Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 15 Sayı: 4, 343 - 349, 30.12.2019
https://doi.org/10.18466/cbayarfbe.635079

Öz

Destekleyen Kurum

Tübitak

Proje Numarası

113Z587

Kaynakça

  • 1. Liu P., Tang H., Lu M., Gao C., Wang F., Ding Y., Zhang S., Yang M. 2017. Preparation of nanosilica-immobilized antioxidant and the anti-oxidative behavior in low density polyethylene Polymer Degradation and Stability, 135, 1-7.
  • 2. Ambrogi V., Panzella L., Persico P., Cerruti P., Lonz C.A., Carfagna C., Verotta L., Caneva E., Napolitano A., d’Ischia M. 2014. An antioxidant bioinspired phenolic polymer for efficient stabilization of polyethylene. Biomacromolecules, 15, 302-310.
  • 3. Gao Y., Jiang F., Zhang L., Cui Y. 2016. Enzymatic synthesis of polyguaiacol and its thermal antioxidant behavior in polypropylene. Polymer Bulletin, 73, 1343-1359.
  • 4. Zheng K., Tang H., Chen Q., Zhang L., Wu Y., Cui Y. 2015. Enzymatic synthesis of a polymeric antioxidant for efficient stabilization of polypropylene. Polymer Degradation and Stability, 112, 27-34.
  • 5. Wu Y., Jiang F., Chai C., Cui Y., Zhang L. 2018. Facile synthesis of oligo(4-methoxyphenol) in water and evaluation of its efficiency in stabilization of polypropylene. Polymers for Advanced Technologies, 29 (5),1518-1525.
  • 6. Doğan F., Kaya İ. and Temizkan K. 2015. Synthesis route to regioselectively functionalized bifunctional polyarene. Polymer International, 64,1639-1648.
  • 7. Doğan F., Şirin K., Kolcu F., Kaya I. 2018. Conducting polymer composites based on LDPE doped with poly(aminonaphthol sulfonic acid). Journal of Electrostatics, 94,85–9386.
  • 8. Kissinger H.E. 1957. Reaction kinetics in differential thermal analysis. Analytic Chemistry, 29 (11), 1702-1706.
  • 9. Kim S.D. and Park J.K. 1995. Characterization of thermal reaction by peak temperature and height of DTG curves. Thermochimica Acta, 264, 137-156.
  • 10. Tang W., Liu Y., Zhang C.H., and Wang C. 2003. New approximate formula for Arrhenius temperature integral. Thermochima Acta, 408, 39-43.
  • 11. Akahira T. and Sunuse T. T.1971. Joint convention of four electrical institutes research report, Chiba Institute of Technology, Chiba, 16, 22-31.
  • 12. Flynn, J.H., Wall, L.A. 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4, 323-328.
  • 13. Ozawa T.1965. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 38, 1881-1886.
  • 14. Friedman, H.L. 1964. Kinetic of thermal degradation of char-forming plastics from thermogravometry. Application to a phenolic plastic. Journal of Polymer Science Polymer Symposium, 6, 183-195.
  • 15. Doyle C.D. 1962. Estimating isothermal life from thermogravimetric data. Journal of Applied Polymer Science 6, 639.
  • 16. Tang W., Liu Y., Zhang C.H., and Wang C. 2003. New approximate formula for Arrhenius temperature integral. Thermochimica Acta, 408, 39-43.
  • 17. Kamel L.T. 2014. The kinetic analysis of non-isothermal carisoprodol reaction in nitrogen atmosphere using the invariant kinetic parameters method. European Journal of Chemistry, 5 (3), 507-512.
  • 18. Doğan F. 2017. Non-isothermal Decomposition Kinetic of Polypropylene Blends. Celal Bayar University Journal of Science, 13(2), 495-502.
  • 19. Şirin K., Doğan F., Şirin M., Beşergil B. 2017. Mechanical and thermal properties of Polypropylene (iPP)-High density polyethylene (HDPE) binary blends. Celal Bayar University Journal of Science, 13(1) 15- 23.
  • 20. Bilici A., Tezel R.N., Kaya İ., Doğan F. 2018. Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite. Celal Bayar University Journal of Science, 14(2), 187-193.

A Kinetic Evaluation for PANSA Doped Low Density Polyethylene Blends

Yıl 2019, Cilt: 15 Sayı: 4, 343 - 349, 30.12.2019
https://doi.org/10.18466/cbayarfbe.635079

Öz

In our previous study, we prepared blends of low
density polyethylene (LDPE) with semiconductor polymer, poly
(1-amino-2-hydroxynaphthalene-4-sulfonic acid) (PANSA), in different mixing
ratios. In that study, the findings on some physical and chemical properties of
the blends prepared were also presented. In this study, it was aimed to
investigate the thermal decomposition kinetics of these prepared blends. For
this purpose, thermograms of PANSA doped LDPE blends at four different heating
rates were obtained. With the addition of PANSA into LDPE, it was observed that
the initial decomposition temperature and maximum decomposition temperature of
LDPE increased. Thermal decomposition kinetics of blends were performed using
the integral isoconversional methods (Kissinger, Kim-Park (KP), Tang,
Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO)) in addition to
differential isoconversional method (Friedman method). Thermal decomposition
mechanism for blends was proposed with the help of master plot curves.

Proje Numarası

113Z587

Kaynakça

  • 1. Liu P., Tang H., Lu M., Gao C., Wang F., Ding Y., Zhang S., Yang M. 2017. Preparation of nanosilica-immobilized antioxidant and the anti-oxidative behavior in low density polyethylene Polymer Degradation and Stability, 135, 1-7.
  • 2. Ambrogi V., Panzella L., Persico P., Cerruti P., Lonz C.A., Carfagna C., Verotta L., Caneva E., Napolitano A., d’Ischia M. 2014. An antioxidant bioinspired phenolic polymer for efficient stabilization of polyethylene. Biomacromolecules, 15, 302-310.
  • 3. Gao Y., Jiang F., Zhang L., Cui Y. 2016. Enzymatic synthesis of polyguaiacol and its thermal antioxidant behavior in polypropylene. Polymer Bulletin, 73, 1343-1359.
  • 4. Zheng K., Tang H., Chen Q., Zhang L., Wu Y., Cui Y. 2015. Enzymatic synthesis of a polymeric antioxidant for efficient stabilization of polypropylene. Polymer Degradation and Stability, 112, 27-34.
  • 5. Wu Y., Jiang F., Chai C., Cui Y., Zhang L. 2018. Facile synthesis of oligo(4-methoxyphenol) in water and evaluation of its efficiency in stabilization of polypropylene. Polymers for Advanced Technologies, 29 (5),1518-1525.
  • 6. Doğan F., Kaya İ. and Temizkan K. 2015. Synthesis route to regioselectively functionalized bifunctional polyarene. Polymer International, 64,1639-1648.
  • 7. Doğan F., Şirin K., Kolcu F., Kaya I. 2018. Conducting polymer composites based on LDPE doped with poly(aminonaphthol sulfonic acid). Journal of Electrostatics, 94,85–9386.
  • 8. Kissinger H.E. 1957. Reaction kinetics in differential thermal analysis. Analytic Chemistry, 29 (11), 1702-1706.
  • 9. Kim S.D. and Park J.K. 1995. Characterization of thermal reaction by peak temperature and height of DTG curves. Thermochimica Acta, 264, 137-156.
  • 10. Tang W., Liu Y., Zhang C.H., and Wang C. 2003. New approximate formula for Arrhenius temperature integral. Thermochima Acta, 408, 39-43.
  • 11. Akahira T. and Sunuse T. T.1971. Joint convention of four electrical institutes research report, Chiba Institute of Technology, Chiba, 16, 22-31.
  • 12. Flynn, J.H., Wall, L.A. 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4, 323-328.
  • 13. Ozawa T.1965. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 38, 1881-1886.
  • 14. Friedman, H.L. 1964. Kinetic of thermal degradation of char-forming plastics from thermogravometry. Application to a phenolic plastic. Journal of Polymer Science Polymer Symposium, 6, 183-195.
  • 15. Doyle C.D. 1962. Estimating isothermal life from thermogravimetric data. Journal of Applied Polymer Science 6, 639.
  • 16. Tang W., Liu Y., Zhang C.H., and Wang C. 2003. New approximate formula for Arrhenius temperature integral. Thermochimica Acta, 408, 39-43.
  • 17. Kamel L.T. 2014. The kinetic analysis of non-isothermal carisoprodol reaction in nitrogen atmosphere using the invariant kinetic parameters method. European Journal of Chemistry, 5 (3), 507-512.
  • 18. Doğan F. 2017. Non-isothermal Decomposition Kinetic of Polypropylene Blends. Celal Bayar University Journal of Science, 13(2), 495-502.
  • 19. Şirin K., Doğan F., Şirin M., Beşergil B. 2017. Mechanical and thermal properties of Polypropylene (iPP)-High density polyethylene (HDPE) binary blends. Celal Bayar University Journal of Science, 13(1) 15- 23.
  • 20. Bilici A., Tezel R.N., Kaya İ., Doğan F. 2018. Synthesis and Characterization and Thermal Decomposition Kinetics of Poly (quinoline)-Copper Composite. Celal Bayar University Journal of Science, 14(2), 187-193.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Ali Bilici 0000-0002-1377-5580

İsmet Kaya Bu kişi benim 0000-0002-9813-2962

Proje Numarası 113Z587
Yayımlanma Tarihi 30 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 15 Sayı: 4

Kaynak Göster

APA Bilici, A., & Kaya, İ. (2019). A Kinetic Evaluation for PANSA Doped Low Density Polyethylene Blends. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(4), 343-349. https://doi.org/10.18466/cbayarfbe.635079
AMA Bilici A, Kaya İ. A Kinetic Evaluation for PANSA Doped Low Density Polyethylene Blends. CBUJOS. Aralık 2019;15(4):343-349. doi:10.18466/cbayarfbe.635079
Chicago Bilici, Ali, ve İsmet Kaya. “A Kinetic Evaluation for PANSA Doped Low Density Polyethylene Blends”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15, sy. 4 (Aralık 2019): 343-49. https://doi.org/10.18466/cbayarfbe.635079.
EndNote Bilici A, Kaya İ (01 Aralık 2019) A Kinetic Evaluation for PANSA Doped Low Density Polyethylene Blends. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15 4 343–349.
IEEE A. Bilici ve İ. Kaya, “A Kinetic Evaluation for PANSA Doped Low Density Polyethylene Blends”, CBUJOS, c. 15, sy. 4, ss. 343–349, 2019, doi: 10.18466/cbayarfbe.635079.
ISNAD Bilici, Ali - Kaya, İsmet. “A Kinetic Evaluation for PANSA Doped Low Density Polyethylene Blends”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15/4 (Aralık 2019), 343-349. https://doi.org/10.18466/cbayarfbe.635079.
JAMA Bilici A, Kaya İ. A Kinetic Evaluation for PANSA Doped Low Density Polyethylene Blends. CBUJOS. 2019;15:343–349.
MLA Bilici, Ali ve İsmet Kaya. “A Kinetic Evaluation for PANSA Doped Low Density Polyethylene Blends”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 15, sy. 4, 2019, ss. 343-9, doi:10.18466/cbayarfbe.635079.
Vancouver Bilici A, Kaya İ. A Kinetic Evaluation for PANSA Doped Low Density Polyethylene Blends. CBUJOS. 2019;15(4):343-9.