhang S. Q., & Li P. B. (2015). Effect of ball milling on microstructural evolution during partial remelting of 6061 aluminum alloy prepared by cold pressing of alloy powders, Trans. Nonferrous Met. Soc. China (English Ed., vol. 25, no. 7, pp. 2113–2121.(https://doi.org/10.1016/S1003-6326(15)63822-5)
  • [3] Kretschmer J. (1988). “Composites in automotive applications state of the art and prospects” Mater. Sci. Technol. (United Kingdom), vol. 4, no. 9, pp. 757–767. (https://doi.org/10.1179/mst.1988.4.9.757)
  • [4] Şenel M.C., Gürbüz M. & Koç E. (2018). “The Investigation on Mechanical Properties of Al-Si3N4 Metal Matrix Composites Fabricated by Powder Metallurgy Method,” Eng. Mach., vol. 59, no. 693, pp. 33–46.
  • [5] Bedir F. & Ogel B. “Investigation of hardness, microstructure and wear properties of SiC-p reinforced Al composites” 11th International Conference on Machine Design and Production,2004.
  • [6] Du X. Zheng K. & Liu F. (2018). “Microstructure and mechanical properties of graphene-reinforced aluminum-matrix composites” Mater.Tehnol., vol.52, no. 6, pp.763–768. (https://doi.org/10.17222/mit.2018.021)
  • [7] Orhan A. Gür A. K. & Çaligülü U. (2007). “Produced by hot pressing method of composites made with Al matrix B4C reinforcement” Electron. J. Mach. Technol., vol. 2007, no. 4, pp. 8–13.
  • [8] Kumar N. Bharti A. & Saxena K. K. (2021). “A Re-Investigation: Effect of powder metallurgy parameters on the physical and mechanical properties of aluminium matrix composites” in Materials Today: Proceedings, vol. 44, pp. 2188–2193. (https://doi.org/10.1016/j.matpr.2020.12.351)
  • [9] ren Ke B. et al. (2021). “Powder metallurgy of high-entropy alloys and related composites: A short review” Int. J. Miner. Metall. Mater., vol. 28, no. 6, pp. 931–943. (https://doi.org/10.1007/s12613-020-2221-y)
  • [10] Madhan M. & Prabhakaran G. (2019). “Microwave versus conventional sintering: Microstructure and mechanical properties of Al2O3 -SiC ceramic composites” Bol. la Soc. Esp. Ceram. y Vidr., vol. 58, no. 1, pp. 14–22. (https://doi.org/10.1016/j.bsecv.2018.06.001)
  • [11] Çavdar U. & Akkurt O. (2018). “The Effect of Sintering on the Microstructure, Hardness, and Tribological Behavior of Aluminum–Graphene Nanoplatelet Powder Composites,” Powder Metall. Met. Ceram., vol. 57, no. 5–6, pp. 265–271. (https://doi.org/10.1007/s11106-018-9978-9)
  • [12] Kare D. Chintada S. Dora S. P. & Swain P. K. (2021). “Damping characteristics of pure aluminum: A comparison of microwave and conventional sintering” Met. Powder Rep., vol. 76, no. 6, pp. 22–25. (https://doi.org/10.1016/S0026-0657(21)00299-X)
  • [13] Şenel M. C. Gürbüz M. & Koç E. (2017). “The fabrication and characterization of graphene reinforced aluminum composites” Pamukkale Univ. J. Eng. Sci., vol. 23, no. 8, pp. 974–978. (https://doi.org/10.5505/pajes.2017.65902)
  • [14] Rashad M. Pan F. Yu Z. Asif M. Lin H. & Pan R. (2015). “Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets” Prog. Nat. Sci. Mater. Int., vol. 25, no. 5, pp. 460–470. (https://doi.org/10.1016/j.pnsc.2015.09.005)
  • [15] Nieto A. Huang L. Han Y. H. & Schoenung J. M. (2015). “Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement” Ceram. Int., vol. 41, no. 4, pp. 5926–5936. (https://doi.org/10.1016/j.ceramint.2015.01.027)
  • [16] Soy G. & Korucu S. (2022). “Investigations on the Mechanical Alloying Properties of Al 2024 Alloy by Three-Dimensional Ball Mill” Surf. Rev. Lett., vol. 29, no. 11. (https://doi.org/10.1142/S0218625X22501426)
  • [17] Liu P. S. & Chen G. F. (2014). “Making Porous Metals,” in Porous Materials, Butterworth-Heinemann, pp. 21–112. (https://doi.org/10.1016/B978-0-12-407788-1.00002-2)
  • [18] German R. M. (2007). “Powder Metallurgy and Particulate Material Transactions,” in Powder Metallurgy & Particulate Materials Processing, S. Sarıtaş, M. Türker, and N. Durlu, Eds. Ankara: Turkish Powder Metallurgy Association Publications.
  • [19] Lal S. Kumar S. Kumar A. Patel L & Aniruddha. (2022). “Fabrication and characterization of hybrid metal matrix composite Al-2014/SiC/fly ash fabricated using stir casting process” Mater. Today, Proc., vol. 49, pp. 3155–3163. (https://doi.org/10.1016/j.matpr.2020.11.168)
  • [20] Samtaş G. & Korucu S. (2022). “Optimization of cutting parameters for surface roughness in milling of cryogenic treated EN AW 5754 (AlMg3) aluminum alloy” J. Polytech., vol. 22, no. 3, pp. 665–673. (https://doi.org/10.2339/politeknik.457957)
  • [21] Samtaş G. & Korucu S. (2019). “The Optimization of Cutting Parameters Using Taguchi Method in Milling of Tempered Aluminum 5754 Alloy” Düzce Univ. J. Sci. Technol., vol. 7, pp. 45–60. (https://doi.org/ 10.24425/bpasts.2019.130179)
  • [22] Leszczyńska-Madej B. Garbiec D. & Madej M. (2019). “Effect of sintering temperature on microstructure and selected properties of spark plasma sintered Al-SiC composites” Vacuum, vol. 164, pp. 250–255. (https://doi.org/10.1016/j.vacuum.2019.03.033)
  • [23] Gezici L. U. Özer E. Sarpkaya I. & Çavdar U. (2022). “The effect of SiC content on microstructural and tribological properties of sintered B4C and SiC reinforced Al-Cu-Mg-Si matrix hybrid composites” Mater. Test., vol. 64, no. 4, pp. 502–512. (https://doi.org/10.1016/j.vacuum.2019.03.033)
  • [24] Çavdar U. Atik E. (2011). “Geleneksel ve hızlı sinterleme yöntemleri”, CBÜ Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, Cilt 1, Sayı 15, Sayfa 1-10.
  • [25] Leszczyńska-Madej B. Tylek A. & Wąsik M. (2015). “Mikrostruktura i właściwości kompozytów na osnowie stopu aluminium umacnianych węglikiem krzemu” Rudy i Metale Nieżelazne Recykling, Cilt 60. (https://doi.org/10.15199/67.2015.5.3)
  • [26] Hsieh C. T. Ho Y. C. Wang H. Sugiyama S. & Yanagimoto J. (2020). “Mechanical and tribological characterization of nanostructured graphene sheets/A6061 composites fabricated by induction sintering and hot extrusion” Mater. Sci. Eng. A, vol. 786, p. 138998. (https://doi.org/10.1016/j.msea.2020.138998)
  • [27] Taştan M. Gökozan H. Sarı Çavdar P. Soy G. & Çavdar U. (2019). “Analysis of artificial aging with induction and energy costs of 6082 Al and 7075 Al materials” Revista De Metalurgia, 55(1), e137. (https://doi.org/10.3989/revmetalm.137)
  • [28] Taştan M. Gökozan H. Sarı Çavdar P. Soy G. & Çavdar U. (2020). “Cost analysis of T6 induction heat treatment for the aluminum-copper powder metal compacts” Science of Sintering, vol.52, no.1, pp.77-85. (https://doi.org/10.2298/sos2001077t)
  • [29] Judge W. D. Bishop D. P. & Kipouros G. J. (2017). “Industrial sintering response and microstructural characterization of aluminum powder metallurgy alloy Alumix 123”. Metallography, Microstructure, and Analysis, vol. 6, pp. 375-382. (https://doi.org/10.1007/s13632-017-0379-0)
  • [30] Şenel M. C. Gürbüz M. & Koc E. (2018). "Fabrication and characterization of synergistic Al-SiC-GNPs hybrid composites." Composites Part B: Engineering 154, 1-9. (https://doi.org/10.1016/j.compositesb.2018.07.035)
  • [31] Anthony Xavior M. Ranganathan N. Kumar P. Joel H.G. Ashwath.P. (2018). "Mechanical properties evaluation of hot extruded AA 2024–Graphene Nanocomposites." Materials Today: Proceedings 5.5, 12519-12524. (https://doi.org/10.1016/j.matpr.2018.02.233)
  • [32] Swamy A. R. K. Ramesha A. Kumar G. V. & Prakash J. N. (2011)."Effect of particulate reinforcements on the mechanical properties of Al6061-WC and Al6061-Gr MMCs." Journal of minerals and materials characterization and engineering 10.12, 1141-1152. (https://doi.org/10.4236/jmmce.2011.1012087)
  • [33] Huang Z. Yan H. & Xiong J. (2022). "Analysis of microstructure and mechanical properties of graphene nanoplatelet reinforced 2024Al alloy." Materials Science and Engineering: A 832, 142466. (https://doi.org/10.1016/j.msea.2021.142466)

The Effect of Sintering Graphene and SiC Reinforced Aluminum Hybrid Composites with Ultra-High Frequency Induction Heating System (UHFIS) on Mechanical Properties

Yıl 2025, Cilt: 21 Sayı: 4, 118 - 127, 29.12.2025
https://doi.org/10.18466/cbayarfbe.1666717

Öz

Hybrid composites have two or more reinforcement ratios, and they are among the preferred materials in many engineering applications due to their unique properties, such as lightness, low cost, easy applicability, and high strength. This study investigated the effect of sintering aluminum matrix graphene (0.1% and 0.5%) and SiC (10% and 20%) reinforced hybrid composite with an ultra-high frequency induction heating system on mechanical and physical properties. Powder mixtures were prepared using a three-dimensional mixing system were prepared according to the experimental design created by the Taguchi method at three different temperatures (580, 600, and 620 ℃), three different pressures (80, 90, and 100 bar), and three different sintering times (5, 7 and 10 min). It was produced, and its hardness, density, and microstructure were examined. ANOVA analysis was performed on the results obtained and a mathematical model was created. As a result of the experiments, the highest hardness value of the 0.1% graphene and 10% SiC reinforced hybrid composite was 90.4 HB at 100 bar pressure, 10 min sintering time and 580 ℃ sintering temperature, and the highest hardness value of the 0.5% graphene and 20% SiC reinforced composite was 100 bar. The pressure was obtained as 103.5 HB at 5 min sintering time and 600 ℃ sintering temperature.

Proje Numarası

TUBİTAK 1002 - 224M442

Kaynakça

  • [1] Uygur, İ. Environmentally assisted fatigue response of Al-Cu-Mg-Mn with SiC particulate metal matrix composites; University of Wales Swansea,1999.
  • [2] Chen Y. S., Chen T. J., Zhang S. Q., & Li P. B. (2015). Effect of ball milling on microstructural evolution during partial remelting of 6061 aluminum alloy prepared by cold pressing of alloy powders, Trans. Nonferrous Met. Soc. China (English Ed., vol. 25, no. 7, pp. 2113–2121.(https://doi.org/10.1016/S1003-6326(15)63822-5)
  • [3] Kretschmer J. (1988). “Composites in automotive applications state of the art and prospects” Mater. Sci. Technol. (United Kingdom), vol. 4, no. 9, pp. 757–767. (https://doi.org/10.1179/mst.1988.4.9.757)
  • [4] Şenel M.C., Gürbüz M. & Koç E. (2018). “The Investigation on Mechanical Properties of Al-Si3N4 Metal Matrix Composites Fabricated by Powder Metallurgy Method,” Eng. Mach., vol. 59, no. 693, pp. 33–46.
  • [5] Bedir F. & Ogel B. “Investigation of hardness, microstructure and wear properties of SiC-p reinforced Al composites” 11th International Conference on Machine Design and Production,2004.
  • [6] Du X. Zheng K. & Liu F. (2018). “Microstructure and mechanical properties of graphene-reinforced aluminum-matrix composites” Mater.Tehnol., vol.52, no. 6, pp.763–768. (https://doi.org/10.17222/mit.2018.021)
  • [7] Orhan A. Gür A. K. & Çaligülü U. (2007). “Produced by hot pressing method of composites made with Al matrix B4C reinforcement” Electron. J. Mach. Technol., vol. 2007, no. 4, pp. 8–13.
  • [8] Kumar N. Bharti A. & Saxena K. K. (2021). “A Re-Investigation: Effect of powder metallurgy parameters on the physical and mechanical properties of aluminium matrix composites” in Materials Today: Proceedings, vol. 44, pp. 2188–2193. (https://doi.org/10.1016/j.matpr.2020.12.351)
  • [9] ren Ke B. et al. (2021). “Powder metallurgy of high-entropy alloys and related composites: A short review” Int. J. Miner. Metall. Mater., vol. 28, no. 6, pp. 931–943. (https://doi.org/10.1007/s12613-020-2221-y)
  • [10] Madhan M. & Prabhakaran G. (2019). “Microwave versus conventional sintering: Microstructure and mechanical properties of Al2O3 -SiC ceramic composites” Bol. la Soc. Esp. Ceram. y Vidr., vol. 58, no. 1, pp. 14–22. (https://doi.org/10.1016/j.bsecv.2018.06.001)
  • [11] Çavdar U. & Akkurt O. (2018). “The Effect of Sintering on the Microstructure, Hardness, and Tribological Behavior of Aluminum–Graphene Nanoplatelet Powder Composites,” Powder Metall. Met. Ceram., vol. 57, no. 5–6, pp. 265–271. (https://doi.org/10.1007/s11106-018-9978-9)
  • [12] Kare D. Chintada S. Dora S. P. & Swain P. K. (2021). “Damping characteristics of pure aluminum: A comparison of microwave and conventional sintering” Met. Powder Rep., vol. 76, no. 6, pp. 22–25. (https://doi.org/10.1016/S0026-0657(21)00299-X)
  • [13] Şenel M. C. Gürbüz M. & Koç E. (2017). “The fabrication and characterization of graphene reinforced aluminum composites” Pamukkale Univ. J. Eng. Sci., vol. 23, no. 8, pp. 974–978. (https://doi.org/10.5505/pajes.2017.65902)
  • [14] Rashad M. Pan F. Yu Z. Asif M. Lin H. & Pan R. (2015). “Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets” Prog. Nat. Sci. Mater. Int., vol. 25, no. 5, pp. 460–470. (https://doi.org/10.1016/j.pnsc.2015.09.005)
  • [15] Nieto A. Huang L. Han Y. H. & Schoenung J. M. (2015). “Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement” Ceram. Int., vol. 41, no. 4, pp. 5926–5936. (https://doi.org/10.1016/j.ceramint.2015.01.027)
  • [16] Soy G. & Korucu S. (2022). “Investigations on the Mechanical Alloying Properties of Al 2024 Alloy by Three-Dimensional Ball Mill” Surf. Rev. Lett., vol. 29, no. 11. (https://doi.org/10.1142/S0218625X22501426)
  • [17] Liu P. S. & Chen G. F. (2014). “Making Porous Metals,” in Porous Materials, Butterworth-Heinemann, pp. 21–112. (https://doi.org/10.1016/B978-0-12-407788-1.00002-2)
  • [18] German R. M. (2007). “Powder Metallurgy and Particulate Material Transactions,” in Powder Metallurgy & Particulate Materials Processing, S. Sarıtaş, M. Türker, and N. Durlu, Eds. Ankara: Turkish Powder Metallurgy Association Publications.
  • [19] Lal S. Kumar S. Kumar A. Patel L & Aniruddha. (2022). “Fabrication and characterization of hybrid metal matrix composite Al-2014/SiC/fly ash fabricated using stir casting process” Mater. Today, Proc., vol. 49, pp. 3155–3163. (https://doi.org/10.1016/j.matpr.2020.11.168)
  • [20] Samtaş G. & Korucu S. (2022). “Optimization of cutting parameters for surface roughness in milling of cryogenic treated EN AW 5754 (AlMg3) aluminum alloy” J. Polytech., vol. 22, no. 3, pp. 665–673. (https://doi.org/10.2339/politeknik.457957)
  • [21] Samtaş G. & Korucu S. (2019). “The Optimization of Cutting Parameters Using Taguchi Method in Milling of Tempered Aluminum 5754 Alloy” Düzce Univ. J. Sci. Technol., vol. 7, pp. 45–60. (https://doi.org/ 10.24425/bpasts.2019.130179)
  • [22] Leszczyńska-Madej B. Garbiec D. & Madej M. (2019). “Effect of sintering temperature on microstructure and selected properties of spark plasma sintered Al-SiC composites” Vacuum, vol. 164, pp. 250–255. (https://doi.org/10.1016/j.vacuum.2019.03.033)
  • [23] Gezici L. U. Özer E. Sarpkaya I. & Çavdar U. (2022). “The effect of SiC content on microstructural and tribological properties of sintered B4C and SiC reinforced Al-Cu-Mg-Si matrix hybrid composites” Mater. Test., vol. 64, no. 4, pp. 502–512. (https://doi.org/10.1016/j.vacuum.2019.03.033)
  • [24] Çavdar U. Atik E. (2011). “Geleneksel ve hızlı sinterleme yöntemleri”, CBÜ Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, Cilt 1, Sayı 15, Sayfa 1-10.
  • [25] Leszczyńska-Madej B. Tylek A. & Wąsik M. (2015). “Mikrostruktura i właściwości kompozytów na osnowie stopu aluminium umacnianych węglikiem krzemu” Rudy i Metale Nieżelazne Recykling, Cilt 60. (https://doi.org/10.15199/67.2015.5.3)
  • [26] Hsieh C. T. Ho Y. C. Wang H. Sugiyama S. & Yanagimoto J. (2020). “Mechanical and tribological characterization of nanostructured graphene sheets/A6061 composites fabricated by induction sintering and hot extrusion” Mater. Sci. Eng. A, vol. 786, p. 138998. (https://doi.org/10.1016/j.msea.2020.138998)
  • [27] Taştan M. Gökozan H. Sarı Çavdar P. Soy G. & Çavdar U. (2019). “Analysis of artificial aging with induction and energy costs of 6082 Al and 7075 Al materials” Revista De Metalurgia, 55(1), e137. (https://doi.org/10.3989/revmetalm.137)
  • [28] Taştan M. Gökozan H. Sarı Çavdar P. Soy G. & Çavdar U. (2020). “Cost analysis of T6 induction heat treatment for the aluminum-copper powder metal compacts” Science of Sintering, vol.52, no.1, pp.77-85. (https://doi.org/10.2298/sos2001077t)
  • [29] Judge W. D. Bishop D. P. & Kipouros G. J. (2017). “Industrial sintering response and microstructural characterization of aluminum powder metallurgy alloy Alumix 123”. Metallography, Microstructure, and Analysis, vol. 6, pp. 375-382. (https://doi.org/10.1007/s13632-017-0379-0)
  • [30] Şenel M. C. Gürbüz M. & Koc E. (2018). "Fabrication and characterization of synergistic Al-SiC-GNPs hybrid composites." Composites Part B: Engineering 154, 1-9. (https://doi.org/10.1016/j.compositesb.2018.07.035)
  • [31] Anthony Xavior M. Ranganathan N. Kumar P. Joel H.G. Ashwath.P. (2018). "Mechanical properties evaluation of hot extruded AA 2024–Graphene Nanocomposites." Materials Today: Proceedings 5.5, 12519-12524. (https://doi.org/10.1016/j.matpr.2018.02.233)
  • [32] Swamy A. R. K. Ramesha A. Kumar G. V. & Prakash J. N. (2011)."Effect of particulate reinforcements on the mechanical properties of Al6061-WC and Al6061-Gr MMCs." Journal of minerals and materials characterization and engineering 10.12, 1141-1152. (https://doi.org/10.4236/jmmce.2011.1012087)
  • [33] Huang Z. Yan H. & Xiong J. (2022). "Analysis of microstructure and mechanical properties of graphene nanoplatelet reinforced 2024Al alloy." Materials Science and Engineering: A 832, 142466. (https://doi.org/10.1016/j.msea.2021.142466)
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler, Toz Metalurjisi
Bölüm Araştırma Makalesi
Yazarlar

Büşranur Keser 0000-0001-8640-9752

Gürkan Soy 0000-0002-0308-1702

Selda Akgün 0000-0003-1971-1550

Proje Numarası TUBİTAK 1002 - 224M442
Gönderilme Tarihi 27 Mart 2025
Kabul Tarihi 29 Haziran 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 21 Sayı: 4

Kaynak Göster

APA Keser, B., Soy, G., & Akgün, S. (2025). The Effect of Sintering Graphene and SiC Reinforced Aluminum Hybrid Composites with Ultra-High Frequency Induction Heating System (UHFIS) on Mechanical Properties. Celal Bayar University Journal of Science, 21(4), 118-127. https://doi.org/10.18466/cbayarfbe.1666717
AMA Keser B, Soy G, Akgün S. The Effect of Sintering Graphene and SiC Reinforced Aluminum Hybrid Composites with Ultra-High Frequency Induction Heating System (UHFIS) on Mechanical Properties. Celal Bayar University Journal of Science. Aralık 2025;21(4):118-127. doi:10.18466/cbayarfbe.1666717
Chicago Keser, Büşranur, Gürkan Soy, ve Selda Akgün. “The Effect of Sintering Graphene and SiC Reinforced Aluminum Hybrid Composites with Ultra-High Frequency Induction Heating System (UHFIS) on Mechanical Properties”. Celal Bayar University Journal of Science 21, sy. 4 (Aralık 2025): 118-27. https://doi.org/10.18466/cbayarfbe.1666717.
EndNote Keser B, Soy G, Akgün S (01 Aralık 2025) The Effect of Sintering Graphene and SiC Reinforced Aluminum Hybrid Composites with Ultra-High Frequency Induction Heating System (UHFIS) on Mechanical Properties. Celal Bayar University Journal of Science 21 4 118–127.
IEEE B. Keser, G. Soy, ve S. Akgün, “The Effect of Sintering Graphene and SiC Reinforced Aluminum Hybrid Composites with Ultra-High Frequency Induction Heating System (UHFIS) on Mechanical Properties”, Celal Bayar University Journal of Science, c. 21, sy. 4, ss. 118–127, 2025, doi: 10.18466/cbayarfbe.1666717.
ISNAD Keser, Büşranur vd. “The Effect of Sintering Graphene and SiC Reinforced Aluminum Hybrid Composites with Ultra-High Frequency Induction Heating System (UHFIS) on Mechanical Properties”. Celal Bayar University Journal of Science 21/4 (Aralık2025), 118-127. https://doi.org/10.18466/cbayarfbe.1666717.
JAMA Keser B, Soy G, Akgün S. The Effect of Sintering Graphene and SiC Reinforced Aluminum Hybrid Composites with Ultra-High Frequency Induction Heating System (UHFIS) on Mechanical Properties. Celal Bayar University Journal of Science. 2025;21:118–127.
MLA Keser, Büşranur vd. “The Effect of Sintering Graphene and SiC Reinforced Aluminum Hybrid Composites with Ultra-High Frequency Induction Heating System (UHFIS) on Mechanical Properties”. Celal Bayar University Journal of Science, c. 21, sy. 4, 2025, ss. 118-27, doi:10.18466/cbayarfbe.1666717.
Vancouver Keser B, Soy G, Akgün S. The Effect of Sintering Graphene and SiC Reinforced Aluminum Hybrid Composites with Ultra-High Frequency Induction Heating System (UHFIS) on Mechanical Properties. Celal Bayar University Journal of Science. 2025;21(4):118-27.