Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluating of Salt Stress Tolerance in Selected Wheat Mutant Progenies with Contributing Expression Analysis of TaWRKY Genes and Antioxidant Defence Parameters

Yıl 2018, , 315 - 320, 30.09.2018
https://doi.org/10.18466/cbayarfbe.430620

Öz


















In current work, the seeds from two candidate
fifth-generation moderately salt tolerant wheat mutant progenies (Triticum aestivum L. cv. Adana 99)
developed with using sodium azide (as a mutagenic agent) and from their parent
(commercial cultivar) were sown in the growth chamber to evaluate their
performance under control and 150 mM NaCl treatment conditions. Compared with
commercial cultivar, mutants demonstrated much higher activities of superoxide
dismutase, catalase and guaiacol peroxidase, and chlorophyll contents, and much
lower contents of lipid peroxidation and values of electrolyte leakage under
control condition. On the other hand, contents of lipid peroxidation and value
of electrolyte leakage increased,
but chlorophyll content decreased more severely in
commercial cultivar than mutants under salt stress condition. In addition to
increasing in
expression levels of TaWRKY5, TaWRKY10 and TaWRKY44 genes in mutants positively regulated in salt stress
responses by either direct or indirect activation of the cellular antioxidant
enzyme responses or activation of stress-related gene expression. These
candidate salt tolerant wheat mutant progenies will be used to increase the
salt tolerance in the wheat-breeding programmers.

Kaynakça

  • 1. Rengasamy, R, Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 2010, 37, 613–620.
  • 2. Rana, V, Ram, S, Sendhil, R, Nehra, K.M, Sharma, I, Physiological, biochemical and morphological study in wheat (Triticum aestivum L.) RILs population for salinity tolerance. Journal of Agricultural Science, 2015, 7, 119-128.
  • 3. Mostafa, G.G, Effect of sodium azide on the growth and variability induction in Helianthus annuus L. International Journal of Plant Breeding and Genetic, 2011, 5, 76-85.
  • 4. Yousfi, F-E, Makhloufi, E, Marande, W, Ghorbel, A.W, Bouzayen, M, Berges, H, Comparative analysis of WRKY genes potentially involved in salt stress responses in Triticum turgidum L. ssp. Durum. Frontiers in Plant Science, 2017, 7, 2034.
  • 5. Wang, C, Deng, P, Chen, L, Wang, X, Ma, H, Hu, W, Yao, N, Feng, Y, Chai, R, Yang, G, He, G, A wheat WRKY transcriptional factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PlosOne, 2013, 8(6):e65120.
  • 6. Wang, X, Zeng, J, Li, Y, Rong, X, Sun, J, Sun, T, Li, M, Wang, L, Feng, Y, Chai, R, Chen, M, Chang, J, Li, K, Yang, G, He, G, Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Frontiers in Plant Science, 2015, 6, 615.
  • 7. Qin, Y, Tian, Y, Liu, X, A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2015, 464, 428-433.
  • 8. Cai, R, Dai, W, Zhang, C, Wang, Y, Wu, M, Zhao, Y, Ma, Q, Xiang, Y, Cheng, B, He maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta, 2017, 246, 1215-1231.
  • 9. Rai, M.K, Kalia, R.K, Singh, R, Gangola, M.P, Dhawan, A.K, Developing stress tolerant plants through in vitro selection-an overview of the recent progress. Environmental and Experimental Botany, 2011, 71, 89–98.
  • 10. Sajid, Z.A, Aftab, F, Plant regeneration from in vitro-selected salt tolerant callus cultures of Solanum tuberosum L. Pakistan Journal of Botany, 2014, 46, 1507-1514.
  • 11. Arnon, D.I, Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949, 24, 1–15.
  • 12. Heath, R.L, Packer, L, Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Archives of Biochemistry and Biophysics, 1968, 125, 189–198.
  • 13. Song, J.Y, Kim, D.S, Lee, M-C, Lee, K.J, Kim, J-B, Kim, S.H, Ha, B-K, Yun, S.J, Kang, S-Y, Physiological characterization of gamma-ray induced salt tolerant rice mutants. Australian Journal of Crop Science, 2012, 6(3), 421-429.
  • 14. Bradford, M.M, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72, 248-254.
  • 15. Dhindsa, R.S, Plumb-Dhindsa, P, Thorpe, T.A, Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 1981, 32, 93-10.
  • 16. Aebi, H, Catalase in vitro. Methods Enzymology, 1984, 105, 121-126.
  • 17. Zar, J.H, Biostatistical Analysis, Prentice-Hall Inc., Englewood Cliffs, Jersey, 1984.
  • 18. Goudarzi, M, Pakniyat, H, Evaluation of wheat cultivars under salinity stress based on some agronomic and physiological traits. Journal of Agriculture and Social Science, 2008, 4, 81–84.
  • 19. Hossain, Z, Mandal, A.K.A, Datta, S.K, Biswas, A.K, Development of NaCl tolerant strain in Chrysanthemum morifolium Ramat. throughin vitro mutagenesis. Plant Biology, 2006, 8, 450–461.
  • 20. Sui, J, Wang, Y, Wang, P, Qiao, L, Sun, S, Hu, X, Chen, J, Wang, J, Generation of peanut drought tolerant plants by pingyangmycin- mediated in vitro mutagenesis and hydroxyproline-resistance screening. PLoSOne, 2015, 10:e0119240.
Yıl 2018, , 315 - 320, 30.09.2018
https://doi.org/10.18466/cbayarfbe.430620

Öz

Kaynakça

  • 1. Rengasamy, R, Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 2010, 37, 613–620.
  • 2. Rana, V, Ram, S, Sendhil, R, Nehra, K.M, Sharma, I, Physiological, biochemical and morphological study in wheat (Triticum aestivum L.) RILs population for salinity tolerance. Journal of Agricultural Science, 2015, 7, 119-128.
  • 3. Mostafa, G.G, Effect of sodium azide on the growth and variability induction in Helianthus annuus L. International Journal of Plant Breeding and Genetic, 2011, 5, 76-85.
  • 4. Yousfi, F-E, Makhloufi, E, Marande, W, Ghorbel, A.W, Bouzayen, M, Berges, H, Comparative analysis of WRKY genes potentially involved in salt stress responses in Triticum turgidum L. ssp. Durum. Frontiers in Plant Science, 2017, 7, 2034.
  • 5. Wang, C, Deng, P, Chen, L, Wang, X, Ma, H, Hu, W, Yao, N, Feng, Y, Chai, R, Yang, G, He, G, A wheat WRKY transcriptional factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PlosOne, 2013, 8(6):e65120.
  • 6. Wang, X, Zeng, J, Li, Y, Rong, X, Sun, J, Sun, T, Li, M, Wang, L, Feng, Y, Chai, R, Chen, M, Chang, J, Li, K, Yang, G, He, G, Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Frontiers in Plant Science, 2015, 6, 615.
  • 7. Qin, Y, Tian, Y, Liu, X, A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2015, 464, 428-433.
  • 8. Cai, R, Dai, W, Zhang, C, Wang, Y, Wu, M, Zhao, Y, Ma, Q, Xiang, Y, Cheng, B, He maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta, 2017, 246, 1215-1231.
  • 9. Rai, M.K, Kalia, R.K, Singh, R, Gangola, M.P, Dhawan, A.K, Developing stress tolerant plants through in vitro selection-an overview of the recent progress. Environmental and Experimental Botany, 2011, 71, 89–98.
  • 10. Sajid, Z.A, Aftab, F, Plant regeneration from in vitro-selected salt tolerant callus cultures of Solanum tuberosum L. Pakistan Journal of Botany, 2014, 46, 1507-1514.
  • 11. Arnon, D.I, Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949, 24, 1–15.
  • 12. Heath, R.L, Packer, L, Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Archives of Biochemistry and Biophysics, 1968, 125, 189–198.
  • 13. Song, J.Y, Kim, D.S, Lee, M-C, Lee, K.J, Kim, J-B, Kim, S.H, Ha, B-K, Yun, S.J, Kang, S-Y, Physiological characterization of gamma-ray induced salt tolerant rice mutants. Australian Journal of Crop Science, 2012, 6(3), 421-429.
  • 14. Bradford, M.M, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72, 248-254.
  • 15. Dhindsa, R.S, Plumb-Dhindsa, P, Thorpe, T.A, Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 1981, 32, 93-10.
  • 16. Aebi, H, Catalase in vitro. Methods Enzymology, 1984, 105, 121-126.
  • 17. Zar, J.H, Biostatistical Analysis, Prentice-Hall Inc., Englewood Cliffs, Jersey, 1984.
  • 18. Goudarzi, M, Pakniyat, H, Evaluation of wheat cultivars under salinity stress based on some agronomic and physiological traits. Journal of Agriculture and Social Science, 2008, 4, 81–84.
  • 19. Hossain, Z, Mandal, A.K.A, Datta, S.K, Biswas, A.K, Development of NaCl tolerant strain in Chrysanthemum morifolium Ramat. throughin vitro mutagenesis. Plant Biology, 2006, 8, 450–461.
  • 20. Sui, J, Wang, Y, Wang, P, Qiao, L, Sun, S, Hu, X, Chen, J, Wang, J, Generation of peanut drought tolerant plants by pingyangmycin- mediated in vitro mutagenesis and hydroxyproline-resistance screening. PLoSOne, 2015, 10:e0119240.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayşe Şen

Fatma Sarsu Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Şen, A., & Sarsu, F. (2018). Evaluating of Salt Stress Tolerance in Selected Wheat Mutant Progenies with Contributing Expression Analysis of TaWRKY Genes and Antioxidant Defence Parameters. Celal Bayar University Journal of Science, 14(3), 315-320. https://doi.org/10.18466/cbayarfbe.430620
AMA Şen A, Sarsu F. Evaluating of Salt Stress Tolerance in Selected Wheat Mutant Progenies with Contributing Expression Analysis of TaWRKY Genes and Antioxidant Defence Parameters. CBUJOS. Eylül 2018;14(3):315-320. doi:10.18466/cbayarfbe.430620
Chicago Şen, Ayşe, ve Fatma Sarsu. “Evaluating of Salt Stress Tolerance in Selected Wheat Mutant Progenies With Contributing Expression Analysis of TaWRKY Genes and Antioxidant Defence Parameters”. Celal Bayar University Journal of Science 14, sy. 3 (Eylül 2018): 315-20. https://doi.org/10.18466/cbayarfbe.430620.
EndNote Şen A, Sarsu F (01 Eylül 2018) Evaluating of Salt Stress Tolerance in Selected Wheat Mutant Progenies with Contributing Expression Analysis of TaWRKY Genes and Antioxidant Defence Parameters. Celal Bayar University Journal of Science 14 3 315–320.
IEEE A. Şen ve F. Sarsu, “Evaluating of Salt Stress Tolerance in Selected Wheat Mutant Progenies with Contributing Expression Analysis of TaWRKY Genes and Antioxidant Defence Parameters”, CBUJOS, c. 14, sy. 3, ss. 315–320, 2018, doi: 10.18466/cbayarfbe.430620.
ISNAD Şen, Ayşe - Sarsu, Fatma. “Evaluating of Salt Stress Tolerance in Selected Wheat Mutant Progenies With Contributing Expression Analysis of TaWRKY Genes and Antioxidant Defence Parameters”. Celal Bayar University Journal of Science 14/3 (Eylül 2018), 315-320. https://doi.org/10.18466/cbayarfbe.430620.
JAMA Şen A, Sarsu F. Evaluating of Salt Stress Tolerance in Selected Wheat Mutant Progenies with Contributing Expression Analysis of TaWRKY Genes and Antioxidant Defence Parameters. CBUJOS. 2018;14:315–320.
MLA Şen, Ayşe ve Fatma Sarsu. “Evaluating of Salt Stress Tolerance in Selected Wheat Mutant Progenies With Contributing Expression Analysis of TaWRKY Genes and Antioxidant Defence Parameters”. Celal Bayar University Journal of Science, c. 14, sy. 3, 2018, ss. 315-20, doi:10.18466/cbayarfbe.430620.
Vancouver Şen A, Sarsu F. Evaluating of Salt Stress Tolerance in Selected Wheat Mutant Progenies with Contributing Expression Analysis of TaWRKY Genes and Antioxidant Defence Parameters. CBUJOS. 2018;14(3):315-20.