Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 247 - 249, 30.06.2018
https://doi.org/10.18466/cbayarfbe.419992

Öz

Kaynakça

  • 1. Aloui, H, Khwaldia, K, Ben Slama, M, Hamdi, M, Effect of glycerol and coating weight on functional properties of biopolymer-coated paper, Carbohydrate Polymers, 2011, 1063-1072.
  • 2. Rodriguez, A, Battle, R, Nerin, C, The Use of Natural Essential Oils as Antimicrobial Solutions in Paper Packaging, Part II, Progress in Organic Coatings, 2007, 60, 33-38.
  • 3. Rodriguez, A, Nerín, C, Batlle, R, New Cinnamon-Based Active Paper Packaging Against Rhizopusstolonifer Food Spoilage, Journal of Agricultural and Food Chemistry, 2008, 56(15), 6364-6369.
  • 4. Han, J.H, Antimicrobial Food Packaging, Food Technology, 2000, 54(3), 56-65.
  • 5. Velazquez, J, Antimicrobial Food Packaging, London, UK: Academic Press, 2015.
  • 6. Chalier, P, Ben Arfa, A, Guillard, V, Gontard, N, Moisture and Temperature Triggered Release of a Volatile Active Agent from Soy Protein Coated Paper: Effect of Glass Transition Phenomena on Carvacrol Diffusion Coefficient, Journal of Agricultural and Food Chemistry, 2009, 57(2), 658-665.
  • 7. Rodriguez, A, Battle, R, Nerin, C, Determination of Fifteen Active Compounds Released from Paraffin-Based Active Packaging in Tomato Samples via Microextraction Techniques. Analytical and Bioanalytical Chemistry, 2009, 395(1) p. 203-211.
  • 8. Rodriguez, A, Nerin, C, Battle, R, Active Paraffin-Based Paper Packaging for Extending the Shelf Life of Cherry Tomatoes, Journal of Agricultural and Food Chemistry, 2010, 58(11), 6780–6786.
  • 9. Vartiainen, J, Motion, R, Kulonen, K, Ratto, M, Skytta, E, Advenainen, R, Chitosan-Coated Paper: Effects of Nisin and Different Acids in the Antimicrobial Activity, Journal of Applied Polymer Science, 2004, 94, 986-993.
  • 10. Mascheroni, E, Chalier, P, Gontard, N, and Gastaldi, E, Anti-Microbial Effectiveness of Relative Humidity-Controlled Carvacrol Release from Wheat Gluten/Montmorillonite Coated Papers, Food Control, 2011, 22(10), 1582-1591.
  • 11. Zhang, W, Xiao, H, Qian, L, Enhanced Water Vapour Barrier and Grease Resistance of Paper Bilayer-Coated with Chitosan and Beeswax, Carbohydrate Polymers, 2014, 30, 401-406.
  • 12. Khwaldia, K, Basta, A.H, Aloui, H, El-saied, H, Chitosan-Caseinate Bilayer Coatings for Paper Packaging Materials, Carbohydrate Polymer, 2014, 99, 508-516.
  • 13. Dehnad D, Mirzaei H, Emam-Djomeh Z, Jafari S.M, Dadashi S2.Thermal and Antimicrobial Properties of Chitosan-Nanocellulose Films for Extending Shelf Life of Ground Meat, Carbohydrate Polymers, 2014, 109, 148-154.
  • 14. Kjellgren, H, Gallstedt, M, Enfström, G, Jarnström, L, Barrier and Surface Properties of Chitosan-Coated Greaseproof Paper, Carbohydrate Polymers, 2006, 65, 453-460.
  • 15. Khwaldia, K, Physical and Mechanical Properties of Hydroxypropyl Methylcelullose-Coated Paper as Affected by Coating Weight and Coating Compositon, BioResource, 2013, 8(3), 3438-3452.
  • 16. Ayala-Zavala, J.F, Gonzalez-Aguilar, G.A, Optimizing the Use of Garlic Oil as Antimicrobial Agent on Fresh-Cut Tomato through a Controlled Release System, Journal of Food Science, 2010, 75, 398-405.
  • 17. Fernández, A, Picouet , P, Lloret, E, Cellulose-Silver Nanoparticle Hybrid Materials to Control Spoilage-Related Microflora in Absorbent Pads Located in Trays of Fresh-Cut Melon, International Journal of Food Microbiology, 2010, 142(1-2), 222-228.
  • 18. Levlin, J.E, General Physical Properties of Paper and Board, Pulp and Paper Testing, Helsinki, Finland: Fapet Oy, 1999, 138-160.
  • 19. Sönmez, S, Interactive Effects of Copolymers and Nano-Sized Pigments on Coated Recycled Paperboards in Flexographic Print Applications, Asian Journal of Chemistry, 2011, 23(6), 2609-2613.

Strength Properties of Coated Paper with Cuminum cyminum L. and Prunus mahaleb L.

Yıl 2018, , 247 - 249, 30.06.2018
https://doi.org/10.18466/cbayarfbe.419992

Öz

Coating of the paper
surface against to microorganism to making it suitable for food packaging is
crucial in terms of improving antimicrobial properties. Cuminum cyminum L. known as cumin and Prunus mahaleb L. have the abundant chemical compound. Cumin has
antiviral activity that making it proper for coating due to its various
components. Mahaleb as well has rich fragrance make it eligible for sugary
snacks and chocolate package. After coating with such biomaterials, thanks to
varied fatty acids impart protective feature from oxidation to paper surface.
It was observed that the odor of substances was trapped from paper samples.
Wrapping paper selected as a base paper in this study. Cationic starch used for
emulsifying the coating chemical. Cumin and mahaleb added the starch emulsion
and coating suspension applied on the top pile of the paper with # 0 drawdown
bar. Coating application reduced the paper's tear index results but increase
tensile and burst index results in both cases. Mahaleb gives better Cobb60
value and bursting and tensile index and comparing to Cumin. However, cumin
coated papers tensile index results in machine direction was better than
mahaleb. Both natural substances are suitable material as an additive to the
coating.

Kaynakça

  • 1. Aloui, H, Khwaldia, K, Ben Slama, M, Hamdi, M, Effect of glycerol and coating weight on functional properties of biopolymer-coated paper, Carbohydrate Polymers, 2011, 1063-1072.
  • 2. Rodriguez, A, Battle, R, Nerin, C, The Use of Natural Essential Oils as Antimicrobial Solutions in Paper Packaging, Part II, Progress in Organic Coatings, 2007, 60, 33-38.
  • 3. Rodriguez, A, Nerín, C, Batlle, R, New Cinnamon-Based Active Paper Packaging Against Rhizopusstolonifer Food Spoilage, Journal of Agricultural and Food Chemistry, 2008, 56(15), 6364-6369.
  • 4. Han, J.H, Antimicrobial Food Packaging, Food Technology, 2000, 54(3), 56-65.
  • 5. Velazquez, J, Antimicrobial Food Packaging, London, UK: Academic Press, 2015.
  • 6. Chalier, P, Ben Arfa, A, Guillard, V, Gontard, N, Moisture and Temperature Triggered Release of a Volatile Active Agent from Soy Protein Coated Paper: Effect of Glass Transition Phenomena on Carvacrol Diffusion Coefficient, Journal of Agricultural and Food Chemistry, 2009, 57(2), 658-665.
  • 7. Rodriguez, A, Battle, R, Nerin, C, Determination of Fifteen Active Compounds Released from Paraffin-Based Active Packaging in Tomato Samples via Microextraction Techniques. Analytical and Bioanalytical Chemistry, 2009, 395(1) p. 203-211.
  • 8. Rodriguez, A, Nerin, C, Battle, R, Active Paraffin-Based Paper Packaging for Extending the Shelf Life of Cherry Tomatoes, Journal of Agricultural and Food Chemistry, 2010, 58(11), 6780–6786.
  • 9. Vartiainen, J, Motion, R, Kulonen, K, Ratto, M, Skytta, E, Advenainen, R, Chitosan-Coated Paper: Effects of Nisin and Different Acids in the Antimicrobial Activity, Journal of Applied Polymer Science, 2004, 94, 986-993.
  • 10. Mascheroni, E, Chalier, P, Gontard, N, and Gastaldi, E, Anti-Microbial Effectiveness of Relative Humidity-Controlled Carvacrol Release from Wheat Gluten/Montmorillonite Coated Papers, Food Control, 2011, 22(10), 1582-1591.
  • 11. Zhang, W, Xiao, H, Qian, L, Enhanced Water Vapour Barrier and Grease Resistance of Paper Bilayer-Coated with Chitosan and Beeswax, Carbohydrate Polymers, 2014, 30, 401-406.
  • 12. Khwaldia, K, Basta, A.H, Aloui, H, El-saied, H, Chitosan-Caseinate Bilayer Coatings for Paper Packaging Materials, Carbohydrate Polymer, 2014, 99, 508-516.
  • 13. Dehnad D, Mirzaei H, Emam-Djomeh Z, Jafari S.M, Dadashi S2.Thermal and Antimicrobial Properties of Chitosan-Nanocellulose Films for Extending Shelf Life of Ground Meat, Carbohydrate Polymers, 2014, 109, 148-154.
  • 14. Kjellgren, H, Gallstedt, M, Enfström, G, Jarnström, L, Barrier and Surface Properties of Chitosan-Coated Greaseproof Paper, Carbohydrate Polymers, 2006, 65, 453-460.
  • 15. Khwaldia, K, Physical and Mechanical Properties of Hydroxypropyl Methylcelullose-Coated Paper as Affected by Coating Weight and Coating Compositon, BioResource, 2013, 8(3), 3438-3452.
  • 16. Ayala-Zavala, J.F, Gonzalez-Aguilar, G.A, Optimizing the Use of Garlic Oil as Antimicrobial Agent on Fresh-Cut Tomato through a Controlled Release System, Journal of Food Science, 2010, 75, 398-405.
  • 17. Fernández, A, Picouet , P, Lloret, E, Cellulose-Silver Nanoparticle Hybrid Materials to Control Spoilage-Related Microflora in Absorbent Pads Located in Trays of Fresh-Cut Melon, International Journal of Food Microbiology, 2010, 142(1-2), 222-228.
  • 18. Levlin, J.E, General Physical Properties of Paper and Board, Pulp and Paper Testing, Helsinki, Finland: Fapet Oy, 1999, 138-160.
  • 19. Sönmez, S, Interactive Effects of Copolymers and Nano-Sized Pigments on Coated Recycled Paperboards in Flexographic Print Applications, Asian Journal of Chemistry, 2011, 23(6), 2609-2613.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ahsen Ezel Bildik Dal

Yayımlanma Tarihi 30 Haziran 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Bildik Dal, A. E. (2018). Strength Properties of Coated Paper with Cuminum cyminum L. and Prunus mahaleb L. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14(2), 247-249. https://doi.org/10.18466/cbayarfbe.419992
AMA Bildik Dal AE. Strength Properties of Coated Paper with Cuminum cyminum L. and Prunus mahaleb L. CBUJOS. Haziran 2018;14(2):247-249. doi:10.18466/cbayarfbe.419992
Chicago Bildik Dal, Ahsen Ezel. “ And Prunus Mahaleb L”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14, sy. 2 (Haziran 2018): 247-49. https://doi.org/10.18466/cbayarfbe.419992.
EndNote Bildik Dal AE (01 Haziran 2018) Strength Properties of Coated Paper with Cuminum cyminum L. and Prunus mahaleb L. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14 2 247–249.
IEEE A. E. Bildik Dal, “ and Prunus mahaleb L”., CBUJOS, c. 14, sy. 2, ss. 247–249, 2018, doi: 10.18466/cbayarfbe.419992.
ISNAD Bildik Dal, Ahsen Ezel. “ And Prunus Mahaleb L”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14/2 (Haziran 2018), 247-249. https://doi.org/10.18466/cbayarfbe.419992.
JAMA Bildik Dal AE. Strength Properties of Coated Paper with Cuminum cyminum L. and Prunus mahaleb L. CBUJOS. 2018;14:247–249.
MLA Bildik Dal, Ahsen Ezel. “ And Prunus Mahaleb L”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 14, sy. 2, 2018, ss. 247-9, doi:10.18466/cbayarfbe.419992.
Vancouver Bildik Dal AE. Strength Properties of Coated Paper with Cuminum cyminum L. and Prunus mahaleb L. CBUJOS. 2018;14(2):247-9.