Araştırma Makalesi
BibTex RIS Kaynak Göster

Majority vote decision fusion system to assist automated identification of vertebral column pathologies

Yıl 2023, Cilt: 19 Sayı: 1, 53 - 65, 28.03.2023

Öz

This paper presents a majority vote decision fusion system called AIVCP (Automated Identification of Vertebral Column Pathologies). With this aim, we proposed a three-step decision fusion algorithm: In the first step, a pool of algorithms from different groups is obtained and the number of classifiers is decreased to 10 with the use of prediction accuracy and classifier diversity concept. As a second step, different majority vote combinations of 10 algorithms are searched with a grid search strategy guided on top of 10-fold cross validation evaluation and with prediction error analysis. In the second step, we obtained four base classifiers, i.e., Naïve Bayes (NB), Simple Logistics (SL), Learning Vector Quantization (LVQ) and Decision Stump (DS) whose majority vote decision fusion generate the most accurate diagnosis rate in Vertebral Column Pathologies domain. As the third step, we applied a Support Vector Machine based feature selection to increase prediction performance of the proposed system further. The experiments are evaluated with the use of 10-fold cross-validation, Sensitivity, Specificity and Confusion Matrices. The experimental results have shown that NB, SL, LVQ, and DS as single classifiers generate 82.58%, 87.09%, 82.90%, and 77.41% average diagnosis accuracies respectively. On the other hand, majority vote decision fusion of these single predictors produces 90.32% accuracy that is higher than each of the constituents. The resultant diagnosis accuracy of Vote algorithm for Vertebral column pathologies is quite promising.

Kaynakça

  • Sim I, Gorman P, Greenes RA et al. 2001. Clinical decision support systems for the practice of evidence-based medicine. Journal of the American Medical Informatics Association; 8(6): 527–534. doi: 10.1136/JAMIA.2001.0080527/2/JAMIA0080527.F01.JPEG.
  • Shahmoradi L, Safdari R, Ahmadi H, Zahmatkeshan M. 2021. Clinical decision support systems-based interventions to improve medication outcomes: A systematic literature review on features and effects. Medical Journal of the Islamic Republic of Iran; 3527. doi: 10.47176/MJIRI.35.27.
  • Shaikh F, Dehmeshki J, Bisdas S et al. 2021. Artificial Intelligence-Based Clinical Decision Support Systems Using Advanced Medical Imaging and Radiomics. Current Problems in Diagnostic Radiology; 50(2): 262–267. doi: 10.1067/J.CPRADIOL.2020.05.006.
  • Polikar R. 2006. Ensemble based systems in decision making. Circuits and Systems Magazine; 6(3): 21–44. doi: 10.1109/MCAS.2006.1688199.
  • Hanson CC, Brabyn L, Gurung SB. 2022. Diversity-accuracy assessment of multiple classifier systems for the land cover classification of the Khumbu region in the Himalayas. Journal of Mountain Science 2022 19:2; 19(2): 365–387. doi: 10.1007/S11629-021-7130-7.
  • Duin RPW, Tax DMJ. 2000. Experiments with Classifier Combining Rules. In: Int. Work. Mult. Classif. Syst. Springer-Verlag. pp 16–29.
  • Neto ARDR, Sousa R, Barreto GDA, Cardoso JS. 2011. Diagnostic of Pathology on the Vertebral Column with Embedded Reject Option. In: Iber. Conf. Pattern Recognit. Image Anal. Las Palmas de Gran Canaria, Spain, Springer, Berlin, Heidelberg. pp 588–595.
  • Berthonnaud E, Dimnet J, Roussouly P, Labelle H. 2005. Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. Journal of Spinal Disorders and Techniques; 18(1): 40–47. doi: 10.1097/01.BSD.0000117542.88865.77.
  • Neto ARR, Barreto GA. 2009. On the application of ensembles of classifiers to the diagnosis of pathologies of the vertebral column: A comparative analysis. Latin America Transactions; 7(4): 487–496. doi: 10.1109/TLA.2009.5349049.
  • Baker JF, Joseph Baker CF, Y W O R D S child KE. 2021. Computed tomography study of the relationship between pelvic incidence and bony contribution to lumbar lordosis in children. Clinical Anatomy; 34(6): 934–940. doi: 10.1002/CA.23756.
  • Açar G, Çiçekcibaşı AE, Koplay M, Seher N. 2021. Surface anatomy and lumbar lordosis angle. Anatomical Science International; 96(3): 400–410. doi: 10.1007/S12565-021-00602-1/FIGURES/6.
  • Jain AK, Duin RPW, Mao J. 2000. Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence; 22(1): 4–37. doi: 10.1109/34.824819.
  • Tu C-J, Chuang L-Y, Chang J-Y, Yang C-H. 2006. Feature selection using PSO-SVM. IAENG Int. J. Comput. Sci. 33
  • Guyon I, Weston J, Barnhill S, Vapnik V. 2002. Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning; 46(1): 389–422. doi: 10.1023/A:1012487302797.
  • Guyon I, Elisseeff A. 2003. An Introduction to Variable and Feature Selection. Journal of Machine Learning Research; 31157–1182.
  • Rwigema J, Mfitumukiza J, Tae-Yong K. 2021. A hybrid approach of neural networks for age and gender classification through decision fusion. Biomedical Signal Processing and Control; 66102459. doi: 10.1016/J.BSPC.2021.102459.
  • Rahman A, Fairhurst M. 2000. Decision combination of multiple classifiers for pattern classification: Hybridisation of majority voting and divide and conquer techniques. In: Appl. Comput. Vis. Fifth IEEE Workshop. pp 58–63.
  • Wang H, Liang T, Cheng Y. 2021. Evolution and quality analysis algorithm of consumer online reviews based on data fusion and multiobjective optimization. J Sensors. doi: 10.1155/2021/6252425
  • Ruta D, Gabrys B. 2005. Classifier selection for majority voting. Information Fusion; 6(1): 63–81. doi: 10.1016/J.INFFUS.2004.04.008.
  • Landwehr N, Hall M, Frank E. 2005. Logistic Model Trees. Machine Learning; 59(1): 161–205. doi: 10.1007/S10994-005-0466-3.
  • Holte RC. 1993. Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning; 11(1): 63–90. doi: 10.1023/A:1022631118932.
  • Bhargavi P, Jyothi S. 2009. Applying Naive Bayes Data Mining Technique for Classification of Agricultural Land Soils. IJCSNS International Journal of Computer Science and Network Security; 9(8): 117–122.
  • Wickramasinghe I, Kalutarage H. 2021. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing; 25(3): 2277–2293. doi: 10.1007/S00500-020-05297-6/FIGURES/2.
  • Domingos P, Pazzani M. 1997. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning; 29(2): 103–130. doi: 10.1023/A:1007413511361.
  • Kohonen T. 2001. Self-Organizing Maps. doi: 10.1007/978-3-642-56927-2
  • Hollmén J, Tresp V, Simula O. 2000. A learning vector quantization algorithm for probabilistic models. In Tampere, Finland, IEEE
Yıl 2023, Cilt: 19 Sayı: 1, 53 - 65, 28.03.2023

Öz

Kaynakça

  • Sim I, Gorman P, Greenes RA et al. 2001. Clinical decision support systems for the practice of evidence-based medicine. Journal of the American Medical Informatics Association; 8(6): 527–534. doi: 10.1136/JAMIA.2001.0080527/2/JAMIA0080527.F01.JPEG.
  • Shahmoradi L, Safdari R, Ahmadi H, Zahmatkeshan M. 2021. Clinical decision support systems-based interventions to improve medication outcomes: A systematic literature review on features and effects. Medical Journal of the Islamic Republic of Iran; 3527. doi: 10.47176/MJIRI.35.27.
  • Shaikh F, Dehmeshki J, Bisdas S et al. 2021. Artificial Intelligence-Based Clinical Decision Support Systems Using Advanced Medical Imaging and Radiomics. Current Problems in Diagnostic Radiology; 50(2): 262–267. doi: 10.1067/J.CPRADIOL.2020.05.006.
  • Polikar R. 2006. Ensemble based systems in decision making. Circuits and Systems Magazine; 6(3): 21–44. doi: 10.1109/MCAS.2006.1688199.
  • Hanson CC, Brabyn L, Gurung SB. 2022. Diversity-accuracy assessment of multiple classifier systems for the land cover classification of the Khumbu region in the Himalayas. Journal of Mountain Science 2022 19:2; 19(2): 365–387. doi: 10.1007/S11629-021-7130-7.
  • Duin RPW, Tax DMJ. 2000. Experiments with Classifier Combining Rules. In: Int. Work. Mult. Classif. Syst. Springer-Verlag. pp 16–29.
  • Neto ARDR, Sousa R, Barreto GDA, Cardoso JS. 2011. Diagnostic of Pathology on the Vertebral Column with Embedded Reject Option. In: Iber. Conf. Pattern Recognit. Image Anal. Las Palmas de Gran Canaria, Spain, Springer, Berlin, Heidelberg. pp 588–595.
  • Berthonnaud E, Dimnet J, Roussouly P, Labelle H. 2005. Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. Journal of Spinal Disorders and Techniques; 18(1): 40–47. doi: 10.1097/01.BSD.0000117542.88865.77.
  • Neto ARR, Barreto GA. 2009. On the application of ensembles of classifiers to the diagnosis of pathologies of the vertebral column: A comparative analysis. Latin America Transactions; 7(4): 487–496. doi: 10.1109/TLA.2009.5349049.
  • Baker JF, Joseph Baker CF, Y W O R D S child KE. 2021. Computed tomography study of the relationship between pelvic incidence and bony contribution to lumbar lordosis in children. Clinical Anatomy; 34(6): 934–940. doi: 10.1002/CA.23756.
  • Açar G, Çiçekcibaşı AE, Koplay M, Seher N. 2021. Surface anatomy and lumbar lordosis angle. Anatomical Science International; 96(3): 400–410. doi: 10.1007/S12565-021-00602-1/FIGURES/6.
  • Jain AK, Duin RPW, Mao J. 2000. Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence; 22(1): 4–37. doi: 10.1109/34.824819.
  • Tu C-J, Chuang L-Y, Chang J-Y, Yang C-H. 2006. Feature selection using PSO-SVM. IAENG Int. J. Comput. Sci. 33
  • Guyon I, Weston J, Barnhill S, Vapnik V. 2002. Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning; 46(1): 389–422. doi: 10.1023/A:1012487302797.
  • Guyon I, Elisseeff A. 2003. An Introduction to Variable and Feature Selection. Journal of Machine Learning Research; 31157–1182.
  • Rwigema J, Mfitumukiza J, Tae-Yong K. 2021. A hybrid approach of neural networks for age and gender classification through decision fusion. Biomedical Signal Processing and Control; 66102459. doi: 10.1016/J.BSPC.2021.102459.
  • Rahman A, Fairhurst M. 2000. Decision combination of multiple classifiers for pattern classification: Hybridisation of majority voting and divide and conquer techniques. In: Appl. Comput. Vis. Fifth IEEE Workshop. pp 58–63.
  • Wang H, Liang T, Cheng Y. 2021. Evolution and quality analysis algorithm of consumer online reviews based on data fusion and multiobjective optimization. J Sensors. doi: 10.1155/2021/6252425
  • Ruta D, Gabrys B. 2005. Classifier selection for majority voting. Information Fusion; 6(1): 63–81. doi: 10.1016/J.INFFUS.2004.04.008.
  • Landwehr N, Hall M, Frank E. 2005. Logistic Model Trees. Machine Learning; 59(1): 161–205. doi: 10.1007/S10994-005-0466-3.
  • Holte RC. 1993. Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning; 11(1): 63–90. doi: 10.1023/A:1022631118932.
  • Bhargavi P, Jyothi S. 2009. Applying Naive Bayes Data Mining Technique for Classification of Agricultural Land Soils. IJCSNS International Journal of Computer Science and Network Security; 9(8): 117–122.
  • Wickramasinghe I, Kalutarage H. 2021. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing; 25(3): 2277–2293. doi: 10.1007/S00500-020-05297-6/FIGURES/2.
  • Domingos P, Pazzani M. 1997. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning; 29(2): 103–130. doi: 10.1023/A:1007413511361.
  • Kohonen T. 2001. Self-Organizing Maps. doi: 10.1007/978-3-642-56927-2
  • Hollmén J, Tresp V, Simula O. 2000. A learning vector quantization algorithm for probabilistic models. In Tampere, Finland, IEEE
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Akın Özçift 0000-0002-5317-5678

Mehmet Bozuyla 0000-0002-7485-6106

Yayımlanma Tarihi 28 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 19 Sayı: 1

Kaynak Göster

APA Özçift, A., & Bozuyla, M. (2023). Majority vote decision fusion system to assist automated identification of vertebral column pathologies. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 19(1), 53-65.
AMA Özçift A, Bozuyla M. Majority vote decision fusion system to assist automated identification of vertebral column pathologies. CBUJOS. Mart 2023;19(1):53-65.
Chicago Özçift, Akın, ve Mehmet Bozuyla. “Majority Vote Decision Fusion System to Assist Automated Identification of Vertebral Column Pathologies”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 19, sy. 1 (Mart 2023): 53-65.
EndNote Özçift A, Bozuyla M (01 Mart 2023) Majority vote decision fusion system to assist automated identification of vertebral column pathologies. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 19 1 53–65.
IEEE A. Özçift ve M. Bozuyla, “Majority vote decision fusion system to assist automated identification of vertebral column pathologies”, CBUJOS, c. 19, sy. 1, ss. 53–65, 2023.
ISNAD Özçift, Akın - Bozuyla, Mehmet. “Majority Vote Decision Fusion System to Assist Automated Identification of Vertebral Column Pathologies”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 19/1 (Mart 2023), 53-65.
JAMA Özçift A, Bozuyla M. Majority vote decision fusion system to assist automated identification of vertebral column pathologies. CBUJOS. 2023;19:53–65.
MLA Özçift, Akın ve Mehmet Bozuyla. “Majority Vote Decision Fusion System to Assist Automated Identification of Vertebral Column Pathologies”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 19, sy. 1, 2023, ss. 53-65.
Vancouver Özçift A, Bozuyla M. Majority vote decision fusion system to assist automated identification of vertebral column pathologies. CBUJOS. 2023;19(1):53-65.