Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 21 Sayı: 2, 1 - 10, 27.06.2025
https://doi.org/10.18466/cbayarfbe.1554719

Öz

Kaynakça

  • [1]. K. Manzoor, M. Batool, F. Naz, M. F. Nazar, B. H. Hameed, and M. N. Zafar, “A comprehensive review on application of plant-based bioadsorbents for Congo red removal”, Biomass Convers Biorefin, c. 14, sy 4, ss. 4511-4537, Şub. 2024, doi: 10.1007/s13399-022-02741-5.
  • [2]. C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit, “A critical review on textile wastewater treatments: Possible approaches”, J Environ Manage, c. 182, ss. 351-366, Kas. 2016, doi: 10.1016/j.jenvman.2016.07.090.
  • [3]. V. Katheresan, J. Kansedo, and S. Y. Lau, “Efficiency of various recent wastewater dye removal methods: A review”, J Environ Chem Eng, c.: 6, sy:4, ss. 4676-4697, Ağu. 2018, doi: 10.1016/j.jece.2018.06.060.
  • [4]. M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, “Dye and its removal from aqueous solution by adsorption: A review”, Adv Colloid Interface Sci, c. 209, ss. 172-184, Tem. 2014, doi: 10.1016/j.cis.2014.04.002.
  • [5]. K. Maheshwari, M. Agrawal, ve A. B. Gupta, “Dye Pollution in Water and Wastewater”, 2021, ss. 1-25. doi: 10.1007/978-981-16-2892-4_1.
  • [6]. A. Rafiq vd., “Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution”, Journal of Industrial and Engineering Chemistry, c. 97, ss. 111-128, May. 2021, doi: 10.1016/j.jiec.2021.02.017.
  • [7]. C. Patra, R. Gupta, D. Bedadeep, ve S. Narayanasamy, “Surface treated acid-activated carbon for adsorption of anionic azo dyes from single and binary adsorptive systems: A detail insight”, Environmental Pollution, c. 266, s. 115102, Kas. 2020, doi: 10.1016/j.envpol.2020.115102.
  • [8]. C. Karaman, O. Karaman, P.-L. Show, H. Karimi-Maleh, ve N. Zare, “Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach”, Chemosphere, c. 290, s. 133346, Mar. 2022, doi: 10.1016/j.chemosphere.2021.133346.
  • [9]. G. A. R. de Oliveira vd., “A test battery for assessing the ecotoxic effects of textile dyes”, Chem Biol Interact, c. 291, ss. 171-179, Ağu. 2018, doi: 10.1016/j.cbi.2018.06.026.
  • [10]. P. Gharbani, S. M. Tabatabaii, ve A. Mehrizad, “Removal of Congo red from textile wastewater by ozonation”, International Journal of Environmental Science & Technology, c. 5, sy 4, ss. 495-500, Eyl. 2008, doi: 10.1007/BF03326046.
  • [11]. E. Alver, M. Bulut, A. Ü. Metin, ve H. Çiftçi, “One step effective removal of Congo Red in chitosan nanoparticles by encapsulation”, Spectrochim Acta A Mol Biomol Spectrosc, c. 171, ss. 132-138, Oca. 2017, doi: 10.1016/j.saa.2016.07.046.
  • [12]. G. Derouich, S. Alami Younssi, J. Bennazha, J. A. Cody, M. Ouammou, ve M. El Rhazi, “Development of low-cost polypyrrole/sintered pozzolan ultrafiltration membrane and its highly efficient performance for congo red dye removal”, J Environ Chem Eng, c. 8, sy 3, s. 103809, Haz. 2020, doi: 10.1016/j.jece.2020.103809.
  • [13]. A. Akhtar, Z. Aslam, A. Asghar, M. M. Bello, ve A. A. A. Raman, “Electrocoagulation of Congo Red dye-containing wastewater: Optimization of operational parameters and process mechanism”, J Environ Chem Eng, c. 8, sy 5, s. 104055, Eki. 2020, doi: 10.1016/j.jece.2020.104055.
  • [14]. S. Wang vd., “Degradation of Congo red by UV photolysis of nitrate: Kinetics and degradation mechanism”, Sep Purif Technol, c. 262, s. 118276, May. 2021, doi: 10.1016/j.seppur.2020.118276.
  • [15]. B. D. Tony, D. Goyal, ve S. Khanna, “Decolorization of textile azo dyes by aerobic bacterial consortium”, Int Biodeterior Biodegradation, c. 63, sy 4, ss. 462-469, Haz. 2009, doi: 10.1016/j.ibiod.2009.01.003.
  • [16]. V. Vimonses, S. Lei, B. Jin, C. W. K. Chow, ve C. Saint, “Adsorption of congo red by three Australian kaolins”, Appl Clay Sci, c. 43, sy 3-4, ss. 465-472, Mar. 2009, doi: 10.1016/j.clay.2008.11.008.
  • [17]. A. K. Chauhan, N. Kataria, ve V. K. Garg, “Green fabrication of ZnO nanoparticles using Eucalyptus spp. leaves extract and their application in wastewater remediation”, Chemosphere, c. 247, s. 125803, May. 2020, doi: 10.1016/j.chemosphere.2019.125803.
  • [18]. P. K. Rose vd., “Congo red dye removal using modified banana leaves: Adsorption equilibrium, kinetics, and reusability analysis”, Groundw Sustain Dev, c. 23, s. 101005, Kas. 2023, doi: 10.1016/j.gsd.2023.101005.
  • [19]. A. Kausar vd., “Dyes adsorption using clay and modified clay: A review”, J Mol Liq, c. 256, ss. 395-407, Nis. 2018, doi: 10.1016/j.molliq.2018.02.034.
  • [20]. S. Mandal, J. Calderon, S. B. Marpu, M. A. Omary, ve S. Q. Shi, “Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies”, J Contam Hydrol, c. 243, s. 103869, Ara. 2021, doi: 10.1016/j.jconhyd.2021.103869.
  • [21]. A. J. Muñoz, F. Espínola, M. Moya, ve E. Ruiz, “Biosorption of Pb(II) Ions by Klebsiella sp. 3S1 Isolated from a Wastewater Treatment Plant: Kinetics and Mechanisms Studies”, Biomed Res Int, c. 2015, ss. 1-12, 2015, doi: 10.1155/2015/719060.
  • [22]. N. Hamri vd., “Enhanced Adsorption Capacity of Methylene Blue Dye onto Kaolin through Acid Treatment: Batch Adsorption and Machine Learning Studies”, Water (Basel), c. 16, sy 2, s. 243, Oca. 2024, doi: 10.3390/w16020243.
  • [23]. A. Hashem, C. O. Aniagor, O. M. Morsy, A. Abou-Okeil, ve A. A. Aly, “Apricot seed shell: an agro-waste biosorbent for acid blue193 dye adsorption”, Biomass Convers Biorefin, c. 14, sy 11, ss. 12283-12296, Haz. 2024, doi: 10.1007/s13399-022-03272-9.
  • [24]. J. Wang ve X. Guo, “Adsorption isotherm models: Classification, physical meaning, application and solving method”, Chemosphere, c. 258, s. 127279, Kas. 2020, doi: 10.1016/j.chemosphere.2020.127279.
  • [25]. M. Mozaffari Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, ve M. Sillanpää, “Adsorption isotherm models: A comprehensive and systematic review (2010−2020)”, Science of The Total Environment, c. 812, s. 151334, Mar. 2022, doi: 10.1016/j.scitotenv.2021.151334.
  • [26]. L. Mouni vd., “Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies”, Appl Clay Sci, c. 153, ss. 38-45, Mar. 2018, doi: 10.1016/j.clay.2017.11.034.
  • [27]. S. M. Miraboutalebi, S. K. Nikouzad, M. Peydayesh, N. Allahgholi, L. Vafajoo, ve G. McKay, “Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis”, Process Safety and Environmental Protection, c. 106, ss. 191-202, Şub. 2017, doi: 10.1016/j.psep.2017.01.010.
  • [28]. A. H. Jawad ve A. S. Abdulhameed, “Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study”, Surfaces and Interfaces, c. 18, s. 100422, Mar. 2020, doi: 10.1016/j.surfin.2019.100422.
  • [29]. A. Naboulsi, A. Kassimi, H. Yazid, F. Essebbar, M. El Himri, ve M. El Haddad, “Adsorption of single and mixed colors by kaolinite clay: Experimental research combined with a theoretical examination using DFT”, J Mol Struct, c. 1276, s. 134687, Mar. 2023, doi: 10.1016/j.molstruc.2022.134687.
  • [30]. T. A. Aragaw ve F. T. Angerasa, “Synthesis and characterization of Ethiopian kaolin for the removal of basic yellow (BY 28) dye from aqueous solution as a potential adsorbent”, Heliyon, c. 6, sy 9, s. e04975, Eyl. 2020, doi: 10.1016/j.heliyon.2020.e04975.
  • [31]. M. M. Abou Alsoaud, M. A. Taher, A. M. Hamed, M. S. Elnouby, and A. M. Omer, “Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: isotherms, kinetics and thermodynamics studies”, Sci Rep, c. 12, sy 1, s. 12972, Tem. 2022, doi: 10.1038/s41598-022-17305-w.
  • [32]. V. Vimonses, S. Lei, B. Jin, C. W. K. Chow, ve C. Saint, “Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials”, Chemical Engineering Journal, c. 148, sy 2-3, ss. 354-364, May. 2009, doi: 10.1016/j.cej.2008.09.009.
  • [33]. M. Harja, G. Buema, ve D. Bucur, “Recent advances in removal of Congo Red dye by adsorption using an industrial waste”, Sci Rep, c. 12, sy 1, s. 6087, Nis. 2022, doi: 10.1038/s41598-022-10093-3.
  • [34]. S. Niu, X. Xie, Z. Wang, L. Zheng, F. Gao, ve Y. Miao, “Enhanced removal performance for Congo red by coal-series kaolin with acid treatment”, Environ Technol, c. 42, sy 10, ss. 1472-1481, Nis. 2021, doi: 10.1080/09593330.2019.1670269.
  • [35]. R. Ahmad ve K. Ansari, “Comparative study for adsorption of congo red and methylene blue dye on chitosan modified hybrid nanocomposite”, Process Biochemistry, c. 108, ss. 90-102, Eyl. 2021, doi: 10.1016/j.procbio.2021.05.013.
  • [36]. M. Benjelloun, Y. Miyah, G. Akdemir Evrendilek, F. Zerrouq, ve S. Lairini, “Recent Advances in Adsorption Kinetic Models: Their Application to Dye Types”, Arabian Journal of Chemistry, c. 14, sy 4, s. 103031, Nis. 2021, doi: 10.1016/j.arabjc.2021.103031.
  • [37]. A. Reghioua, D. Atia, A. Hamidi, A. H. Jawad, A. S. Abdulhameed, ve H. M. Mbuvi, “Production of eco-friendly adsorbent of kaolin clay and cellulose extracted from peanut shells for removal of methylene blue and congo red removal dyes”, Int J Biol Macromol, c. 263, s. 130304, Nis. 2024, doi: 10.1016/j.ijbiomac.2024.130304.
  • [38]. M. El-Habacha vd., “High efficiency of treated-phengite clay by sodium hydroxide for the Congo red dye adsorption: Optimization, cost estimation, and mechanism study”, Environ Res, c. 259, s. 119542, Eki. 2024, doi: 10.1016/j.envres.2024.119542.
  • [39]. M. Bellaj vd., “Bio-based composite from chitosan waste and clay for effective removal of Congo red dye from contaminated water: Experimental studies and theoretical insights”, Environ Res, c. 255, s. 119089, Ağu. 2024, doi: 10.1016/j.envres.2024.119089.
  • [40]. R. R. Karri, J. N. Sahu, ve N. S. Jayakumar, “Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: Error analysis of linear and non-linear methods”, J Taiwan Inst Chem Eng, c. 80, ss. 472-487, Kas. 2017, doi: 10.1016/j.jtice.2017.08.004.
  • [41]. M. B. Amran ve M. A. Zulfikar, “Removal of Congo Red dye by adsorption onto phyrophyllite”, International Journal of Environmental Studies, c. 67, sy 6, ss. 911-921, Ara. 2010, doi: 10.1080/00207233.2010.528256.
  • [42]. G. K. Sarma, S. Sen Gupta, ve K. G. Bhattacharyya, “Removal of hazardous basic dyes from aqueous solution by adsorption onto kaolinite and acid-treated kaolinite: kinetics, isotherm and mechanistic study”, SN Appl Sci, c. 1, sy 3, s. 211, Mar. 2019, doi: 10.1007/s42452-019-0216-y.

Adsorption of Ecotoxicological Congo Red Dye onto Kaolin Clay

Yıl 2025, Cilt: 21 Sayı: 2, 1 - 10, 27.06.2025
https://doi.org/10.18466/cbayarfbe.1554719

Öz

This study was conducted to evaluate the adsorption ability of kaolin clay mineral to remove Congo red (CR), an anionic dye with ecotoxicological effects, from aqueous solution. In order to optimize the variables in the adsorption system, pH, adsorbent amount, contact time, and initial CR concentration factors were investigated. Adsorption kinetics and equilibrium isotherm of kaolin clay were investigated using Pseudo first order, Pseudo second order and Intra-Particle Diffusion kinetic equations and Freundlich, Langmuir and Temkin isotherm models. The obtained results were tested with 5 different error functions. Accordingly, it was determined that the adsorption of CR dye onto kaolin clay fit the Freundlich model with an R2 value of 0.999 and the Pseudo second order model with an R2 value of 0.999. In addition, the qmax value was calculated as 7.984 mg/g kaolin. For morphological examination, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy(SEM) images of raw and CR-loaded kaolin were examined. As a result, it was revealed that kaolin clay can be used as a low-cost alternative for the removal of resistant dyes from wastewater.

Kaynakça

  • [1]. K. Manzoor, M. Batool, F. Naz, M. F. Nazar, B. H. Hameed, and M. N. Zafar, “A comprehensive review on application of plant-based bioadsorbents for Congo red removal”, Biomass Convers Biorefin, c. 14, sy 4, ss. 4511-4537, Şub. 2024, doi: 10.1007/s13399-022-02741-5.
  • [2]. C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit, “A critical review on textile wastewater treatments: Possible approaches”, J Environ Manage, c. 182, ss. 351-366, Kas. 2016, doi: 10.1016/j.jenvman.2016.07.090.
  • [3]. V. Katheresan, J. Kansedo, and S. Y. Lau, “Efficiency of various recent wastewater dye removal methods: A review”, J Environ Chem Eng, c.: 6, sy:4, ss. 4676-4697, Ağu. 2018, doi: 10.1016/j.jece.2018.06.060.
  • [4]. M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, “Dye and its removal from aqueous solution by adsorption: A review”, Adv Colloid Interface Sci, c. 209, ss. 172-184, Tem. 2014, doi: 10.1016/j.cis.2014.04.002.
  • [5]. K. Maheshwari, M. Agrawal, ve A. B. Gupta, “Dye Pollution in Water and Wastewater”, 2021, ss. 1-25. doi: 10.1007/978-981-16-2892-4_1.
  • [6]. A. Rafiq vd., “Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution”, Journal of Industrial and Engineering Chemistry, c. 97, ss. 111-128, May. 2021, doi: 10.1016/j.jiec.2021.02.017.
  • [7]. C. Patra, R. Gupta, D. Bedadeep, ve S. Narayanasamy, “Surface treated acid-activated carbon for adsorption of anionic azo dyes from single and binary adsorptive systems: A detail insight”, Environmental Pollution, c. 266, s. 115102, Kas. 2020, doi: 10.1016/j.envpol.2020.115102.
  • [8]. C. Karaman, O. Karaman, P.-L. Show, H. Karimi-Maleh, ve N. Zare, “Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach”, Chemosphere, c. 290, s. 133346, Mar. 2022, doi: 10.1016/j.chemosphere.2021.133346.
  • [9]. G. A. R. de Oliveira vd., “A test battery for assessing the ecotoxic effects of textile dyes”, Chem Biol Interact, c. 291, ss. 171-179, Ağu. 2018, doi: 10.1016/j.cbi.2018.06.026.
  • [10]. P. Gharbani, S. M. Tabatabaii, ve A. Mehrizad, “Removal of Congo red from textile wastewater by ozonation”, International Journal of Environmental Science & Technology, c. 5, sy 4, ss. 495-500, Eyl. 2008, doi: 10.1007/BF03326046.
  • [11]. E. Alver, M. Bulut, A. Ü. Metin, ve H. Çiftçi, “One step effective removal of Congo Red in chitosan nanoparticles by encapsulation”, Spectrochim Acta A Mol Biomol Spectrosc, c. 171, ss. 132-138, Oca. 2017, doi: 10.1016/j.saa.2016.07.046.
  • [12]. G. Derouich, S. Alami Younssi, J. Bennazha, J. A. Cody, M. Ouammou, ve M. El Rhazi, “Development of low-cost polypyrrole/sintered pozzolan ultrafiltration membrane and its highly efficient performance for congo red dye removal”, J Environ Chem Eng, c. 8, sy 3, s. 103809, Haz. 2020, doi: 10.1016/j.jece.2020.103809.
  • [13]. A. Akhtar, Z. Aslam, A. Asghar, M. M. Bello, ve A. A. A. Raman, “Electrocoagulation of Congo Red dye-containing wastewater: Optimization of operational parameters and process mechanism”, J Environ Chem Eng, c. 8, sy 5, s. 104055, Eki. 2020, doi: 10.1016/j.jece.2020.104055.
  • [14]. S. Wang vd., “Degradation of Congo red by UV photolysis of nitrate: Kinetics and degradation mechanism”, Sep Purif Technol, c. 262, s. 118276, May. 2021, doi: 10.1016/j.seppur.2020.118276.
  • [15]. B. D. Tony, D. Goyal, ve S. Khanna, “Decolorization of textile azo dyes by aerobic bacterial consortium”, Int Biodeterior Biodegradation, c. 63, sy 4, ss. 462-469, Haz. 2009, doi: 10.1016/j.ibiod.2009.01.003.
  • [16]. V. Vimonses, S. Lei, B. Jin, C. W. K. Chow, ve C. Saint, “Adsorption of congo red by three Australian kaolins”, Appl Clay Sci, c. 43, sy 3-4, ss. 465-472, Mar. 2009, doi: 10.1016/j.clay.2008.11.008.
  • [17]. A. K. Chauhan, N. Kataria, ve V. K. Garg, “Green fabrication of ZnO nanoparticles using Eucalyptus spp. leaves extract and their application in wastewater remediation”, Chemosphere, c. 247, s. 125803, May. 2020, doi: 10.1016/j.chemosphere.2019.125803.
  • [18]. P. K. Rose vd., “Congo red dye removal using modified banana leaves: Adsorption equilibrium, kinetics, and reusability analysis”, Groundw Sustain Dev, c. 23, s. 101005, Kas. 2023, doi: 10.1016/j.gsd.2023.101005.
  • [19]. A. Kausar vd., “Dyes adsorption using clay and modified clay: A review”, J Mol Liq, c. 256, ss. 395-407, Nis. 2018, doi: 10.1016/j.molliq.2018.02.034.
  • [20]. S. Mandal, J. Calderon, S. B. Marpu, M. A. Omary, ve S. Q. Shi, “Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies”, J Contam Hydrol, c. 243, s. 103869, Ara. 2021, doi: 10.1016/j.jconhyd.2021.103869.
  • [21]. A. J. Muñoz, F. Espínola, M. Moya, ve E. Ruiz, “Biosorption of Pb(II) Ions by Klebsiella sp. 3S1 Isolated from a Wastewater Treatment Plant: Kinetics and Mechanisms Studies”, Biomed Res Int, c. 2015, ss. 1-12, 2015, doi: 10.1155/2015/719060.
  • [22]. N. Hamri vd., “Enhanced Adsorption Capacity of Methylene Blue Dye onto Kaolin through Acid Treatment: Batch Adsorption and Machine Learning Studies”, Water (Basel), c. 16, sy 2, s. 243, Oca. 2024, doi: 10.3390/w16020243.
  • [23]. A. Hashem, C. O. Aniagor, O. M. Morsy, A. Abou-Okeil, ve A. A. Aly, “Apricot seed shell: an agro-waste biosorbent for acid blue193 dye adsorption”, Biomass Convers Biorefin, c. 14, sy 11, ss. 12283-12296, Haz. 2024, doi: 10.1007/s13399-022-03272-9.
  • [24]. J. Wang ve X. Guo, “Adsorption isotherm models: Classification, physical meaning, application and solving method”, Chemosphere, c. 258, s. 127279, Kas. 2020, doi: 10.1016/j.chemosphere.2020.127279.
  • [25]. M. Mozaffari Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, ve M. Sillanpää, “Adsorption isotherm models: A comprehensive and systematic review (2010−2020)”, Science of The Total Environment, c. 812, s. 151334, Mar. 2022, doi: 10.1016/j.scitotenv.2021.151334.
  • [26]. L. Mouni vd., “Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies”, Appl Clay Sci, c. 153, ss. 38-45, Mar. 2018, doi: 10.1016/j.clay.2017.11.034.
  • [27]. S. M. Miraboutalebi, S. K. Nikouzad, M. Peydayesh, N. Allahgholi, L. Vafajoo, ve G. McKay, “Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis”, Process Safety and Environmental Protection, c. 106, ss. 191-202, Şub. 2017, doi: 10.1016/j.psep.2017.01.010.
  • [28]. A. H. Jawad ve A. S. Abdulhameed, “Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study”, Surfaces and Interfaces, c. 18, s. 100422, Mar. 2020, doi: 10.1016/j.surfin.2019.100422.
  • [29]. A. Naboulsi, A. Kassimi, H. Yazid, F. Essebbar, M. El Himri, ve M. El Haddad, “Adsorption of single and mixed colors by kaolinite clay: Experimental research combined with a theoretical examination using DFT”, J Mol Struct, c. 1276, s. 134687, Mar. 2023, doi: 10.1016/j.molstruc.2022.134687.
  • [30]. T. A. Aragaw ve F. T. Angerasa, “Synthesis and characterization of Ethiopian kaolin for the removal of basic yellow (BY 28) dye from aqueous solution as a potential adsorbent”, Heliyon, c. 6, sy 9, s. e04975, Eyl. 2020, doi: 10.1016/j.heliyon.2020.e04975.
  • [31]. M. M. Abou Alsoaud, M. A. Taher, A. M. Hamed, M. S. Elnouby, and A. M. Omer, “Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: isotherms, kinetics and thermodynamics studies”, Sci Rep, c. 12, sy 1, s. 12972, Tem. 2022, doi: 10.1038/s41598-022-17305-w.
  • [32]. V. Vimonses, S. Lei, B. Jin, C. W. K. Chow, ve C. Saint, “Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials”, Chemical Engineering Journal, c. 148, sy 2-3, ss. 354-364, May. 2009, doi: 10.1016/j.cej.2008.09.009.
  • [33]. M. Harja, G. Buema, ve D. Bucur, “Recent advances in removal of Congo Red dye by adsorption using an industrial waste”, Sci Rep, c. 12, sy 1, s. 6087, Nis. 2022, doi: 10.1038/s41598-022-10093-3.
  • [34]. S. Niu, X. Xie, Z. Wang, L. Zheng, F. Gao, ve Y. Miao, “Enhanced removal performance for Congo red by coal-series kaolin with acid treatment”, Environ Technol, c. 42, sy 10, ss. 1472-1481, Nis. 2021, doi: 10.1080/09593330.2019.1670269.
  • [35]. R. Ahmad ve K. Ansari, “Comparative study for adsorption of congo red and methylene blue dye on chitosan modified hybrid nanocomposite”, Process Biochemistry, c. 108, ss. 90-102, Eyl. 2021, doi: 10.1016/j.procbio.2021.05.013.
  • [36]. M. Benjelloun, Y. Miyah, G. Akdemir Evrendilek, F. Zerrouq, ve S. Lairini, “Recent Advances in Adsorption Kinetic Models: Their Application to Dye Types”, Arabian Journal of Chemistry, c. 14, sy 4, s. 103031, Nis. 2021, doi: 10.1016/j.arabjc.2021.103031.
  • [37]. A. Reghioua, D. Atia, A. Hamidi, A. H. Jawad, A. S. Abdulhameed, ve H. M. Mbuvi, “Production of eco-friendly adsorbent of kaolin clay and cellulose extracted from peanut shells for removal of methylene blue and congo red removal dyes”, Int J Biol Macromol, c. 263, s. 130304, Nis. 2024, doi: 10.1016/j.ijbiomac.2024.130304.
  • [38]. M. El-Habacha vd., “High efficiency of treated-phengite clay by sodium hydroxide for the Congo red dye adsorption: Optimization, cost estimation, and mechanism study”, Environ Res, c. 259, s. 119542, Eki. 2024, doi: 10.1016/j.envres.2024.119542.
  • [39]. M. Bellaj vd., “Bio-based composite from chitosan waste and clay for effective removal of Congo red dye from contaminated water: Experimental studies and theoretical insights”, Environ Res, c. 255, s. 119089, Ağu. 2024, doi: 10.1016/j.envres.2024.119089.
  • [40]. R. R. Karri, J. N. Sahu, ve N. S. Jayakumar, “Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: Error analysis of linear and non-linear methods”, J Taiwan Inst Chem Eng, c. 80, ss. 472-487, Kas. 2017, doi: 10.1016/j.jtice.2017.08.004.
  • [41]. M. B. Amran ve M. A. Zulfikar, “Removal of Congo Red dye by adsorption onto phyrophyllite”, International Journal of Environmental Studies, c. 67, sy 6, ss. 911-921, Ara. 2010, doi: 10.1080/00207233.2010.528256.
  • [42]. G. K. Sarma, S. Sen Gupta, ve K. G. Bhattacharyya, “Removal of hazardous basic dyes from aqueous solution by adsorption onto kaolinite and acid-treated kaolinite: kinetics, isotherm and mechanistic study”, SN Appl Sci, c. 1, sy 3, s. 211, Mar. 2019, doi: 10.1007/s42452-019-0216-y.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Kirliliği ve Önlenmesi
Bölüm Makaleler
Yazarlar

Talip Turna 0000-0001-6318-7245

Yayımlanma Tarihi 27 Haziran 2025
Gönderilme Tarihi 23 Eylül 2024
Kabul Tarihi 19 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 21 Sayı: 2

Kaynak Göster

APA Turna, T. (2025). Adsorption of Ecotoxicological Congo Red Dye onto Kaolin Clay. Celal Bayar University Journal of Science, 21(2), 1-10. https://doi.org/10.18466/cbayarfbe.1554719
AMA Turna T. Adsorption of Ecotoxicological Congo Red Dye onto Kaolin Clay. Celal Bayar University Journal of Science. Haziran 2025;21(2):1-10. doi:10.18466/cbayarfbe.1554719
Chicago Turna, Talip. “Adsorption of Ecotoxicological Congo Red Dye onto Kaolin Clay”. Celal Bayar University Journal of Science 21, sy. 2 (Haziran 2025): 1-10. https://doi.org/10.18466/cbayarfbe.1554719.
EndNote Turna T (01 Haziran 2025) Adsorption of Ecotoxicological Congo Red Dye onto Kaolin Clay. Celal Bayar University Journal of Science 21 2 1–10.
IEEE T. Turna, “Adsorption of Ecotoxicological Congo Red Dye onto Kaolin Clay”, Celal Bayar University Journal of Science, c. 21, sy. 2, ss. 1–10, 2025, doi: 10.18466/cbayarfbe.1554719.
ISNAD Turna, Talip. “Adsorption of Ecotoxicological Congo Red Dye onto Kaolin Clay”. Celal Bayar University Journal of Science 21/2 (Haziran2025), 1-10. https://doi.org/10.18466/cbayarfbe.1554719.
JAMA Turna T. Adsorption of Ecotoxicological Congo Red Dye onto Kaolin Clay. Celal Bayar University Journal of Science. 2025;21:1–10.
MLA Turna, Talip. “Adsorption of Ecotoxicological Congo Red Dye onto Kaolin Clay”. Celal Bayar University Journal of Science, c. 21, sy. 2, 2025, ss. 1-10, doi:10.18466/cbayarfbe.1554719.
Vancouver Turna T. Adsorption of Ecotoxicological Congo Red Dye onto Kaolin Clay. Celal Bayar University Journal of Science. 2025;21(2):1-10.