Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 235 - 239, 30.09.2019
https://doi.org/10.18466/cbayarfbe.395273

Öz

Kaynakça

  • 1. Hou M., Chu Y., Li X., Wang H., Yao W., Yu G., Murayama S., Wang Y. 2016. Electro-peroxone degradation of diethyl phthalate: Cathode selection, operational parameters, and degradation mechanisms. Journal of Hazardous materials; 319: 61-68.
  • 2. Munter R. 2001. Advanced oxidation processes–current status and prospects. Proceedings of the Estonian Academy of Sciences. Chemistry; 50 (2): 59-80.
  • 3. Wang H., Yuan S., Zhan J., Wang Y., Yu G., Deng S., Huang J., Wang B. 2015. Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process. Water Research; 80: 20-29.
  • 4. Wang H., Bakheet B., Yuan S., Li X., Yu G., Murayama S., Wang Y. 2015. Kinetics and energy efficiency for the degradation of 1, 4-dioxane by electro-peroxone process. Journal of Hazardous materials; 294: 90-98.
  • 5. Guo W., Wu Q.-L., Zhou X.-J., Cao H.-O., Du J.-S., Yin R.-L., Ren N.-Q. 2015. Enhanced amoxicillin treatment using the electro-peroxone process: key factors and degradation mechanism. RSC Advances; 5 (65): 52695-52702.
  • 6. Bakheet B., Yuan S., Li Z., Wang H., Zuo J., Komarneni S., Wang Y. 2013.Electro-peroxone treatment of Orange II dye wastewater. Water Research; 47 (16): 6234-6243.
  • 7. Turkay O., Barışçı S., Sillanpää M. 2017. E-peroxone Process for the Treatment of Laundry Wastewater: A Case Study. Journal of Environmental Chemical Engineering; 5(5): 4282-4290.
  • 8. Li Z., Yuan S., Qiu C., Wang Y., Pan X., Wang J., Wang C., Zuo J. 2013. Effective degradation of refractory organic pollutants in landfill leachate by electro-peroxone treatment. Electrochimica Acta; 102: 174-182.
  • 9. Li Y., Shen W., Fu S., Yang H., Yu G., Wang Y. 2015. Inhibition of bromate formation during drinking water treatment by adapting ozonation to electro-peroxone process. Chemical Engineering Journal; 264: 322-328.
  • 10. Yao W., Wang X., Yang H., Yu G., Deng S., Huang J., Wang B., Wang Y. 2016. Removal of pharmaceuticals from secondary effluents by an electro-peroxone process. Water Research; 88: 826-835.
  • 11. Li X., Wang Y., Yuan S., Li Z., Wang B., Huang J., Deng S., Yu G., 2014. Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process. Water Research; 63: 81-93.
  • 12. Li X., Wang Y., Zhao J., Wang H., Wang B., Huang J., Deng S., Yu G. 2015. Electro-peroxone treatment of the antidepressant venlafaxine: Operational parameters and mechanism. Journal of hazardous materials; 300: 298-306.
  • 13. Turkay O., Barışçı S., Öztürk B., Öztürk H., Dimoglo A. 2017. Electro-Peroxone Treatment of Phenol: Process Comparison, the Effect of Operational Parameters and Degradation Mechanism. Journal of The Electrochemical Society; 164 (9): E180-E186.
  • 14. Milan-Segovia N., Wang Y., Cannon F. S., Voigt R. C., Furness J. C 2007. Comparison of hydroxyl radical generation for various advanced oxidation combinations as applied to foundries. Ozone: Science and Engineering; 29 (6): 461-471.
  • 15. Roth J. A., Sullivan D. E. 1981. Solubility of ozone in water, Industrial & Engineering Chemistry Fundamentals; 20 (2): 137-140.
  • 16. Wang Y. The Electro-peroxone Technology as a Promising Advanced Oxidation Process for Water and Wastewater Treatment. In: In: Zhou M., Oturan M., Sirés I. (eds) Electro-Fenton Process. The Handbook of Environmental Chemistry, vol 61. Springer, Singapore, 2017.

Determination of Operating Conditions for Hydrogen Peroxide and Hydroxyl Radical Production in Electro-peroxone Process

Yıl 2019, , 235 - 239, 30.09.2019
https://doi.org/10.18466/cbayarfbe.395273

Öz

Electro-peroxone (EPO) process is an enhanced ozonation process with a
simple installation of electro-oxidation apparatus into the ozone reactor. It
enables the use of excess oxygen gas caused by inefficient ozone generation by
ozone generators. The sparged oxygen is reduced to form hydrogen peroxide (H2O2)
on the cathode surface and then the electrogenerated H2O2 reacts
with ozone to form hydroxyl radical (OH•). Thus, the highly oxidative species
such as OH• and H2O2,are produced in the bulk solution. In this study, the effects
of operating conditions such as reaction time, ozone flow rate and the applied
current on the production of oxidant species were discussed. Response Surface
Methodology (RSM) was used for the modeling of reaction conditions. The models
employed were both significant for the production of OH• and H2O2.
Reaction time is the most important factor in the production of oxidants. While
the reaction time and ozone flow rate had a synergistic effect on OH•
production, the interaction of the applied flow and the ozone flow rate
affected H2O2 production. Optimum operating conditions
were determined maximizing the OH• concentration. The short reaction time of
the process may be preferred because OH• is inhibited by the electrogenerated H2O2
at advancing reaction times.

Kaynakça

  • 1. Hou M., Chu Y., Li X., Wang H., Yao W., Yu G., Murayama S., Wang Y. 2016. Electro-peroxone degradation of diethyl phthalate: Cathode selection, operational parameters, and degradation mechanisms. Journal of Hazardous materials; 319: 61-68.
  • 2. Munter R. 2001. Advanced oxidation processes–current status and prospects. Proceedings of the Estonian Academy of Sciences. Chemistry; 50 (2): 59-80.
  • 3. Wang H., Yuan S., Zhan J., Wang Y., Yu G., Deng S., Huang J., Wang B. 2015. Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process. Water Research; 80: 20-29.
  • 4. Wang H., Bakheet B., Yuan S., Li X., Yu G., Murayama S., Wang Y. 2015. Kinetics and energy efficiency for the degradation of 1, 4-dioxane by electro-peroxone process. Journal of Hazardous materials; 294: 90-98.
  • 5. Guo W., Wu Q.-L., Zhou X.-J., Cao H.-O., Du J.-S., Yin R.-L., Ren N.-Q. 2015. Enhanced amoxicillin treatment using the electro-peroxone process: key factors and degradation mechanism. RSC Advances; 5 (65): 52695-52702.
  • 6. Bakheet B., Yuan S., Li Z., Wang H., Zuo J., Komarneni S., Wang Y. 2013.Electro-peroxone treatment of Orange II dye wastewater. Water Research; 47 (16): 6234-6243.
  • 7. Turkay O., Barışçı S., Sillanpää M. 2017. E-peroxone Process for the Treatment of Laundry Wastewater: A Case Study. Journal of Environmental Chemical Engineering; 5(5): 4282-4290.
  • 8. Li Z., Yuan S., Qiu C., Wang Y., Pan X., Wang J., Wang C., Zuo J. 2013. Effective degradation of refractory organic pollutants in landfill leachate by electro-peroxone treatment. Electrochimica Acta; 102: 174-182.
  • 9. Li Y., Shen W., Fu S., Yang H., Yu G., Wang Y. 2015. Inhibition of bromate formation during drinking water treatment by adapting ozonation to electro-peroxone process. Chemical Engineering Journal; 264: 322-328.
  • 10. Yao W., Wang X., Yang H., Yu G., Deng S., Huang J., Wang B., Wang Y. 2016. Removal of pharmaceuticals from secondary effluents by an electro-peroxone process. Water Research; 88: 826-835.
  • 11. Li X., Wang Y., Yuan S., Li Z., Wang B., Huang J., Deng S., Yu G., 2014. Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process. Water Research; 63: 81-93.
  • 12. Li X., Wang Y., Zhao J., Wang H., Wang B., Huang J., Deng S., Yu G. 2015. Electro-peroxone treatment of the antidepressant venlafaxine: Operational parameters and mechanism. Journal of hazardous materials; 300: 298-306.
  • 13. Turkay O., Barışçı S., Öztürk B., Öztürk H., Dimoglo A. 2017. Electro-Peroxone Treatment of Phenol: Process Comparison, the Effect of Operational Parameters and Degradation Mechanism. Journal of The Electrochemical Society; 164 (9): E180-E186.
  • 14. Milan-Segovia N., Wang Y., Cannon F. S., Voigt R. C., Furness J. C 2007. Comparison of hydroxyl radical generation for various advanced oxidation combinations as applied to foundries. Ozone: Science and Engineering; 29 (6): 461-471.
  • 15. Roth J. A., Sullivan D. E. 1981. Solubility of ozone in water, Industrial & Engineering Chemistry Fundamentals; 20 (2): 137-140.
  • 16. Wang Y. The Electro-peroxone Technology as a Promising Advanced Oxidation Process for Water and Wastewater Treatment. In: In: Zhou M., Oturan M., Sirés I. (eds) Electro-Fenton Process. The Handbook of Environmental Chemistry, vol 61. Springer, Singapore, 2017.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Özge Dinç

Zeynep Girgin Ersoy Bu kişi benim

Hazal Öztürk Bu kişi benim

Sibel Barışçı Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Dinç, Ö., Girgin Ersoy, Z., Öztürk, H., Barışçı, S. (2019). Determination of Operating Conditions for Hydrogen Peroxide and Hydroxyl Radical Production in Electro-peroxone Process. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(3), 235-239. https://doi.org/10.18466/cbayarfbe.395273
AMA Dinç Ö, Girgin Ersoy Z, Öztürk H, Barışçı S. Determination of Operating Conditions for Hydrogen Peroxide and Hydroxyl Radical Production in Electro-peroxone Process. CBUJOS. Eylül 2019;15(3):235-239. doi:10.18466/cbayarfbe.395273
Chicago Dinç, Özge, Zeynep Girgin Ersoy, Hazal Öztürk, ve Sibel Barışçı. “Determination of Operating Conditions for Hydrogen Peroxide and Hydroxyl Radical Production in Electro-Peroxone Process”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15, sy. 3 (Eylül 2019): 235-39. https://doi.org/10.18466/cbayarfbe.395273.
EndNote Dinç Ö, Girgin Ersoy Z, Öztürk H, Barışçı S (01 Eylül 2019) Determination of Operating Conditions for Hydrogen Peroxide and Hydroxyl Radical Production in Electro-peroxone Process. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15 3 235–239.
IEEE Ö. Dinç, Z. Girgin Ersoy, H. Öztürk, ve S. Barışçı, “Determination of Operating Conditions for Hydrogen Peroxide and Hydroxyl Radical Production in Electro-peroxone Process”, CBUJOS, c. 15, sy. 3, ss. 235–239, 2019, doi: 10.18466/cbayarfbe.395273.
ISNAD Dinç, Özge vd. “Determination of Operating Conditions for Hydrogen Peroxide and Hydroxyl Radical Production in Electro-Peroxone Process”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15/3 (Eylül 2019), 235-239. https://doi.org/10.18466/cbayarfbe.395273.
JAMA Dinç Ö, Girgin Ersoy Z, Öztürk H, Barışçı S. Determination of Operating Conditions for Hydrogen Peroxide and Hydroxyl Radical Production in Electro-peroxone Process. CBUJOS. 2019;15:235–239.
MLA Dinç, Özge vd. “Determination of Operating Conditions for Hydrogen Peroxide and Hydroxyl Radical Production in Electro-Peroxone Process”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 15, sy. 3, 2019, ss. 235-9, doi:10.18466/cbayarfbe.395273.
Vancouver Dinç Ö, Girgin Ersoy Z, Öztürk H, Barışçı S. Determination of Operating Conditions for Hydrogen Peroxide and Hydroxyl Radical Production in Electro-peroxone Process. CBUJOS. 2019;15(3):235-9.