Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 73 - 78, 30.12.2020
https://doi.org/10.18466/cbayarfbe.752495

Öz

Kaynakça

  • 1. Bray, F, Ferlay, J, Soerjomataram, I, Siegel, RL, Torre, LA, Jemal, A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians; 68(6): 394-424.
  • 2. Monsuez, JJ, Charniot, JC, Vignat, N, Artigou, JY. 2010. Cardiac side-effects of cancer chemotherapy. International Journal of Cardiology; 144(1): 3-15.
  • 3. Love, RR, Leventhal, H, Easterling, DV. Nerenz, DR. 1989. Side effects and emotional distress during cancer chemotherapy. Cancer; 63(3): 604-612. 4. Oun, R, Moussa, YE. Wheate, NJ. 2018. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Transactions; 47(19): 6645-6653.
  • 5. Cheok, CF. 2012. Protecting normal cells from the cytotoxicity of chemotherapy. Cell Cycle; 11(12): 2227-2227.
  • 6. Saloustros, E, Mavroudis, D, Georgoulias, V. 2008. Paclitaxel and docetaxel in the treatment of breast cancer. Expert Opinion on Pharmacotherapy; 9(15): 2603-2616.
  • 7. Saloustros, E, Georgoulias, V. 2008. Docetaxel in the treatment of advanced nonsmall-cell lung cancer. Expert Review of Anticancer Therapy; 8(8): 1207-1222.
  • 8. Yin, H, Guo, R, Xu, Y, Zheng, Y, Hou, Z, Dai, X, Zhang, Z, Zheng, D, Xu, HE. 2012. Synergistic antitumor efficiency of docetaxel and curcumin against lung cancer. Acta Biochimica et Biophysica Sinica; 44(2): 147-153.
  • 9. Baker, SD, Verweij, J, Cusatis, GA, van Schaik, RH, Marsh, S, Orwick, SJ, Franke, RM, Hu, S, Schuetz, EG, Lamba, V, Messersmith, WA, Wolff, AC, Carducci, MA, Sparreboom, A. 2009. Pharmacogenetic pathway analysis of docetaxel elimination. Clinical Pharmacology & Therapeutics; 85(2): 155-163.
  • 10. Takimoto, T., Nakabori, T., Osa, A., Morita, S., Terada, H., Oseto, S., Iwazawa, T. Abe, K., 2012. Tubular nephrotoxicity induced by docetaxel in non-small-cell lung cancer patients. International Journal of Clinical Oncology; 17(4): 395-398.
  • 11. Pabla, N, Dong, Z. 2008. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney International; 73(9): 994-1007.
  • 12. Aggarwal, BB, Kumar, A, Bharti, AC. 2003. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research; 23(1/A): 363-398.
  • 13. Basnet, P, Skalko, BN. 2011. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules; 16(6): 4567-4598.
  • 14. Araujo, C, Leon, L. 2001. Biological activities of Curcuma longa L. Memórias do Instituto Oswaldo Cruz; 96(5): 723-28.
  • 15. Joe, B, Vijaykumar, M, Lokesh, B. 2004. Biological properties of curcumin-cellular and molecular mechanisms of action. Critical Reviews in Food Science and Nutrition; 44(2): 97-111.
  • 16. Gupta, SC, Patchva, S, Koh, W, Aggarwal, BB. 2012. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clinical and Experimental Pharmacology and Physiology; 39(3): 283-299.
  • 17. Farombi, E, Ekor, M. 2006. Curcumin attenuates gentamicin-induced renal oxidative damage in rats. Food and Chemical Toxicology; 44(9): 1443-1448.
  • 18. Venkatanarayana, G, Sudhakara, G, Sivajyothi, P, Indira, P. 2012. Protective effects of curcumin and vitamin E on carbon tetrachloride-induced nephrotoxicity in rats. EXCLI Journal; 11: 641-650.
  • 19. Tung, BT, Hai, NT, Son, PK. 2017. Hepatoprotective effect of Phytosome Curcumin against paracetamol-induced liver toxicity in mice. Brazilian Journal of Pharmaceutical Sciences, 53(1): 1-13. 20. Berridge, MV, Herst, PM, Tan, AS. 2005. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review; 11: 127-152.
  • 21. Rao, DK., Liu, H, Ambudkar, SV. Mayer, M. 2014. A combination of curcumin with either gramicidin or ouabain selectively kills cells that express the multidrug resistance-linked ABCG2 transporter. Journal of Biological Chemistry, 289(45): 31397-31410.
  • 22. Adahoun, MAA, Al-Akhras, MAH, Jaafar, MS, Bououdina, M. 2017. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artificial cells, Nanomedicine, and Biotechnology; 45(1): 98-107.
  • 23. Nishida, M, Nishiumi, S, Mizushina, Y, Fujishima, Y, Yamamoto, K, Masuda, A, Mizuno, S, Fujita, T, Morita, Y, Kutsumi, H, Yoshida, H. 2010. Monoacetylcurcumin strongly regulates inflammatory responses through inhibition of NF-κB activation. International Journal of Molecular Medicine; 25(5): 761-767.
  • 24. Zhao, Y, Collier, JJ, Huang, EC. Whelan, J. 2014. Turmeric and Chinese goldthread synergistically inhibit prostate cancer cell proliferation and NF-kB signaling. Functional Foods in Health and Disease; 4(7): 312-339.
  • 25. Ortega-Domínguez, B, Aparicio-Trejo, OE, García-Arroyo, FE, León-Contreras, JC, Tapia, E, Molina-Jijón, E, Hernández-Pandoc, R, Sánchez-Lozada, LG, Barrera-Oviedo, D, Pedraza-Chaverri, J. 2017. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic. Food and Chemical Toxicology; 107: 373-385.
  • 26. Zhou, QM, Wang, XF, Liu, XJ, Zhang, H, Lu, YY, Huang, S, Su, SB. 2011. Curcumin improves MMC-based chemotherapy by simultaneously sensitising cancer cells to MMC and reducing MMC-associated side-effects. European Journal of Cancer; 47(14): 2240-2247.
  • 27. Ramanathan, B, Jan, KY, Chen, CH, Hour, TC, Yu, HJ, Pu, YS. 2005. Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Research; 65(18): 8455-8460.
  • 28. Trujillo, J, Chirino, YI, Molina-Jijón, E, Andérica-Romero, AC, Tapia, E, Pedraza-Chaverrí, J. 2013. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biology; 1(1): 448-456.
  • 29. Swamy, AV, Gulliaya, S, Thippeswamy, A, Koti, BC, Manjula, DV. 2012. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian Journal of Pharmacology; 44(1): 73.
  • 30. Sheu, MT, Jhan, HJ, Hsieh, CM, Wang, CJ, Ho, HO. 2015. Efficacy of antioxidants as a complementary and alternative medicine (CAM) in combination with the chemotherapeutic agent doxorubicin. Integrative Cancer Therapies; 14(2): 184-195.
  • 31. Kim, SJ, Kim, HS, Seo, YR. 2019. Understanding of ROS-Inducing Strategy in Anticancer Therapy. Oxidative Medicine and Cellular Longevity; 1-12.
  • 32. Florentin, A, Arama, E. 2012. Caspase levels and execution efficiencies determine the apoptotic potential of the cell. Journal of Cell Biology; 196(4); 513-527.
  • 33. Benzer, F, Kandemir, FM, Kucukler, S, Comaklı, S, Caglayan, C. 2018. Chemoprotective effects of curcumin on doxorubicin-induced nephrotoxicity in wistar rats: by modulating inflammatory cytokines, apoptosis, oxidative stress and oxidative DNA damage. Archives of Physiology and Biochemistry; 124(5): 448-457.
  • 34. Dai, C, Ciccotosto, GD, Cappai, R, Tang, S, Li, D, Xie, S, Xiao, X, Velkov, T. 2018. Curcumin attenuates colistin-induced neurotoxicity in N2a cells via anti-inflammatory activity, suppression of oxidative stress, and apoptosis. Molecular Neurobiology; 55(1): 421-434.

Attenuation of Docetaxel-induced Oxidative Stress and Apoptosis in HEK 293 Human Embryonic Kidney Cells by Curcumin Treatment

Yıl 2021, , 73 - 78, 30.12.2020
https://doi.org/10.18466/cbayarfbe.752495

Öz

Docetaxel (DOC) is a chemotherapeutic that induces microtubule stabilization. It is often used in breast, prostate, lung and gastric cancers but severe side effects such as cardiotoxicity, neurotoxicity, hepatotoxicity, and nephrotoxicity limit its usage. Curcumin (CUR), a natural bioactive compound derived from turmeric. Here, the possible preventive effect of CUR against DOC-induced oxidative stress and apoptosis on HEK-293 immortalized human embryonic kidney cells. Viability was assessed via MTT assay. The generation of ROS was measured by CM-H2DCFDA dye. Phosphatidylserine externalization and caspase 3/7 activity were used to measure apoptosis. CUR pretreatment remarkably inhibited DOC-induced cell viability reduction, ROS generation, and cell apoptosis in HEK-293 cells. Moreover, this study revealed that CUR pretreatment decreased the caspase-3 activity. Thus, this study highlights the novel pharmacological mechanisms of CUR and understanding the detailed mechanisms of CUR action could lead to novel renoprotective interventions.

Kaynakça

  • 1. Bray, F, Ferlay, J, Soerjomataram, I, Siegel, RL, Torre, LA, Jemal, A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians; 68(6): 394-424.
  • 2. Monsuez, JJ, Charniot, JC, Vignat, N, Artigou, JY. 2010. Cardiac side-effects of cancer chemotherapy. International Journal of Cardiology; 144(1): 3-15.
  • 3. Love, RR, Leventhal, H, Easterling, DV. Nerenz, DR. 1989. Side effects and emotional distress during cancer chemotherapy. Cancer; 63(3): 604-612. 4. Oun, R, Moussa, YE. Wheate, NJ. 2018. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Transactions; 47(19): 6645-6653.
  • 5. Cheok, CF. 2012. Protecting normal cells from the cytotoxicity of chemotherapy. Cell Cycle; 11(12): 2227-2227.
  • 6. Saloustros, E, Mavroudis, D, Georgoulias, V. 2008. Paclitaxel and docetaxel in the treatment of breast cancer. Expert Opinion on Pharmacotherapy; 9(15): 2603-2616.
  • 7. Saloustros, E, Georgoulias, V. 2008. Docetaxel in the treatment of advanced nonsmall-cell lung cancer. Expert Review of Anticancer Therapy; 8(8): 1207-1222.
  • 8. Yin, H, Guo, R, Xu, Y, Zheng, Y, Hou, Z, Dai, X, Zhang, Z, Zheng, D, Xu, HE. 2012. Synergistic antitumor efficiency of docetaxel and curcumin against lung cancer. Acta Biochimica et Biophysica Sinica; 44(2): 147-153.
  • 9. Baker, SD, Verweij, J, Cusatis, GA, van Schaik, RH, Marsh, S, Orwick, SJ, Franke, RM, Hu, S, Schuetz, EG, Lamba, V, Messersmith, WA, Wolff, AC, Carducci, MA, Sparreboom, A. 2009. Pharmacogenetic pathway analysis of docetaxel elimination. Clinical Pharmacology & Therapeutics; 85(2): 155-163.
  • 10. Takimoto, T., Nakabori, T., Osa, A., Morita, S., Terada, H., Oseto, S., Iwazawa, T. Abe, K., 2012. Tubular nephrotoxicity induced by docetaxel in non-small-cell lung cancer patients. International Journal of Clinical Oncology; 17(4): 395-398.
  • 11. Pabla, N, Dong, Z. 2008. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney International; 73(9): 994-1007.
  • 12. Aggarwal, BB, Kumar, A, Bharti, AC. 2003. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research; 23(1/A): 363-398.
  • 13. Basnet, P, Skalko, BN. 2011. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules; 16(6): 4567-4598.
  • 14. Araujo, C, Leon, L. 2001. Biological activities of Curcuma longa L. Memórias do Instituto Oswaldo Cruz; 96(5): 723-28.
  • 15. Joe, B, Vijaykumar, M, Lokesh, B. 2004. Biological properties of curcumin-cellular and molecular mechanisms of action. Critical Reviews in Food Science and Nutrition; 44(2): 97-111.
  • 16. Gupta, SC, Patchva, S, Koh, W, Aggarwal, BB. 2012. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clinical and Experimental Pharmacology and Physiology; 39(3): 283-299.
  • 17. Farombi, E, Ekor, M. 2006. Curcumin attenuates gentamicin-induced renal oxidative damage in rats. Food and Chemical Toxicology; 44(9): 1443-1448.
  • 18. Venkatanarayana, G, Sudhakara, G, Sivajyothi, P, Indira, P. 2012. Protective effects of curcumin and vitamin E on carbon tetrachloride-induced nephrotoxicity in rats. EXCLI Journal; 11: 641-650.
  • 19. Tung, BT, Hai, NT, Son, PK. 2017. Hepatoprotective effect of Phytosome Curcumin against paracetamol-induced liver toxicity in mice. Brazilian Journal of Pharmaceutical Sciences, 53(1): 1-13. 20. Berridge, MV, Herst, PM, Tan, AS. 2005. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review; 11: 127-152.
  • 21. Rao, DK., Liu, H, Ambudkar, SV. Mayer, M. 2014. A combination of curcumin with either gramicidin or ouabain selectively kills cells that express the multidrug resistance-linked ABCG2 transporter. Journal of Biological Chemistry, 289(45): 31397-31410.
  • 22. Adahoun, MAA, Al-Akhras, MAH, Jaafar, MS, Bououdina, M. 2017. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artificial cells, Nanomedicine, and Biotechnology; 45(1): 98-107.
  • 23. Nishida, M, Nishiumi, S, Mizushina, Y, Fujishima, Y, Yamamoto, K, Masuda, A, Mizuno, S, Fujita, T, Morita, Y, Kutsumi, H, Yoshida, H. 2010. Monoacetylcurcumin strongly regulates inflammatory responses through inhibition of NF-κB activation. International Journal of Molecular Medicine; 25(5): 761-767.
  • 24. Zhao, Y, Collier, JJ, Huang, EC. Whelan, J. 2014. Turmeric and Chinese goldthread synergistically inhibit prostate cancer cell proliferation and NF-kB signaling. Functional Foods in Health and Disease; 4(7): 312-339.
  • 25. Ortega-Domínguez, B, Aparicio-Trejo, OE, García-Arroyo, FE, León-Contreras, JC, Tapia, E, Molina-Jijón, E, Hernández-Pandoc, R, Sánchez-Lozada, LG, Barrera-Oviedo, D, Pedraza-Chaverri, J. 2017. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic. Food and Chemical Toxicology; 107: 373-385.
  • 26. Zhou, QM, Wang, XF, Liu, XJ, Zhang, H, Lu, YY, Huang, S, Su, SB. 2011. Curcumin improves MMC-based chemotherapy by simultaneously sensitising cancer cells to MMC and reducing MMC-associated side-effects. European Journal of Cancer; 47(14): 2240-2247.
  • 27. Ramanathan, B, Jan, KY, Chen, CH, Hour, TC, Yu, HJ, Pu, YS. 2005. Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Research; 65(18): 8455-8460.
  • 28. Trujillo, J, Chirino, YI, Molina-Jijón, E, Andérica-Romero, AC, Tapia, E, Pedraza-Chaverrí, J. 2013. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biology; 1(1): 448-456.
  • 29. Swamy, AV, Gulliaya, S, Thippeswamy, A, Koti, BC, Manjula, DV. 2012. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian Journal of Pharmacology; 44(1): 73.
  • 30. Sheu, MT, Jhan, HJ, Hsieh, CM, Wang, CJ, Ho, HO. 2015. Efficacy of antioxidants as a complementary and alternative medicine (CAM) in combination with the chemotherapeutic agent doxorubicin. Integrative Cancer Therapies; 14(2): 184-195.
  • 31. Kim, SJ, Kim, HS, Seo, YR. 2019. Understanding of ROS-Inducing Strategy in Anticancer Therapy. Oxidative Medicine and Cellular Longevity; 1-12.
  • 32. Florentin, A, Arama, E. 2012. Caspase levels and execution efficiencies determine the apoptotic potential of the cell. Journal of Cell Biology; 196(4); 513-527.
  • 33. Benzer, F, Kandemir, FM, Kucukler, S, Comaklı, S, Caglayan, C. 2018. Chemoprotective effects of curcumin on doxorubicin-induced nephrotoxicity in wistar rats: by modulating inflammatory cytokines, apoptosis, oxidative stress and oxidative DNA damage. Archives of Physiology and Biochemistry; 124(5): 448-457.
  • 34. Dai, C, Ciccotosto, GD, Cappai, R, Tang, S, Li, D, Xie, S, Xiao, X, Velkov, T. 2018. Curcumin attenuates colistin-induced neurotoxicity in N2a cells via anti-inflammatory activity, suppression of oxidative stress, and apoptosis. Molecular Neurobiology; 55(1): 421-434.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Süleyman İlhan

Yayımlanma Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA İlhan, S. (2020). Attenuation of Docetaxel-induced Oxidative Stress and Apoptosis in HEK 293 Human Embryonic Kidney Cells by Curcumin Treatment. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(1), 73-78. https://doi.org/10.18466/cbayarfbe.752495
AMA İlhan S. Attenuation of Docetaxel-induced Oxidative Stress and Apoptosis in HEK 293 Human Embryonic Kidney Cells by Curcumin Treatment. CBUJOS. Aralık 2020;17(1):73-78. doi:10.18466/cbayarfbe.752495
Chicago İlhan, Süleyman. “Attenuation of Docetaxel-Induced Oxidative Stress and Apoptosis in HEK 293 Human Embryonic Kidney Cells by Curcumin Treatment”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17, sy. 1 (Aralık 2020): 73-78. https://doi.org/10.18466/cbayarfbe.752495.
EndNote İlhan S (01 Aralık 2020) Attenuation of Docetaxel-induced Oxidative Stress and Apoptosis in HEK 293 Human Embryonic Kidney Cells by Curcumin Treatment. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17 1 73–78.
IEEE S. İlhan, “Attenuation of Docetaxel-induced Oxidative Stress and Apoptosis in HEK 293 Human Embryonic Kidney Cells by Curcumin Treatment”, CBUJOS, c. 17, sy. 1, ss. 73–78, 2020, doi: 10.18466/cbayarfbe.752495.
ISNAD İlhan, Süleyman. “Attenuation of Docetaxel-Induced Oxidative Stress and Apoptosis in HEK 293 Human Embryonic Kidney Cells by Curcumin Treatment”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17/1 (Aralık 2020), 73-78. https://doi.org/10.18466/cbayarfbe.752495.
JAMA İlhan S. Attenuation of Docetaxel-induced Oxidative Stress and Apoptosis in HEK 293 Human Embryonic Kidney Cells by Curcumin Treatment. CBUJOS. 2020;17:73–78.
MLA İlhan, Süleyman. “Attenuation of Docetaxel-Induced Oxidative Stress and Apoptosis in HEK 293 Human Embryonic Kidney Cells by Curcumin Treatment”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 17, sy. 1, 2020, ss. 73-78, doi:10.18466/cbayarfbe.752495.
Vancouver İlhan S. Attenuation of Docetaxel-induced Oxidative Stress and Apoptosis in HEK 293 Human Embryonic Kidney Cells by Curcumin Treatment. CBUJOS. 2020;17(1):73-8.