Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 17 Sayı: 1, 31 - 34, 30.12.2020
https://doi.org/10.18466/cbayarfbe.776697

Öz

Kaynakça

  • 1. Haibo, T, Hongwei, M, Juan, W. 2013. Workspace and Structural Parameters Analysis for Manipulator of Serial Robot Manipulator workspace analysis using the Monte Carlo method, J. Transactions of the Chinese Society for Agricultural Machinery, 44 p. 196-201.
  • 2. Ming, Z, Qingzhong, H. 2013. The Workspace Analysis of the Articulated Palletizing Robot, J. Modular Machine Tool & Automatic Manufacturing Technique, 7 p. 68-74.
  • 3. Funda, J, Taylor, RH, Paul, RP. 1990. On homogeneous transforms, quaternions, and computational efficiency, IEEE Trans. Robot. Automation 6, pages 382–388.
  • 4. Klafter, RD, Chmielewski TA, Negin. M. 1989. Robotic Engineering: An Integrated Approach. Prentice Hall.
  • 5. Mittal, RK, Nagrath, J. 2005. Robotics and Control, Tata McGraw-Hill.
  • 6. McKerrow, PJ. 1991. Introduction to Robotics. Addison-Wesley.
  • 7. Niku, SB. 2001. Introduction to Robotics: Analysis, Systems, Applications. Prentice Hall.
  • 8. Denavit, J, Hartenberg, RS. 1955. A kinematic Notation for Lower- Pair Mechanism Based on Matrices. ASME Journal of Applied Mechanics, 215-221.
  • 9. Liu, Y, Wang, D, Sun, J, et atl. 2015. Geometric approach for inverse kinematics analysis of 6-dof serial robot, IEEE International Conference on Information and Automation, pages 852-855
  • 10. Qiao, S, Liao, Q, Wei, S, Su, H. 2010. Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions, Mechanism and Machine Theory 45, 193-199.
  • 11. Almusawi, ARJ, Dülger, LC, Kapucu, S. 2016. A new artificial neural network approach in solving inverse kinematics of robotic arm (denso vp6242), Computational Intelligence and Neuroscience
  • 12. Köker, R. 2013. A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization, Information Sciences 222, 528-543.
  • 13. Duka, AV. 2014. Neural network based inverse kinematics solution for trajectory tracking of a robotic arm, Procedia Technology 12, 20-27.
  • 14. Uchiyama, M, Iwasawa, N, Hakomori, K. 1987. Hybrid positon/force control for coordination of two-arm robot. in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1242–1247.
  • 15. Kopf, CD, Yabuta, T. 1988. Experimental comparison of master/slave and hybrid two arm position/force control. in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 1633–1637.
  • 16. Mandava, RK, Vundavilli, PR. 2016. Forward and inverse kinematic based full body gait generation of biped robot. Proceedings of the International Conference on Electrical, Electronics and Optimization Techniques, Mar 3-5, IEEE Xplore Press, Chennai, India, pp: 3301-3305. DOI: 10.1109/ICEEOT.2016.7755317
  • 17. Sadiq, AT, Raheem FA, Abbas, NA. 2017. Optimal trajectory planning of 2-DOF robot arm using the integration of PSO based on D* algorithm and cubic polynomial equation. Proceedings of the 1st International Conference for Engineering Researches, (CER’ 17), Middle Technical University, Baghdad-Iraq, pp: 458-467.
  • 18. Chaitanyaa, G, Reddy, S. 2016. Genetic algorithm based optimization of a two Link planar robot manipulator. Int. J. Lean Think., 7: 1-3.
  • 19. Jones, BA, Walker, ID. 2006. Kinematics for multisection continuum robots. IEEE Trans. Robot., 22: 43-55. DOI: 10.1109/TRO.2005.861458
  • 20. Radavelli, L, Simoni, R, De Pieri E, Martins, D. 2012. A comparative study of the kinematics of robots manipulators by Denavit-Hartenberg and dual quaternion. Mecánica Comput. Multi-Body Syst., 31: 2833-48
  • 21. Chen, Q, Zhu S, Zhang, X. 2015. Improved inverse kinematics algorithm using screw theory for a sixDOF robot manipulator. Int. J. Adv. Robotic Syst., 12: 140-140. DOI: 10.5772/60834
  • 22. Raheem, FA, Sadiq AT, Abbas, NAF. 2019. Robot arm free Cartesian space analysis for heuristic path planning enhancement. Int. J. Mech. Mechatron. Eng., 19: 29-42.
  • 23. Sun, JD, Cao, GZ, Li, WB, Liang, YX, Huang, SD, 2017. Analytical inverse kinematic solution using the D-H method for a 6-DOF robot. Proceedings of the 14th International Conference on Ubiquitous Robots and Ambient Intelligence, Jun. 28-Jul. 1, IEEE Xplore Press, Jeju, South Korea, pp: 714-716. DOI: 10.1109/URAI.2017.7992807
  • 24. Xiao WL, Henning S, Torsten L, et al. 2011. Closed-form inverse kinematics of 6R milling robot with singularity avoidance. Prod Eng Devel 5:103–110
  • 25. Corke, PI. 1996. A robotics toolbox for matlab. IEEE Robotics Automation Magazine, vol. 3, no. 1, pp. 24–32
  • 26. Kelmar L, Khosla, PK. 1990. Automatic generation of forward and inverse kinematics for a reconfigurable modular manipulator system,” Journal of Robotic Systems, vol. 7, no. 4, pp. 599–619 [Online]. Available: http://dx.doi.org/10.1002/rob.4620070406
  • 27. Wu Y, Cheng LH, Fan GF, et al. 2014. Inverse kinematics solution and optimization of 6-DOF handling robot. Appl Mech Mater 635–637:1355–1359

Modeling of Inverse Kinematic Analysis of Open-Source Medical Assist Robot Arm by Python

Yıl 2021, Cilt: 17 Sayı: 1, 31 - 34, 30.12.2020
https://doi.org/10.18466/cbayarfbe.776697

Öz

Today, the epidemic diseases such as COVID-19 spreads very fast in the globalizing world and lethal effects on human health have had a noticeable effect on the health sector. For this situations, various disciplines have had different studies to minimize the effects of the epidemic. In such cases, it is a separate requirement that the use of the opportunities brought by technology. In this study, the kinematic analysis of the open-source robot arm was especially examined in terms of reducing the workload of individuals working in the healthcare sector. The open-source robot arm is articulated and has 5 degrees of freedom. The kinematic analysis is very important for determination of the working space of the robotic systems. The inverse kinematic analysis was done with Python programming language and the control module was developed to check the analysis. The control module shows the angle values depending on the joints of the robot arm. It is also shown the Px, Py, and Pz positions obtained depending on the position of the end effector in 3D space. On the other hand, Euler angle values are also specified, which are based on the position of the last position taken by the joints of the robot arm in the 3D space. In the study, the geometric approach method was used that is still popular in the inverse kinematic analysis. It is hoped that this study will inspire the development and use of professional and industrial kinds of the open-source robot arm.

Kaynakça

  • 1. Haibo, T, Hongwei, M, Juan, W. 2013. Workspace and Structural Parameters Analysis for Manipulator of Serial Robot Manipulator workspace analysis using the Monte Carlo method, J. Transactions of the Chinese Society for Agricultural Machinery, 44 p. 196-201.
  • 2. Ming, Z, Qingzhong, H. 2013. The Workspace Analysis of the Articulated Palletizing Robot, J. Modular Machine Tool & Automatic Manufacturing Technique, 7 p. 68-74.
  • 3. Funda, J, Taylor, RH, Paul, RP. 1990. On homogeneous transforms, quaternions, and computational efficiency, IEEE Trans. Robot. Automation 6, pages 382–388.
  • 4. Klafter, RD, Chmielewski TA, Negin. M. 1989. Robotic Engineering: An Integrated Approach. Prentice Hall.
  • 5. Mittal, RK, Nagrath, J. 2005. Robotics and Control, Tata McGraw-Hill.
  • 6. McKerrow, PJ. 1991. Introduction to Robotics. Addison-Wesley.
  • 7. Niku, SB. 2001. Introduction to Robotics: Analysis, Systems, Applications. Prentice Hall.
  • 8. Denavit, J, Hartenberg, RS. 1955. A kinematic Notation for Lower- Pair Mechanism Based on Matrices. ASME Journal of Applied Mechanics, 215-221.
  • 9. Liu, Y, Wang, D, Sun, J, et atl. 2015. Geometric approach for inverse kinematics analysis of 6-dof serial robot, IEEE International Conference on Information and Automation, pages 852-855
  • 10. Qiao, S, Liao, Q, Wei, S, Su, H. 2010. Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions, Mechanism and Machine Theory 45, 193-199.
  • 11. Almusawi, ARJ, Dülger, LC, Kapucu, S. 2016. A new artificial neural network approach in solving inverse kinematics of robotic arm (denso vp6242), Computational Intelligence and Neuroscience
  • 12. Köker, R. 2013. A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization, Information Sciences 222, 528-543.
  • 13. Duka, AV. 2014. Neural network based inverse kinematics solution for trajectory tracking of a robotic arm, Procedia Technology 12, 20-27.
  • 14. Uchiyama, M, Iwasawa, N, Hakomori, K. 1987. Hybrid positon/force control for coordination of two-arm robot. in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1242–1247.
  • 15. Kopf, CD, Yabuta, T. 1988. Experimental comparison of master/slave and hybrid two arm position/force control. in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 1633–1637.
  • 16. Mandava, RK, Vundavilli, PR. 2016. Forward and inverse kinematic based full body gait generation of biped robot. Proceedings of the International Conference on Electrical, Electronics and Optimization Techniques, Mar 3-5, IEEE Xplore Press, Chennai, India, pp: 3301-3305. DOI: 10.1109/ICEEOT.2016.7755317
  • 17. Sadiq, AT, Raheem FA, Abbas, NA. 2017. Optimal trajectory planning of 2-DOF robot arm using the integration of PSO based on D* algorithm and cubic polynomial equation. Proceedings of the 1st International Conference for Engineering Researches, (CER’ 17), Middle Technical University, Baghdad-Iraq, pp: 458-467.
  • 18. Chaitanyaa, G, Reddy, S. 2016. Genetic algorithm based optimization of a two Link planar robot manipulator. Int. J. Lean Think., 7: 1-3.
  • 19. Jones, BA, Walker, ID. 2006. Kinematics for multisection continuum robots. IEEE Trans. Robot., 22: 43-55. DOI: 10.1109/TRO.2005.861458
  • 20. Radavelli, L, Simoni, R, De Pieri E, Martins, D. 2012. A comparative study of the kinematics of robots manipulators by Denavit-Hartenberg and dual quaternion. Mecánica Comput. Multi-Body Syst., 31: 2833-48
  • 21. Chen, Q, Zhu S, Zhang, X. 2015. Improved inverse kinematics algorithm using screw theory for a sixDOF robot manipulator. Int. J. Adv. Robotic Syst., 12: 140-140. DOI: 10.5772/60834
  • 22. Raheem, FA, Sadiq AT, Abbas, NAF. 2019. Robot arm free Cartesian space analysis for heuristic path planning enhancement. Int. J. Mech. Mechatron. Eng., 19: 29-42.
  • 23. Sun, JD, Cao, GZ, Li, WB, Liang, YX, Huang, SD, 2017. Analytical inverse kinematic solution using the D-H method for a 6-DOF robot. Proceedings of the 14th International Conference on Ubiquitous Robots and Ambient Intelligence, Jun. 28-Jul. 1, IEEE Xplore Press, Jeju, South Korea, pp: 714-716. DOI: 10.1109/URAI.2017.7992807
  • 24. Xiao WL, Henning S, Torsten L, et al. 2011. Closed-form inverse kinematics of 6R milling robot with singularity avoidance. Prod Eng Devel 5:103–110
  • 25. Corke, PI. 1996. A robotics toolbox for matlab. IEEE Robotics Automation Magazine, vol. 3, no. 1, pp. 24–32
  • 26. Kelmar L, Khosla, PK. 1990. Automatic generation of forward and inverse kinematics for a reconfigurable modular manipulator system,” Journal of Robotic Systems, vol. 7, no. 4, pp. 599–619 [Online]. Available: http://dx.doi.org/10.1002/rob.4620070406
  • 27. Wu Y, Cheng LH, Fan GF, et al. 2014. Inverse kinematics solution and optimization of 6-DOF handling robot. Appl Mech Mater 635–637:1355–1359
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Gül 0000-0002-4819-4743

Yayımlanma Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 17 Sayı: 1

Kaynak Göster

APA Gül, M. (2020). Modeling of Inverse Kinematic Analysis of Open-Source Medical Assist Robot Arm by Python. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(1), 31-34. https://doi.org/10.18466/cbayarfbe.776697
AMA Gül M. Modeling of Inverse Kinematic Analysis of Open-Source Medical Assist Robot Arm by Python. CBUJOS. Aralık 2020;17(1):31-34. doi:10.18466/cbayarfbe.776697
Chicago Gül, Mehmet. “Modeling of Inverse Kinematic Analysis of Open-Source Medical Assist Robot Arm by Python”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17, sy. 1 (Aralık 2020): 31-34. https://doi.org/10.18466/cbayarfbe.776697.
EndNote Gül M (01 Aralık 2020) Modeling of Inverse Kinematic Analysis of Open-Source Medical Assist Robot Arm by Python. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17 1 31–34.
IEEE M. Gül, “Modeling of Inverse Kinematic Analysis of Open-Source Medical Assist Robot Arm by Python”, CBUJOS, c. 17, sy. 1, ss. 31–34, 2020, doi: 10.18466/cbayarfbe.776697.
ISNAD Gül, Mehmet. “Modeling of Inverse Kinematic Analysis of Open-Source Medical Assist Robot Arm by Python”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17/1 (Aralık 2020), 31-34. https://doi.org/10.18466/cbayarfbe.776697.
JAMA Gül M. Modeling of Inverse Kinematic Analysis of Open-Source Medical Assist Robot Arm by Python. CBUJOS. 2020;17:31–34.
MLA Gül, Mehmet. “Modeling of Inverse Kinematic Analysis of Open-Source Medical Assist Robot Arm by Python”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 17, sy. 1, 2020, ss. 31-34, doi:10.18466/cbayarfbe.776697.
Vancouver Gül M. Modeling of Inverse Kinematic Analysis of Open-Source Medical Assist Robot Arm by Python. CBUJOS. 2020;17(1):31-4.