Araştırma Makalesi
BibTex RIS Kaynak Göster

Design and Instrumentation of an Arduino-Based Temperature Measurement and Control Device by K-type Thermocouples

Yıl 2025, Cilt: 21 Sayı: 4, 160 - 171, 29.12.2025
https://doi.org/10.18466/cbayarfbe.1694157

Öz

This study focuses on designing an Arduino-based temperature measurement and control device operating with K-type thermocouples. Cold junction compensation (CJC) is essential in temperature measurement by thermocouples. In our work, two user-selectable circuits were designed to measure and control the contact temperature, namely, the first one using the conventional MAX6675 module and the second one using the INA114AP instrumentation amplifier. The MAX6675 part in our design involves the MAX6675 module, which is a conventional “thermocouple to digital converter” where CJC is achieved internally by fabrication. On the other hand, the INA114AP part in our design involves external CJC through our Arduino codes. Our experimental setup to determine the accuracy of temperature measurements involves the Keithley-2182A Nanovoltmeter and a heated-cooled water bath. The accuracy of our setup was initially determined statistically by comparing the results of temperature-voltage measurements in our setup by the K and E-type thermocouples by using their table values. Performance and accuracy of our design have been determined statistically by comparing the measurement results of our two modules with the results of the direct measurements by Keithley-2182A, which was taken as the most accurate measurement through the tables of K-type thermocouples within our initially determined setup accuracy. The accuracy results of our measurements show that the INA114AP part in our design surpasses various conventional instruments, such as the RuoShui 97 Digital Multimeter, Fluke 17B+ Digital Multimeter and even the fabricated MAX6675 module between 0°C and 100°C. Finally, we present how to use our Arduino-based two modules (where INA114-part being the most accurate) for controlling load (i.e., running in 230V-AC) as a high precision temperature control device between 0°C and 100°C.

Kaynakça

  • [1]. Molki, A. 2010. Simple Demonstration of the Seebeck Effect. Science Education Review; 9(3): 103-107.
  • [2]. Oersted, H., 1823. Nouvelles expériences de M. Seebeck sur les actions électromagnetiques İng.: New experiments by Mr. Seebeck on electro-magnetic actions. Annales de chimie. 2nd series; 22: 199–201.
  • [3]. Pollock, D. D. Thermocouples, Theory and Properties; CRC Press-Taylor Francis: London, 1991.
  • [4]. Kasap, S. O. Principles of Electronic Materials & Devices, 4th Ed.; MGraw Hill: NY, 2018.
  • [5]. Pollock, D. D. Thermoelectricity: Theory, Thermometry, Tool, ASTM Special Technical Publication 852, American Society for Testing and Materials: Philadelphia, PA, 1985.
  • [6]. Burns, G., Scroger, M., Strouse, G., Croarkin, M. and Guthrie, W. MNIST Monograph: Temperature-electromotive force reference functions and tables for the letter-designated thermocouple types based on the ITS-90; National Institute of Standards and Technology (NIST), Gaithersburg, MD, 1993 [online], https://doi.org/10.6028/NIST.MONO.175 (Accessed on December 15, 2024).
  • [7]. Wikipedia. Thermocouples. https://en.wikipedia.org/wiki/Thermocouple (accessed at 31.12.2024).
  • [8]. Koçyiğit, S., İşçi, C. 2000. Thermocouple Calibration and Temperature Measurements. Journ. of Science and Engineering DEÜ Engineering Faculty; 2(1): 13-20.
  • [9]. Joseph Wu, A Basic Guide to Thermocouple Measurements, Application Report, SBAA274–September 2018, Texas Instruments. https://www.ti.com/lit/an/sbaa274a/sbaa274a.pdf?ts=1735630523560 (accessed at 31.12.2024).
  • [10]. Williams, J, Thermocouple Measurement, Technical Notes. https://www.analog.com/en/resources/app-notes/an-28f.html, https://www.analog.com/media/en/technical-documentation/app-notes/an-28f.pdf (accessed at 31.12.2024).
  • [11]. Wei, G., Wang, X., and Sun, J. Signal processing method with cold junction compensation for thermocouple. 2009 IEEE Instrumentation and Measurement Technology Conference, Singapore, 2009, pp. 1458-1462, doi: 10.1109/IMTC.2009.5168685.
  • [12]. Lampasi, D. A. and Podesta, L. A measurement system exploiting non-linearity of thermocouples for cold junction compensation, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510), Como, Italy, 2004, pp. 2170-2175 Vol.3, doi: 10.1109/IMTC.2004.1351520.
  • [13]. Nandakumar, S., Abraham, A., et al. THERMOD- Signal conditioning module with cold junction compensation in thermocouple. 2017. International Journal of Scientific & Engineering Research; 8(8): 399-403.
  • [14]. Zeeshan, M., Javed, K., et al. Signal conditioning of thermocouple using intelligent technique. 2017. Materials Today. Proceedings of ICEMS-2016; 4: 10627-10631. http://dx.doi.org/10.1016/j.matpr.2017.06.432
  • [15]. Dey, D. and Munshi, S. 2012.A New Intelligent Scheme for Simultaneous Cold Junction Compensation and Linearization of Thermocouples Leonardo Electronic Journal of Practices and Technologies; 10(19): 13-28(16).
  • [16]. Ayman, A., Aly, Aly, S., Abo, El-Lail 2013. A Novel Circuit for Thermocouple Signals Linearization Using AD Converter, International Journal of Information Technology and Computer Science (IJITCS); 5(3): 56-60. DOI:10.5815/ijitcs.2013.03.07.
  • [17]. Sarma, U., Chakraborty, D., and Boruah, P. K. 2009. Design of a Smart and High Precision Industrial Temperature Measurement and Monitoring System Using K-type Thermocouple and SPI-compatible Temperature Sensor. Sensors & Transducers Journal; 102(3): 1-9.
  • [18]. Sarma, U. and Boruah P. K. 2010. Design and development of a high precision thermocouple based smart industrial thermometer with on line linearisation and data logging feature. Measurement; 43(10): 1589-1594.
  • [19]. Danisman, K., Dalkiran, I., and Celebi, F. V. 2006. Design of a high precision temperature measurement system based on artificial neural network for different thermocouple types. Measurement. 39(8): 695-700. https://doi.org/10.1016/j.measurement.2006.03.015.
  • [20]. Mohamed Ismail and Devin Alexander, The Basics of Thermocouples. Application Note 6550, Maxim Integrated. https://www.eeweb.com/wp-content/uploads/articles-app-notes-files-the-basics-of-thermocouples.pdf. (accessed at 31.12.2024).
  • [21]. Implementing Cold-Junction Compensation in Thermocouple Applications. Maxim Integrated. Application Note 4026. https://www.analog.com/en/resources/technical-articles/cold-junction-compensation-in-thermocouple-guide.html. (accessed at 31.12.2024).
  • [22]. Potter, D. Natural Instruments. Application note 043. Measuring Temperature with Thermocouples –a Tutorial. November 1996. https://users.wpi.edu/~sullivan/ME3901/Laboratories/03-Temperature_Labs/Temperature_an043.pdf. (accessed at 31.12.2024).
  • [23]. Dunn, W.C. Introduction to Instrumentation, Sensors, and Process Control; Artech House: London, 2006. pp 163.
  • [24]. Keithley Model 2182 and 2182A Nanovoltmeter User’s Manual; https://download.tek.com/manual/2182A-900-01_May_2017.pdf (accessed at 25.12.2024)
  • [25]. Model 2182A Nanovoltmeter User’s Manual, 2182A-900-01 Rev. C July 2022, www.tek.com/keithley. (accessed at 31.12.2024).
  • [26]. Victor RuoShui products Specifications; https://www.victorruoshui.com/products/multimeter (accessed at 25.02.2025)
  • [27]. Fluke Products, Fluke17B+ User manual, Specifications. https://www.fluke.com/en-us/product/electrical-testing/digital-multimeters/fluke-17b-plus (accessed at 25.02.2025).
  • [28]. Analog Devices. Maxim Integrated. Cold-Junction-Compensated K-Thermocouple to- Digital Converter (0°C to +1024°C), 19-2235; Rev 3; 6/21. https://www.analog.com/media/en/technical-documentation/data-sheets/MAX6675.pdf. (accessed at 31.12.2024).
  • [29]. Maxim. MAX6675 Evaluation Kit. 19-2345; Rev 1; 02/07. https://www.analog.com/media/en/technical-documentation/data-sheets/MAX6675EVKIT.pdf.
  • [30]. Septiana. R., Roihan, I., and Koestoer A. 2021. Denoising MAX6675 reading using Kalman filter and factorial design. International Journal of Electrical and Computer Engineering; 11(5): 3818-3827.
  • [31]. Nalavade, S. P., Patange, A. D., et. al. 2019. Development of 12 Channel Temperature Acquisition System for Heat Exchanger Using MAX6675 and Arduino Interface. In: Chandrasekhar, U., Yang, LJ., Gowthaman, S. (eds) Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018). Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2697-4_13
  • [32]. Septiana, R., Roihan, I., et al., Calibration of K-Type thermocouple and MAX6675 module with reference DS18B20 Thermistor Based on Arduino DAQ, Prosiding SNTTM XVIII, 9-10 Oktober 2019, PTM01.
  • [33]. Umurani, K., Rahmetullah, Nasution, A., Zufri, M. 2024. Design And Implementation of Temperature Measuring Device Using Max6675 and Thermocouple on Wet Cooling Tower Journal Rekayasa Material; 7(2):335-342.
  • [34]. Li, B. and Lei, J. Design of industrial temperature monitoring system based on single chip microcontroller. 2011 International Conference on Computer Science and Service System (CSSS), Nanjing, 2011, pp. 342-344, doi: 10.1109/CSSS.2011.5974595.
  • [35]. Septiana, R., Roihan, I., & Koestoer, R. A. 2020. Testing a calibration method for temperature sensors in different working fluids. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences; 68(2): 84-93. https://doi.org/10.37934/ARFMTS.68.2.8493.
  • [36]. Texas Instruments. INA114 Precision Instrumentation Amplifier. https://www.ti.com/lit/ds/symlink/ina114.pdf (accessed at 31.12.2024).
  • [37]. Top, A., Haydaroğlu C. ve Gökbulut M. 2017. The Effects of PID Parameters on Temperature Control of Unınsulated Environment. European Journal of Technic; 7(2): 1-2.
  • [38]. Valentina, P., Pamungkas, A. E., et al. 2025. Conceptual design of heating power control system for passive cooling system simulation facility using PID control-based LabView. J. Phys.: Conf. Ser. 2972: 012028. DOI 10.1088/1742-6596/2972/1/012028.
  • [39]. Lakeshore Products, Lakeshore335 Temperature controller specifications. https://www.lakeshore.com/products/product-detail/model-335/more-about-model-335 (accessed at 25.02.2025).

Yıl 2025, Cilt: 21 Sayı: 4, 160 - 171, 29.12.2025
https://doi.org/10.18466/cbayarfbe.1694157

Öz

Kaynakça

  • [1]. Molki, A. 2010. Simple Demonstration of the Seebeck Effect. Science Education Review; 9(3): 103-107.
  • [2]. Oersted, H., 1823. Nouvelles expériences de M. Seebeck sur les actions électromagnetiques İng.: New experiments by Mr. Seebeck on electro-magnetic actions. Annales de chimie. 2nd series; 22: 199–201.
  • [3]. Pollock, D. D. Thermocouples, Theory and Properties; CRC Press-Taylor Francis: London, 1991.
  • [4]. Kasap, S. O. Principles of Electronic Materials & Devices, 4th Ed.; MGraw Hill: NY, 2018.
  • [5]. Pollock, D. D. Thermoelectricity: Theory, Thermometry, Tool, ASTM Special Technical Publication 852, American Society for Testing and Materials: Philadelphia, PA, 1985.
  • [6]. Burns, G., Scroger, M., Strouse, G., Croarkin, M. and Guthrie, W. MNIST Monograph: Temperature-electromotive force reference functions and tables for the letter-designated thermocouple types based on the ITS-90; National Institute of Standards and Technology (NIST), Gaithersburg, MD, 1993 [online], https://doi.org/10.6028/NIST.MONO.175 (Accessed on December 15, 2024).
  • [7]. Wikipedia. Thermocouples. https://en.wikipedia.org/wiki/Thermocouple (accessed at 31.12.2024).
  • [8]. Koçyiğit, S., İşçi, C. 2000. Thermocouple Calibration and Temperature Measurements. Journ. of Science and Engineering DEÜ Engineering Faculty; 2(1): 13-20.
  • [9]. Joseph Wu, A Basic Guide to Thermocouple Measurements, Application Report, SBAA274–September 2018, Texas Instruments. https://www.ti.com/lit/an/sbaa274a/sbaa274a.pdf?ts=1735630523560 (accessed at 31.12.2024).
  • [10]. Williams, J, Thermocouple Measurement, Technical Notes. https://www.analog.com/en/resources/app-notes/an-28f.html, https://www.analog.com/media/en/technical-documentation/app-notes/an-28f.pdf (accessed at 31.12.2024).
  • [11]. Wei, G., Wang, X., and Sun, J. Signal processing method with cold junction compensation for thermocouple. 2009 IEEE Instrumentation and Measurement Technology Conference, Singapore, 2009, pp. 1458-1462, doi: 10.1109/IMTC.2009.5168685.
  • [12]. Lampasi, D. A. and Podesta, L. A measurement system exploiting non-linearity of thermocouples for cold junction compensation, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510), Como, Italy, 2004, pp. 2170-2175 Vol.3, doi: 10.1109/IMTC.2004.1351520.
  • [13]. Nandakumar, S., Abraham, A., et al. THERMOD- Signal conditioning module with cold junction compensation in thermocouple. 2017. International Journal of Scientific & Engineering Research; 8(8): 399-403.
  • [14]. Zeeshan, M., Javed, K., et al. Signal conditioning of thermocouple using intelligent technique. 2017. Materials Today. Proceedings of ICEMS-2016; 4: 10627-10631. http://dx.doi.org/10.1016/j.matpr.2017.06.432
  • [15]. Dey, D. and Munshi, S. 2012.A New Intelligent Scheme for Simultaneous Cold Junction Compensation and Linearization of Thermocouples Leonardo Electronic Journal of Practices and Technologies; 10(19): 13-28(16).
  • [16]. Ayman, A., Aly, Aly, S., Abo, El-Lail 2013. A Novel Circuit for Thermocouple Signals Linearization Using AD Converter, International Journal of Information Technology and Computer Science (IJITCS); 5(3): 56-60. DOI:10.5815/ijitcs.2013.03.07.
  • [17]. Sarma, U., Chakraborty, D., and Boruah, P. K. 2009. Design of a Smart and High Precision Industrial Temperature Measurement and Monitoring System Using K-type Thermocouple and SPI-compatible Temperature Sensor. Sensors & Transducers Journal; 102(3): 1-9.
  • [18]. Sarma, U. and Boruah P. K. 2010. Design and development of a high precision thermocouple based smart industrial thermometer with on line linearisation and data logging feature. Measurement; 43(10): 1589-1594.
  • [19]. Danisman, K., Dalkiran, I., and Celebi, F. V. 2006. Design of a high precision temperature measurement system based on artificial neural network for different thermocouple types. Measurement. 39(8): 695-700. https://doi.org/10.1016/j.measurement.2006.03.015.
  • [20]. Mohamed Ismail and Devin Alexander, The Basics of Thermocouples. Application Note 6550, Maxim Integrated. https://www.eeweb.com/wp-content/uploads/articles-app-notes-files-the-basics-of-thermocouples.pdf. (accessed at 31.12.2024).
  • [21]. Implementing Cold-Junction Compensation in Thermocouple Applications. Maxim Integrated. Application Note 4026. https://www.analog.com/en/resources/technical-articles/cold-junction-compensation-in-thermocouple-guide.html. (accessed at 31.12.2024).
  • [22]. Potter, D. Natural Instruments. Application note 043. Measuring Temperature with Thermocouples –a Tutorial. November 1996. https://users.wpi.edu/~sullivan/ME3901/Laboratories/03-Temperature_Labs/Temperature_an043.pdf. (accessed at 31.12.2024).
  • [23]. Dunn, W.C. Introduction to Instrumentation, Sensors, and Process Control; Artech House: London, 2006. pp 163.
  • [24]. Keithley Model 2182 and 2182A Nanovoltmeter User’s Manual; https://download.tek.com/manual/2182A-900-01_May_2017.pdf (accessed at 25.12.2024)
  • [25]. Model 2182A Nanovoltmeter User’s Manual, 2182A-900-01 Rev. C July 2022, www.tek.com/keithley. (accessed at 31.12.2024).
  • [26]. Victor RuoShui products Specifications; https://www.victorruoshui.com/products/multimeter (accessed at 25.02.2025)
  • [27]. Fluke Products, Fluke17B+ User manual, Specifications. https://www.fluke.com/en-us/product/electrical-testing/digital-multimeters/fluke-17b-plus (accessed at 25.02.2025).
  • [28]. Analog Devices. Maxim Integrated. Cold-Junction-Compensated K-Thermocouple to- Digital Converter (0°C to +1024°C), 19-2235; Rev 3; 6/21. https://www.analog.com/media/en/technical-documentation/data-sheets/MAX6675.pdf. (accessed at 31.12.2024).
  • [29]. Maxim. MAX6675 Evaluation Kit. 19-2345; Rev 1; 02/07. https://www.analog.com/media/en/technical-documentation/data-sheets/MAX6675EVKIT.pdf.
  • [30]. Septiana. R., Roihan, I., and Koestoer A. 2021. Denoising MAX6675 reading using Kalman filter and factorial design. International Journal of Electrical and Computer Engineering; 11(5): 3818-3827.
  • [31]. Nalavade, S. P., Patange, A. D., et. al. 2019. Development of 12 Channel Temperature Acquisition System for Heat Exchanger Using MAX6675 and Arduino Interface. In: Chandrasekhar, U., Yang, LJ., Gowthaman, S. (eds) Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018). Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2697-4_13
  • [32]. Septiana, R., Roihan, I., et al., Calibration of K-Type thermocouple and MAX6675 module with reference DS18B20 Thermistor Based on Arduino DAQ, Prosiding SNTTM XVIII, 9-10 Oktober 2019, PTM01.
  • [33]. Umurani, K., Rahmetullah, Nasution, A., Zufri, M. 2024. Design And Implementation of Temperature Measuring Device Using Max6675 and Thermocouple on Wet Cooling Tower Journal Rekayasa Material; 7(2):335-342.
  • [34]. Li, B. and Lei, J. Design of industrial temperature monitoring system based on single chip microcontroller. 2011 International Conference on Computer Science and Service System (CSSS), Nanjing, 2011, pp. 342-344, doi: 10.1109/CSSS.2011.5974595.
  • [35]. Septiana, R., Roihan, I., & Koestoer, R. A. 2020. Testing a calibration method for temperature sensors in different working fluids. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences; 68(2): 84-93. https://doi.org/10.37934/ARFMTS.68.2.8493.
  • [36]. Texas Instruments. INA114 Precision Instrumentation Amplifier. https://www.ti.com/lit/ds/symlink/ina114.pdf (accessed at 31.12.2024).
  • [37]. Top, A., Haydaroğlu C. ve Gökbulut M. 2017. The Effects of PID Parameters on Temperature Control of Unınsulated Environment. European Journal of Technic; 7(2): 1-2.
  • [38]. Valentina, P., Pamungkas, A. E., et al. 2025. Conceptual design of heating power control system for passive cooling system simulation facility using PID control-based LabView. J. Phys.: Conf. Ser. 2972: 012028. DOI 10.1088/1742-6596/2972/1/012028.
  • [39]. Lakeshore Products, Lakeshore335 Temperature controller specifications. https://www.lakeshore.com/products/product-detail/model-335/more-about-model-335 (accessed at 25.02.2025).
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrostatik ve Elektrodinamik, Elektrik Devreleri ve Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

Coşkun Deniz 0000-0001-8383-3195

Burak Buran 0009-0002-6336-6571

Gönderilme Tarihi 9 Mayıs 2025
Kabul Tarihi 9 Temmuz 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 21 Sayı: 4

Kaynak Göster

APA Deniz, C., & Buran, B. (2025). Design and Instrumentation of an Arduino-Based Temperature Measurement and Control Device by K-type Thermocouples. Celal Bayar University Journal of Science, 21(4), 160-171. https://doi.org/10.18466/cbayarfbe.1694157
AMA Deniz C, Buran B. Design and Instrumentation of an Arduino-Based Temperature Measurement and Control Device by K-type Thermocouples. Celal Bayar University Journal of Science. Aralık 2025;21(4):160-171. doi:10.18466/cbayarfbe.1694157
Chicago Deniz, Coşkun, ve Burak Buran. “Design and Instrumentation of an Arduino-Based Temperature Measurement and Control Device by K-type Thermocouples”. Celal Bayar University Journal of Science 21, sy. 4 (Aralık 2025): 160-71. https://doi.org/10.18466/cbayarfbe.1694157.
EndNote Deniz C, Buran B (01 Aralık 2025) Design and Instrumentation of an Arduino-Based Temperature Measurement and Control Device by K-type Thermocouples. Celal Bayar University Journal of Science 21 4 160–171.
IEEE C. Deniz ve B. Buran, “Design and Instrumentation of an Arduino-Based Temperature Measurement and Control Device by K-type Thermocouples”, Celal Bayar University Journal of Science, c. 21, sy. 4, ss. 160–171, 2025, doi: 10.18466/cbayarfbe.1694157.
ISNAD Deniz, Coşkun - Buran, Burak. “Design and Instrumentation of an Arduino-Based Temperature Measurement and Control Device by K-type Thermocouples”. Celal Bayar University Journal of Science 21/4 (Aralık2025), 160-171. https://doi.org/10.18466/cbayarfbe.1694157.
JAMA Deniz C, Buran B. Design and Instrumentation of an Arduino-Based Temperature Measurement and Control Device by K-type Thermocouples. Celal Bayar University Journal of Science. 2025;21:160–171.
MLA Deniz, Coşkun ve Burak Buran. “Design and Instrumentation of an Arduino-Based Temperature Measurement and Control Device by K-type Thermocouples”. Celal Bayar University Journal of Science, c. 21, sy. 4, 2025, ss. 160-71, doi:10.18466/cbayarfbe.1694157.
Vancouver Deniz C, Buran B. Design and Instrumentation of an Arduino-Based Temperature Measurement and Control Device by K-type Thermocouples. Celal Bayar University Journal of Science. 2025;21(4):160-71.