Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 13 Sayı: 3, 707 - 716, 30.09.2017
https://doi.org/10.18466/cbayarfbe.339346

Öz

Kaynakça

  • 1. Gorney D.J, Solar cycle effects on the near-earth space environment. Reviews of Geophys, 1990; 28: 315–336.
  • 2. Forbes J.M, Bruinsma S, Lemoine F.G, Solar rotation effects in the thermospheres of Mars and Earth, Science, 2006; 312: 1366–1368.
  • 3. Liu, L, Wan, W, Chen, Y, Le, H, Solar activity effects of the ionosphere: A brief review, Chinese Science Bulletin, 56(12), 2011; 1202-1211.
  • 4. [4] Budden, K.G, The ionosphere and magnetosphere. In the propagation of radio waves; Cambridge Univ. Press: New York, USA, 1988; pp 1-20.
  • 5. Tuna, H, Arikan, O, Arikan, F, Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT, Radio Science, 2015, 50(10), 1062-1075.
  • 6. Arikan, F, Shukurov, S, Tuna, H, Arikan, O, Gulyaeva, T.L, Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance, Geodesy and Geodynamics, 2016, 7(1), 1-10.
  • 7. Chauhan V, Singh, O.P, A morphological study of GPS–TEC data at Agra and their comparison with the IRI model, Advances in Space Research, 2010, 46, 280–290.
  • 8. da Costa, A.M, Boas, J.W.V, da Fonseca Jr, E.S, GPS total electron content measurements at low latitudes in Brazil for low solar activity, Geophysica Inter-Nacional, 2004, 43 (1), 129–137.
  • 9. Ezquer, R, Brunini, C, Mosert, M, Meza, A, del, R, Oviedo, V, Kiorcheff, E, Radicella, S, GPS-VTEC measurements and IRI predictions in the South America sector, Advances in Space Research, 2004, 34 (9), 2035–2043.
  • 10. Olwendo, O. J, Baki, P, Mito, C, Doherty, P, Characterization of ionospheric GPS Total Electron Content (GPS–TEC) in low latitude zone over the Kenyan region during a very low solar activity phase, Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 84, 52-61.
  • 11. Rama Rao, P.V.S, Gopi Krishna, S, Niranjan, K, Prasad, D.S.V.D, Temporal and spatial variation in TEC using simultaneous measurements from the Indian GPS network of receivers during low solar activity period of 2004–2005, Annales Geophysicae, 2006, 24 (12), 3279–3292.
  • 12. Sezen, U, Arıkan, F, Arikan, O, Ugurlu O. A, Sadeghimorad, "Online, Automatic, Near-Real Time Estimation of GPS-TEC: IONOLAB-TEC", Space Weather, 2013, 11, 1-9.
  • 13. Yizengaw, E, Moldwin, M.B, Galvan, D, Iijima, B.A, Komjathy, A, Mannucci, A. J, Global plasmaspheric TEC and its relative contribution to GPS TEC, Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(11–12), 1541–1548. 14. Liu, L, Wan, W, Zhang, ML, Zhao, B, Case study on total electron content enhancements at low latitudes during low geomagnetic activities before the storms, Annals of Geophysics, 2008, 26, 893–903.
  • 15. Bagiya M.S, Joshi H.P, Iyer K.N, Aggarwal M, Ravindran S, Pathan B.M, TEC variations during low solar activity period (2005–2007) near the Equatorial Ionospheric Anomaly Crest region in India, Annals of Geophysics, 2009, 27(3), 1047–1057.
  • 16. Jain A, Tiwari S, Jain S, Gawl A.K, Nighttime enhancements in TEC near the crest of northern equatorial ionization anomaly during low solar activity period, Indian Journal of Physics, 2011, 85(9), 1367–1380.
  • 17. Zou S, Moldwin M.B, Coster A, Lyons L.R, Nicolls M.J, GPS TEC observations of dynamics of the mid latitude trough during substorms. Geophysical Research Letter, 2011, 38, L14109.
  • 18. Sojka J, David M, Schunk R.W, Heelis R.A, A modeling study of the longitudinal dependence of storm time midlatitude dayside total electron content enhancements, Journal of Geophysical Research, 2012, 117, A02315.
  • 19. Kumar S, Priyadarshi S, Gopi Krishna S, Singh A.K, GPS-TEC variations during low solar activity period (2007–2009) at Indian low latitude stations, Astrophysics and Space Science, 2012, 339(1), 165–178.
  • 20. Kumar, S, Tan, E. L, Murti, D. S, Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid latitudes, Earth, Planets and Space, 2015, 67(1), 1-17.
  • 21. Bilitza, D, International reference ionosphere 2000, Radio Science, 2001, 36(2), 261–275.
  • 22. Bilitza, D, Reinisch, B.W, International reference ionosphere 2007 improvements and new parameters, Advances in Space Research, 2008, 42(4), 599–609.
  • 23. Anderson, D.N, Mendillo, M, Herniter ,B.A, semi-empirical low latitude ionospheric model, Radio Science, 1987, 22(2), 292–306.
  • 24. Daniell, R.E, Brown L.D, PRISM, A Parameterized Real-Time Ionospheric Specification Model Version 1.5. 1995; Computational Physics Inc, Newton.
  • 25. Nava, B, Coisson, P, Radicella, S.M, A new version of the NeQuick ionosphere electron density model, Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(15), 1856–1862.
  • 26. Scherliess, L, Schunk, R.W, Sojka, J.J, Thompson, D.C, Zhu, L, Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation, Journal of Geophysical Research, 2006, 111, A11315.
  • 27. Arikan, F, Erol, C.B, Arikan, O, Regularized estimation of vertical total electron content from Global Positioning System data, Journal of Geophysical Research: Space Physics, 2003, 108(A12).
  • 28. Arikan, F, Nayir, H, Sezen, U, Arikan, O, Estimation of single station interfrequency receiver bias using GPS-TEC, Radio Science, 2008, 43(4), RS4004.
  • 29. Bilitza, D, Altadill, D, Zhang, Y, Mertens, C, Truhlik ,V, Richards, P, McKinnell, L-A, Reinisch, B, The International Reference Ionosphere 2012 - a model of international collaboration, Journal of Space Weather and Space Climate, 2014, 4(A07), 1–12.
  • 30. Alcay, S, Yigit, C. O, Seemala, G, Ceylan, A, GPS-Based Ionosphere Modeling: A Brief Review. Fresenius Environmental Bulletin, 2014, 23, 815-824.
  • 31. Arikan, F, Shukurov, S, Tuna, H, Arikan, O, Gulyaeva, T. L, Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance, Geodesy and Geodynamics, 2016, 7(1), 1-10.
  • 32. Enders, W, Applied Econometric Times Series; John Wiley and Sons. Inc. New York, USA, 1995.
  • 33. Atıcı, R, Sağır, S, The effect of QBO on foE. Advances in Space Research, 2017, 60, 357-362.
  • 34. Sağır, S., Atıcı, R., Özcan, O., Yüksel, N. The effect of the stratospheric QBO on the neutral density of the D region. Annals of Geophysics, 2015; 58(3), A0331.
  • 35. Atici, R, Sagir, S, The Effect on Sporadic-E of Quasi-Biennial Oscillation. Journal of Physical Science and Application, 2016, 6(2), 10-17.
  • 36. Kurt, K, Yeşil, A, Sağir, S, Atici, R, The Relationship of Stratospheric QBO with the Difference of Measured and Calculated NmF2. Acta Geophysica, 2016, 64(6), 2781-2793.
  • 37. Zakharenkova, I.E, Cherniak, I.V, Krankowski, A, Shagimuratov, I. I, Vertical TEC representation by IRI 2012 and IRI Plas models for European midlatitudes. Advances in Space Research, 2015, 55(8), 2070-2076.
  • 38. Arunpold, S, Tripathi, N.K, Chowdhary, V.R, Raju, D.K, Comparison of GPS-TEC measurements with IRI-2007 and IRI-2012 modeled TEC at an equatorial latitude station, Bangkok, Thailand, Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 117, 88-94.
  • 39. Chakraborty, ., Kumar, S, De, B.K, Guha, A, Latitudinal characteristics of GPS derived ionospheric TEC: a comparative study with IRI 2012 model, Annals of Geophysics, 2014, 57, 5.
  • 40. MacKinnon, J.G, Numerical distribution functions for unit root and cointegration tests. Journal of Applied Econometrics, 1996, 11, 601–618.
  • 41. Özgüç, A, Ataç, T, Pektaş, R, Examination of the solar cycle variation of foF2 for cycles 22 and 23. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70 (2), 268-276.
  • 42. Kutiev, I., Tsagouri, I., Perrone, L., Pancheva, D., Mukhtarov, P., Mikhailov, A, et al., Solar activity impact on the Earth’s upper atmosphere. Journal of Space Weather and Space Climate, 2013 3, A06.

The Investigation of Relationship between Solar Parameters and Total Electron Content over Mid-Latitude Ionosphere

Yıl 2017, Cilt: 13 Sayı: 3, 707 - 716, 30.09.2017
https://doi.org/10.18466/cbayarfbe.339346

Öz

In
this study, the relationship with solar parameters (F10.7 index, proton density
and proton speed) of the Total Electron Content (TEC) values obtained from
IONOLAB and IRI-2012 models is statistically examined during equinox months
(March and September) of 2009 over mid-latitude ionosphere for night and day
time. As a statistical tool, a multiple regression model is used to determine
the relationship between solar parameters and TEC values. At Universal Time
(UT) 1200, the explainable rates by solar parameters of TEC changes are
calculated as 58% and 55% for IONOLAB TEC values in March and September equinox
months,
on the other hand these rates are obtained as 99% and 57%  for IRI-2012 TEC values. At 2400UT, 57 % and 39 % of changes in IONOLAB and 51 % and 59 % of changes in IRI-2012 TEC values during equinox
months
could be explainable by solar parameters,
respectively.
It is
observed that the IONOLAB-TEC values are higher than IRI-2012 TEC values on
both equinox months. Also, IONOLAB-TEC values on September 2009 are greater
than ones on March 2009. When compared to the two models, we concluded that
IONOLAB model is more sensitive than IRI-2012 model to the changes occurring in
the sun over mid-latitude.

Kaynakça

  • 1. Gorney D.J, Solar cycle effects on the near-earth space environment. Reviews of Geophys, 1990; 28: 315–336.
  • 2. Forbes J.M, Bruinsma S, Lemoine F.G, Solar rotation effects in the thermospheres of Mars and Earth, Science, 2006; 312: 1366–1368.
  • 3. Liu, L, Wan, W, Chen, Y, Le, H, Solar activity effects of the ionosphere: A brief review, Chinese Science Bulletin, 56(12), 2011; 1202-1211.
  • 4. [4] Budden, K.G, The ionosphere and magnetosphere. In the propagation of radio waves; Cambridge Univ. Press: New York, USA, 1988; pp 1-20.
  • 5. Tuna, H, Arikan, O, Arikan, F, Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT, Radio Science, 2015, 50(10), 1062-1075.
  • 6. Arikan, F, Shukurov, S, Tuna, H, Arikan, O, Gulyaeva, T.L, Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance, Geodesy and Geodynamics, 2016, 7(1), 1-10.
  • 7. Chauhan V, Singh, O.P, A morphological study of GPS–TEC data at Agra and their comparison with the IRI model, Advances in Space Research, 2010, 46, 280–290.
  • 8. da Costa, A.M, Boas, J.W.V, da Fonseca Jr, E.S, GPS total electron content measurements at low latitudes in Brazil for low solar activity, Geophysica Inter-Nacional, 2004, 43 (1), 129–137.
  • 9. Ezquer, R, Brunini, C, Mosert, M, Meza, A, del, R, Oviedo, V, Kiorcheff, E, Radicella, S, GPS-VTEC measurements and IRI predictions in the South America sector, Advances in Space Research, 2004, 34 (9), 2035–2043.
  • 10. Olwendo, O. J, Baki, P, Mito, C, Doherty, P, Characterization of ionospheric GPS Total Electron Content (GPS–TEC) in low latitude zone over the Kenyan region during a very low solar activity phase, Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 84, 52-61.
  • 11. Rama Rao, P.V.S, Gopi Krishna, S, Niranjan, K, Prasad, D.S.V.D, Temporal and spatial variation in TEC using simultaneous measurements from the Indian GPS network of receivers during low solar activity period of 2004–2005, Annales Geophysicae, 2006, 24 (12), 3279–3292.
  • 12. Sezen, U, Arıkan, F, Arikan, O, Ugurlu O. A, Sadeghimorad, "Online, Automatic, Near-Real Time Estimation of GPS-TEC: IONOLAB-TEC", Space Weather, 2013, 11, 1-9.
  • 13. Yizengaw, E, Moldwin, M.B, Galvan, D, Iijima, B.A, Komjathy, A, Mannucci, A. J, Global plasmaspheric TEC and its relative contribution to GPS TEC, Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(11–12), 1541–1548. 14. Liu, L, Wan, W, Zhang, ML, Zhao, B, Case study on total electron content enhancements at low latitudes during low geomagnetic activities before the storms, Annals of Geophysics, 2008, 26, 893–903.
  • 15. Bagiya M.S, Joshi H.P, Iyer K.N, Aggarwal M, Ravindran S, Pathan B.M, TEC variations during low solar activity period (2005–2007) near the Equatorial Ionospheric Anomaly Crest region in India, Annals of Geophysics, 2009, 27(3), 1047–1057.
  • 16. Jain A, Tiwari S, Jain S, Gawl A.K, Nighttime enhancements in TEC near the crest of northern equatorial ionization anomaly during low solar activity period, Indian Journal of Physics, 2011, 85(9), 1367–1380.
  • 17. Zou S, Moldwin M.B, Coster A, Lyons L.R, Nicolls M.J, GPS TEC observations of dynamics of the mid latitude trough during substorms. Geophysical Research Letter, 2011, 38, L14109.
  • 18. Sojka J, David M, Schunk R.W, Heelis R.A, A modeling study of the longitudinal dependence of storm time midlatitude dayside total electron content enhancements, Journal of Geophysical Research, 2012, 117, A02315.
  • 19. Kumar S, Priyadarshi S, Gopi Krishna S, Singh A.K, GPS-TEC variations during low solar activity period (2007–2009) at Indian low latitude stations, Astrophysics and Space Science, 2012, 339(1), 165–178.
  • 20. Kumar, S, Tan, E. L, Murti, D. S, Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid latitudes, Earth, Planets and Space, 2015, 67(1), 1-17.
  • 21. Bilitza, D, International reference ionosphere 2000, Radio Science, 2001, 36(2), 261–275.
  • 22. Bilitza, D, Reinisch, B.W, International reference ionosphere 2007 improvements and new parameters, Advances in Space Research, 2008, 42(4), 599–609.
  • 23. Anderson, D.N, Mendillo, M, Herniter ,B.A, semi-empirical low latitude ionospheric model, Radio Science, 1987, 22(2), 292–306.
  • 24. Daniell, R.E, Brown L.D, PRISM, A Parameterized Real-Time Ionospheric Specification Model Version 1.5. 1995; Computational Physics Inc, Newton.
  • 25. Nava, B, Coisson, P, Radicella, S.M, A new version of the NeQuick ionosphere electron density model, Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(15), 1856–1862.
  • 26. Scherliess, L, Schunk, R.W, Sojka, J.J, Thompson, D.C, Zhu, L, Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation, Journal of Geophysical Research, 2006, 111, A11315.
  • 27. Arikan, F, Erol, C.B, Arikan, O, Regularized estimation of vertical total electron content from Global Positioning System data, Journal of Geophysical Research: Space Physics, 2003, 108(A12).
  • 28. Arikan, F, Nayir, H, Sezen, U, Arikan, O, Estimation of single station interfrequency receiver bias using GPS-TEC, Radio Science, 2008, 43(4), RS4004.
  • 29. Bilitza, D, Altadill, D, Zhang, Y, Mertens, C, Truhlik ,V, Richards, P, McKinnell, L-A, Reinisch, B, The International Reference Ionosphere 2012 - a model of international collaboration, Journal of Space Weather and Space Climate, 2014, 4(A07), 1–12.
  • 30. Alcay, S, Yigit, C. O, Seemala, G, Ceylan, A, GPS-Based Ionosphere Modeling: A Brief Review. Fresenius Environmental Bulletin, 2014, 23, 815-824.
  • 31. Arikan, F, Shukurov, S, Tuna, H, Arikan, O, Gulyaeva, T. L, Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance, Geodesy and Geodynamics, 2016, 7(1), 1-10.
  • 32. Enders, W, Applied Econometric Times Series; John Wiley and Sons. Inc. New York, USA, 1995.
  • 33. Atıcı, R, Sağır, S, The effect of QBO on foE. Advances in Space Research, 2017, 60, 357-362.
  • 34. Sağır, S., Atıcı, R., Özcan, O., Yüksel, N. The effect of the stratospheric QBO on the neutral density of the D region. Annals of Geophysics, 2015; 58(3), A0331.
  • 35. Atici, R, Sagir, S, The Effect on Sporadic-E of Quasi-Biennial Oscillation. Journal of Physical Science and Application, 2016, 6(2), 10-17.
  • 36. Kurt, K, Yeşil, A, Sağir, S, Atici, R, The Relationship of Stratospheric QBO with the Difference of Measured and Calculated NmF2. Acta Geophysica, 2016, 64(6), 2781-2793.
  • 37. Zakharenkova, I.E, Cherniak, I.V, Krankowski, A, Shagimuratov, I. I, Vertical TEC representation by IRI 2012 and IRI Plas models for European midlatitudes. Advances in Space Research, 2015, 55(8), 2070-2076.
  • 38. Arunpold, S, Tripathi, N.K, Chowdhary, V.R, Raju, D.K, Comparison of GPS-TEC measurements with IRI-2007 and IRI-2012 modeled TEC at an equatorial latitude station, Bangkok, Thailand, Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 117, 88-94.
  • 39. Chakraborty, ., Kumar, S, De, B.K, Guha, A, Latitudinal characteristics of GPS derived ionospheric TEC: a comparative study with IRI 2012 model, Annals of Geophysics, 2014, 57, 5.
  • 40. MacKinnon, J.G, Numerical distribution functions for unit root and cointegration tests. Journal of Applied Econometrics, 1996, 11, 601–618.
  • 41. Özgüç, A, Ataç, T, Pektaş, R, Examination of the solar cycle variation of foF2 for cycles 22 and 23. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70 (2), 268-276.
  • 42. Kutiev, I., Tsagouri, I., Perrone, L., Pancheva, D., Mukhtarov, P., Mikhailov, A, et al., Solar activity impact on the Earth’s upper atmosphere. Journal of Space Weather and Space Climate, 2013 3, A06.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Ramazan Atıcı

Selçuk Sağır

Yayımlanma Tarihi 30 Eylül 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 13 Sayı: 3

Kaynak Göster

APA Atıcı, R., & Sağır, S. (2017). The Investigation of Relationship between Solar Parameters and Total Electron Content over Mid-Latitude Ionosphere. Celal Bayar University Journal of Science, 13(3), 707-716. https://doi.org/10.18466/cbayarfbe.339346
AMA Atıcı R, Sağır S. The Investigation of Relationship between Solar Parameters and Total Electron Content over Mid-Latitude Ionosphere. CBUJOS. Eylül 2017;13(3):707-716. doi:10.18466/cbayarfbe.339346
Chicago Atıcı, Ramazan, ve Selçuk Sağır. “The Investigation of Relationship Between Solar Parameters and Total Electron Content over Mid-Latitude Ionosphere”. Celal Bayar University Journal of Science 13, sy. 3 (Eylül 2017): 707-16. https://doi.org/10.18466/cbayarfbe.339346.
EndNote Atıcı R, Sağır S (01 Eylül 2017) The Investigation of Relationship between Solar Parameters and Total Electron Content over Mid-Latitude Ionosphere. Celal Bayar University Journal of Science 13 3 707–716.
IEEE R. Atıcı ve S. Sağır, “The Investigation of Relationship between Solar Parameters and Total Electron Content over Mid-Latitude Ionosphere”, CBUJOS, c. 13, sy. 3, ss. 707–716, 2017, doi: 10.18466/cbayarfbe.339346.
ISNAD Atıcı, Ramazan - Sağır, Selçuk. “The Investigation of Relationship Between Solar Parameters and Total Electron Content over Mid-Latitude Ionosphere”. Celal Bayar University Journal of Science 13/3 (Eylül 2017), 707-716. https://doi.org/10.18466/cbayarfbe.339346.
JAMA Atıcı R, Sağır S. The Investigation of Relationship between Solar Parameters and Total Electron Content over Mid-Latitude Ionosphere. CBUJOS. 2017;13:707–716.
MLA Atıcı, Ramazan ve Selçuk Sağır. “The Investigation of Relationship Between Solar Parameters and Total Electron Content over Mid-Latitude Ionosphere”. Celal Bayar University Journal of Science, c. 13, sy. 3, 2017, ss. 707-16, doi:10.18466/cbayarfbe.339346.
Vancouver Atıcı R, Sağır S. The Investigation of Relationship between Solar Parameters and Total Electron Content over Mid-Latitude Ionosphere. CBUJOS. 2017;13(3):707-16.