Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 11 - 16, 30.12.2020
https://doi.org/10.18466/cbayarfbe.821910

Öz

Kaynakça

  • 1. Ekineker, G, Nguyen, C, Bayır, S, Dominguez Gil, S, İşci, Ü, Daurat, M, Godefroy, A, Raehm, L, Charnay, C, Oliviero, E, Ahsen, V, Gary-Bobo, M, Durand, J-O, and Dumoulin, F. 2019. Phthalocyanine-based mesoporous organosilica nanoparticles: NIR photodynamic efficiency and siRNA photochemical internalization, Chemical Communications; 55, 11619-11622.
  • 2. Macdonald, I J, and Dougherty, T. J. 2001. Basic principles of photodynamic therapy, Journal of Porphyrins and Phthalocyanines 5, 105-129.
  • 3. Tarhouni, M, Durand, D, Önal, E, Aggad, D, İşci, Ü, Ekineker, G, Brégier, F, Jamoussi, B, Sol, V, Gary-Bobo, M, and Dumoulin, F. 2018. Triphenylphosphonium-substituted phthalocyanine: Design, synthetic strategy, photoproperties and photodynamic activity, Journal of Porphyrins and Phthalocyanines; 22, 552-561.
  • 4. Hopper, C. 2000. Photodynamic therapy: a clinical reality in the treatment of cancer, The lancet oncology; 1, 212-219.
  • 5. Plaetzer, K, Krammer, B, Berlanda, J, Berr, F, and Kiesslich, T. 2009. Photophysics and photochemistry of photodynamic therapy: fundamental aspects, Lasers Med Sci; 24, 259-268.
  • 6. Lo, P-C, Rodríguez-Morgade, M S, Pandey, R -K, Ng, D. K. P, Torres, T, and Dumoulin, F. 2020. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer, Chemical Society Reviews.
  • 7. Bartlett, M-A, Mark, K, and Sundermeyer, J. 2018. Synthesis, spectroscopy and singlet oxygen quantum yield of a non-aggregating hexadecamethyl-substituted phthalocyanine silicon (IV) derivative, Inorganic Chemistry Communications; 98, 41-43.
  • 8. Barut, B, Demirbas, U, Ozel, A, and Kantekin, H. 2017. Novel water soluble morpholine substituted Zn(II) phthalocyanine: Synthesis, characterization, DNA/BSA binding, DNA photocleavage and topoisomerase I inhibition, International journal of biological macromolecules; 105, 499-508.
  • 9. Skupin-Mrugalska, P, Szczolko, W, Gierlich, P, Konopka, K, Goslinski, T, Mielcarek, J and Düzgüneş, N. 2018. Physicochemical properties of liposome-incorporated 2-(morpholin-4-yl) ethoxy phthalocyanines and their photodynamic activity against oral cancer cells, Journal of Photochemistry and Photobiology A: Chemistry; 353, 445-457.
  • 10. Baş, H, Biyiklioglu, Z. 2018. Synthesis and electropolymerization properties of axially disubstituted silicon phthalocyanines bearing carbazole units, Inorganica Chimica Acta; 483, 79-86.
  • 11. Goksel, M, Biyiklioglu, Z, Durmus, M. 2017. The water soluble axially disubstituted silicon phthalocyanines: photophysicochemical properties and in vitro studies, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry; 22, 953-967.
  • 12. Bispo, M, Pereira, P. M. R, Setaro, F, Rodríguez-Morgade, M. S, Fernandes, R, Torres, T, Tomé, J. P. C. 2018. A Galactose Dendritic Silicon (IV) Phthalocyanine as a Photosensitizing Agent in Cancer Photodynamic Therapy, ChemPlusChem; 83, 855-860.
  • 13. Baron, E. D, Malbasa, C. L, Santo-Domingo, D, Fu, P, Miller, J. D, Hanneman, K. K, Hsia, A. H, Oleinick, N. L, Colussi, V. C, Cooper, K. D. 2010. Silicon phthalocyanine (Pc 4) photodynamic therapy is a safe modality for cutaneous neoplasms: results of a phase 1 clinical trial, Lasers in surgery and medicine; 42, 728-735.
  • 14. Armarego, W, Perrin, D. 1980. Purification of laboratory chemicals, Pergamon Press, Oxford 102, pp.102-103.
  • 15. Yanık, H, Aydın, D, Durmuş, M, Ahsen, V. 2009. Peripheral and non-peripheral tetrasubstituted aluminium, gallium and indium phthalocyanines: Synthesis, photophysics and photochemistry, Journal of Photochemistry and Photobiology A: Chemistry; 206, 18-26.
  • 16. Lowery, M. K, Starshak, A. J, Esposito, J. N, Krueger, P. C, Kenney, M. E. 1965. Dichloro (phthalocyanino) silicon, Inorganic Chemistry; 4, 128.
  • 17. Răsădean, D. M, Gianga, T. M, Swan, A. H, Kociok-Köhn, G, Pantoş, G. D. 2018. Chiral Phthalocyanines through Axial Coordination, Organic letters; 20, 2645-2648.
  • 18. Göksel, M, Durmuş, M, Atilla, D. 2017. Synthesis and photophysicochemical properties of a set of asymmetrical peptide conjugated zinc (II) phthalocyanines bearing different fluorophore units, Inorganica Chimica Acta; 456, 95-104.
  • 19. Atmaca, G. Y, Dizman, C, Eren, T, Erdoğmuş, A. 2015. Novel axially carborane-cage substituted silicon phthalocyanine photosensitizer; synthesis, characterization and photophysicochemical properties, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 137, 244-249.

Newly Axial Silicon(IV) Phthalocyanine Photosensitizer: Design, Synthesis and Photochemical Properties

Yıl 2021, , 11 - 16, 30.12.2020
https://doi.org/10.18466/cbayarfbe.821910

Öz

Used as photosensitizer in photodynamic therapy, phthalocyanines exhibit their long wavelength absorption and the ability to produce high singlet oxygen for tumor destruction with 650 to 800 nm fluorescence.Phthalocyanines with their long wavelength absorption and fluorescence from 650 to 800 nm exhibit their ability to produce high singlet oxygen for the destruction of tumors. In this study, new axial substituted silicon(IV) phthalocyanine (4) was synthesized. Unsubstituted dichlorosilicon phthalocyanine was synthesized from 1,3-diiminoisoindoline via cyclotetramerization. The axial substitution reaction was carried out using dichlorosilicon(IV) phthalocyanine and excess of 2-methoxyethanol. Structural characterization of this new axial-substituted silicon(IV) phthalocyanine by IR, mass, and UV-Vis spectroscopy were performed. Photochemical properties were investigated for cancer therapy. In this study, we found that axial substituted silicon(IV) phthalocyanine (4) may be promising PDT agent.

Kaynakça

  • 1. Ekineker, G, Nguyen, C, Bayır, S, Dominguez Gil, S, İşci, Ü, Daurat, M, Godefroy, A, Raehm, L, Charnay, C, Oliviero, E, Ahsen, V, Gary-Bobo, M, Durand, J-O, and Dumoulin, F. 2019. Phthalocyanine-based mesoporous organosilica nanoparticles: NIR photodynamic efficiency and siRNA photochemical internalization, Chemical Communications; 55, 11619-11622.
  • 2. Macdonald, I J, and Dougherty, T. J. 2001. Basic principles of photodynamic therapy, Journal of Porphyrins and Phthalocyanines 5, 105-129.
  • 3. Tarhouni, M, Durand, D, Önal, E, Aggad, D, İşci, Ü, Ekineker, G, Brégier, F, Jamoussi, B, Sol, V, Gary-Bobo, M, and Dumoulin, F. 2018. Triphenylphosphonium-substituted phthalocyanine: Design, synthetic strategy, photoproperties and photodynamic activity, Journal of Porphyrins and Phthalocyanines; 22, 552-561.
  • 4. Hopper, C. 2000. Photodynamic therapy: a clinical reality in the treatment of cancer, The lancet oncology; 1, 212-219.
  • 5. Plaetzer, K, Krammer, B, Berlanda, J, Berr, F, and Kiesslich, T. 2009. Photophysics and photochemistry of photodynamic therapy: fundamental aspects, Lasers Med Sci; 24, 259-268.
  • 6. Lo, P-C, Rodríguez-Morgade, M S, Pandey, R -K, Ng, D. K. P, Torres, T, and Dumoulin, F. 2020. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer, Chemical Society Reviews.
  • 7. Bartlett, M-A, Mark, K, and Sundermeyer, J. 2018. Synthesis, spectroscopy and singlet oxygen quantum yield of a non-aggregating hexadecamethyl-substituted phthalocyanine silicon (IV) derivative, Inorganic Chemistry Communications; 98, 41-43.
  • 8. Barut, B, Demirbas, U, Ozel, A, and Kantekin, H. 2017. Novel water soluble morpholine substituted Zn(II) phthalocyanine: Synthesis, characterization, DNA/BSA binding, DNA photocleavage and topoisomerase I inhibition, International journal of biological macromolecules; 105, 499-508.
  • 9. Skupin-Mrugalska, P, Szczolko, W, Gierlich, P, Konopka, K, Goslinski, T, Mielcarek, J and Düzgüneş, N. 2018. Physicochemical properties of liposome-incorporated 2-(morpholin-4-yl) ethoxy phthalocyanines and their photodynamic activity against oral cancer cells, Journal of Photochemistry and Photobiology A: Chemistry; 353, 445-457.
  • 10. Baş, H, Biyiklioglu, Z. 2018. Synthesis and electropolymerization properties of axially disubstituted silicon phthalocyanines bearing carbazole units, Inorganica Chimica Acta; 483, 79-86.
  • 11. Goksel, M, Biyiklioglu, Z, Durmus, M. 2017. The water soluble axially disubstituted silicon phthalocyanines: photophysicochemical properties and in vitro studies, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry; 22, 953-967.
  • 12. Bispo, M, Pereira, P. M. R, Setaro, F, Rodríguez-Morgade, M. S, Fernandes, R, Torres, T, Tomé, J. P. C. 2018. A Galactose Dendritic Silicon (IV) Phthalocyanine as a Photosensitizing Agent in Cancer Photodynamic Therapy, ChemPlusChem; 83, 855-860.
  • 13. Baron, E. D, Malbasa, C. L, Santo-Domingo, D, Fu, P, Miller, J. D, Hanneman, K. K, Hsia, A. H, Oleinick, N. L, Colussi, V. C, Cooper, K. D. 2010. Silicon phthalocyanine (Pc 4) photodynamic therapy is a safe modality for cutaneous neoplasms: results of a phase 1 clinical trial, Lasers in surgery and medicine; 42, 728-735.
  • 14. Armarego, W, Perrin, D. 1980. Purification of laboratory chemicals, Pergamon Press, Oxford 102, pp.102-103.
  • 15. Yanık, H, Aydın, D, Durmuş, M, Ahsen, V. 2009. Peripheral and non-peripheral tetrasubstituted aluminium, gallium and indium phthalocyanines: Synthesis, photophysics and photochemistry, Journal of Photochemistry and Photobiology A: Chemistry; 206, 18-26.
  • 16. Lowery, M. K, Starshak, A. J, Esposito, J. N, Krueger, P. C, Kenney, M. E. 1965. Dichloro (phthalocyanino) silicon, Inorganic Chemistry; 4, 128.
  • 17. Răsădean, D. M, Gianga, T. M, Swan, A. H, Kociok-Köhn, G, Pantoş, G. D. 2018. Chiral Phthalocyanines through Axial Coordination, Organic letters; 20, 2645-2648.
  • 18. Göksel, M, Durmuş, M, Atilla, D. 2017. Synthesis and photophysicochemical properties of a set of asymmetrical peptide conjugated zinc (II) phthalocyanines bearing different fluorophore units, Inorganica Chimica Acta; 456, 95-104.
  • 19. Atmaca, G. Y, Dizman, C, Eren, T, Erdoğmuş, A. 2015. Novel axially carborane-cage substituted silicon phthalocyanine photosensitizer; synthesis, characterization and photophysicochemical properties, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 137, 244-249.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gülçin Ekineker 0000-0003-0999-8586

Hülya Yanık 0000-0002-5418-5915

Yayımlanma Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Ekineker, G., & Yanık, H. (2020). Newly Axial Silicon(IV) Phthalocyanine Photosensitizer: Design, Synthesis and Photochemical Properties. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(1), 11-16. https://doi.org/10.18466/cbayarfbe.821910
AMA Ekineker G, Yanık H. Newly Axial Silicon(IV) Phthalocyanine Photosensitizer: Design, Synthesis and Photochemical Properties. CBUJOS. Aralık 2020;17(1):11-16. doi:10.18466/cbayarfbe.821910
Chicago Ekineker, Gülçin, ve Hülya Yanık. “Newly Axial Silicon(IV) Phthalocyanine Photosensitizer: Design, Synthesis and Photochemical Properties”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17, sy. 1 (Aralık 2020): 11-16. https://doi.org/10.18466/cbayarfbe.821910.
EndNote Ekineker G, Yanık H (01 Aralık 2020) Newly Axial Silicon(IV) Phthalocyanine Photosensitizer: Design, Synthesis and Photochemical Properties. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17 1 11–16.
IEEE G. Ekineker ve H. Yanık, “Newly Axial Silicon(IV) Phthalocyanine Photosensitizer: Design, Synthesis and Photochemical Properties”, CBUJOS, c. 17, sy. 1, ss. 11–16, 2020, doi: 10.18466/cbayarfbe.821910.
ISNAD Ekineker, Gülçin - Yanık, Hülya. “Newly Axial Silicon(IV) Phthalocyanine Photosensitizer: Design, Synthesis and Photochemical Properties”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17/1 (Aralık 2020), 11-16. https://doi.org/10.18466/cbayarfbe.821910.
JAMA Ekineker G, Yanık H. Newly Axial Silicon(IV) Phthalocyanine Photosensitizer: Design, Synthesis and Photochemical Properties. CBUJOS. 2020;17:11–16.
MLA Ekineker, Gülçin ve Hülya Yanık. “Newly Axial Silicon(IV) Phthalocyanine Photosensitizer: Design, Synthesis and Photochemical Properties”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 17, sy. 1, 2020, ss. 11-16, doi:10.18466/cbayarfbe.821910.
Vancouver Ekineker G, Yanık H. Newly Axial Silicon(IV) Phthalocyanine Photosensitizer: Design, Synthesis and Photochemical Properties. CBUJOS. 2020;17(1):11-6.