Araştırma Makalesi
BibTex RIS Kaynak Göster

Co-pyrolysis of Different Coal Types with Biomass: Performance and Efficiency Evaluation by Thermogravimetric Analysis

Yıl 2025, Cilt: 21 Sayı: 2, 134 - 146, 27.06.2025
https://doi.org/10.18466/cbayarfbe.1659482

Öz

In this study, the effect of co-pyrolysis of lignite and asphaltite, which are fossil energy sources with significant reserve potential in Turkey, with biomass sources such as walnut shell and hazelnut shell used as renewable energy sources on product efficiency and quality was investigated. The pyrolysis behavior of lignite, asphaltite, two types of biomass, lignite-biomass and asphaltite-biomass mixtures were investigated by non-isothermal thermogravimetric analysis (TGA) to evaluate the influence of biomass type, biomass mixturing ratio and pyrolysis temperature on co-pyrolysis behavior. Pyrolysis experiments were carried out at three different temperatures (400, 460, and 520°C), first with the raw samples and then with mixtures at weight ratios of 25%, 50% and 75%. Possible synergistic effects were investigated by determining the mixture ratios and temperatures with the highest solid, liquid and gaseous product yields by analyzing the pyrolysis conversions. It was observed that the calorific values obtained before the pyrolysis process showed a significant increase after the process was applied. Increasing the amount of biomass added to lignite resulted in a 13.87% increase in calorific value and a positive synergy effect was indicated. Additionally, the addition of biomass to lignite and asphaltite reduced ash content and sulfur content.

Kaynakça

  • [1]. GAP Bölge Kalkınma Programı 2022. http://www.gap-dogu-kalkinma.com2021-2023 (accessed at 10.05.2024), Tarım ve orman Bakanlığı, Tarımsal Araştırmalar (TAGEM), http://www. https://www.tarimorman.gov.tr/TAGEM (accessed at 10.05.2024).
  • [2]. Türkiye Kömür İşletmeleri 2025. www.tki.gov.tr. (accessed at 20.01.2025).
  • [3]. Merdun, H, Sezgin, İV.2018. Products distribution of catalytic co-pyrolysis of greenhouse vegetable wastes and coal. Energy; 162: 953-963.
  • [4]. 12. Kalkınma Planı 2024. https://www.sbb.gov.tr/wp-content/uploads/2023/12/On-Ikinci-Kalkinma-Plani_ (accessed at 18.01.2025).
  • [5]. Vuthaluru, HB. 2004. Thermal behaviour of coal/biomass blends during co-pyrolysis. Fuel Processing Technology; 85(2-3): 141–155.
  • [6]. Kastanaki E, Vamvuka, D, Grammelis, P, Kakaras E. 2002. Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization. Fuel Processing Technology; 77-78: 159–166.
  • [7]. Aboyade, A, Carrier, OM, Meyer, EL, Knoetze, H, Gorgens, JF. 2013. Slow and pressurized co-pyrolysis of coal and agricultural residues. Energy Conversion and Management; 65: 198–207.
  • [8]. Chen, X, He, Y. 2012. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresource Technology; 117: 264–273.
  • [9]. Shui, H, Shan, C, Cai, Z, Wang, Z, Lei, Z, Ren, S, Pan, C. 2011. Co-liquefaction behavior of a sub-bituminous coal and sawdust, Energy; 36(11): 6645–6650.
  • [10]. Wei, L, Zhang, S, Xu, P. 2011. Effects of feedstock on co-pyrolysis of biomass and coal in a free-fall reactor. Journal of Fuel Chemistry and Technology; 39(10): 728–734.
  • [11]. Li, S, Chen, X, Wang, L, Liu A, Yu, G. 2013. Co-pyrolysis behaviors of sawdust and Shenfu coal in drop tube furnace and fixed bed reactor. Bioresource Technology; 148: 24-29.
  • [12]. Wang, YJ, Ying, H, Sun, H, Jiang, JF, Gao, YW, Yu, WJ. 2013. Co-pyrolysis characteristics of torrefied pine sawdust with different rank coals. Bio Resources; 8(4): 5169-5183.
  • [13]. Wu, Z, Li, Y, Xu, D, Meng, H. 2019. Co-pyrolysis of lignocellulosic biomass with low-quality coal: Optimal design and synergistic effect from gaseous products distribution. Fuel; 236: 43-54.
  • [14]. Collard, FX, Blin, J. 2014. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews; 38: 594-608.
  • [15]. Abnisaand WM, Wandaud, A. 2014. A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management; 87: 71-85.
  • [16]. Mushtaq, F, Mat, R, Ani, FN. 2014. A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renewable and Sustainable Energy Reviews; 39: 555-574.
  • [17]. Chen, X, Liu, L, Zhang, L, Zhao, Y, Zhang, Z, Xie, X, Qiu, P, Chen, G, Pei, J. 2018. Thermogravimetric analysis and kinetics of the co-pyrolysis of coal blends with corn stalks. Thermochimica Acta; 659: 59-65.
  • [18]. Meng, H, Wang, S, Wu, Z, Zhao, J, Chen, L, Li, J. 2019. Thermochemical behavior and kinetic analysis during co-pyrolysis of starch biomass model compound and lignite. Energy Procedia; 158: 400-405.
  • [19]. Yi, S, He, XM. 2016. Synergistic effect in low-temperature co-pyrolysis of sugarcane bagasse and lignite. Korean Journal Chemical Engineering; 33(10): 2923-2929.
  • [20]. Hu, J, Shao, J, Yang, H, Lin, G, Chen, Y, Wang, X, Zhang, W, Chen H. 2017. Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char. Bioresource Technology; 244(1): 1-7.
  • [21]. Li, C, Su, Y, Zhang, L, Li, Q, Zhang, S, Hu X. 2022. Sequential pyrolysis of coal and biomass: Influence of coal-derived volatiles on property of biochar. Applications in Energy and Combustion Science; 9: 1-13.
  • [22]. Singh, K., Zondlo, J. 2017. Co-processing coal and torrefied biomass during direct liquefaction. Journal of the Energy Institute; 90(4): 497-504.
  • [23]. Zhao, J, Liu, H, Zhang, H, Song, X, Zuo, H, Wang, G, Xu, Z, Wu, M, Zhang, Z, Chi, R. 2023. Metallurgical performance and structural characteristics of cokes of hypercoal prepared from the mixture of low-rank coal and biomass residue. Fuel; 332: 1-11.
  • [24]. Zhang, P, Chen, Z, Zhang, Q, Zhang, S, Ning, X, Zhou, J. 2022. Co-pyrolysis characteristics and kinetics of low metamorphic coal and pine sawdust. RSC Advances; 12: 21725-21735.
  • [25]. Mohamed, A, Coşkun, T, Garib, A. 2024. Enhancing lignite coal quality with biomass waste in slow pyrolysis Fischer-Tropsch reactor. Journal of Engineering Research; In press.
  • [26]. Ma, M, Bai, Y, Song, X, Wang, J, Su, W, Yao, M, Yua, G. 2020. Investigation into the co-pyrolysis behaviors of cow manure and coal blending by TG–MS. Science of the Total Environment; 728: 1-9.
  • [27]. Cao, Y, He, M, Dutta, S, Luo, G, Zhang, S, Tsang, DCW. 2021. Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics. Renewable and Sustainable Energy Reviews; 152: 1-18.
  • [28]. Wei, J, Wang, M, Wang, F, Song, X, Yu, G, Liu, Y, Vuthaluru, H, Xu, J, Xu, Y, Zhang H, Zhang, S. 2021. A review on reactivity characteristics and synergy behavior of biomass and coal Co-gasification, International Journal of Hydrogen Energy; 46(33): 17116-17132.
  • [29]. Busch, A, Gensterblum, Y. 2011. CBM and CO2-ECBM related sorption processes in coal: A review. International Journal of Coal Geology; 87(2): 49-71.
  • [30]. Wang, YJ, Ying, H, Sun, Y, Jiang, JF, Jiang, JC, Gao, YW, Yu, WJ. 2013. Co-pyrolysis characteristics of torrefied pine sawdust with different rank coals. Bioresources; 8(4): 5169-5183.
  • [31]. Acma, HH, Yaman, S. 2007. Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis. Fuel; 86(3): 373–380.
  • [32]. Gonzales, JF., Roman, S, Encinar, JM, Martinez, G. 2009. Pyrolysis of various biomass residues and char utilization for the production of activated carbons. Journal of Analytical and Applied Pyrolysis; 85(1-2): 134-141.
  • [33]. Quan, C, Gao, N. 2016. Co-pyrolysis of biomass and coal: A review of effects of co-pyrolysis parameters, product properties and synergistic mechanisms. Biomed Research Internatiol; 2016: 1-11.

Farklı Kömür Türlerinin Biyokütle ile Kopirolizi: Termogravimetrik Analiz ile Performans ve Verimlilik Değerlendirmesi

Yıl 2025, Cilt: 21 Sayı: 2, 134 - 146, 27.06.2025
https://doi.org/10.18466/cbayarfbe.1659482

Öz

Bu çalışmada, Türkiye'de önemli rezerv potansiyeline sahip fosil enerji kaynakları olan linyit ve asfaltitin, yenilenebilir enerji kaynağı olarak kullanılan ceviz kabuğu ve fındık kabuğu gibi biyokütle kaynakları ile kopirolizinin ürün verimliliği ve kalitesi üzerindeki etkisi araştırılmıştır. Linyit, asfaltit, iki tür biyokütle, linyit-biyokütle ve asfaltit-biyokütle karışımlarının piroliz davranışı, biyokütle türü, biyokütle karışım oranı ve piroliz sıcaklığının kopiroliz davranışı üzerindeki etkisi izotermal olmayan termogravimetrik analiz (TGA) ile incelenmiştir. Piroliz deneyleri üç farklı sıcaklıkta (400, 460 ve 520°C), önce ham numunelerle ve ardından %25, %50 ve %75 ağırlık oranlarındaki karışımlarla gerçekleştirilmiştir. Piroliz dönüşümleri analiz edilerek en yüksek katı, sıvı ve gaz ürün verimine sahip karışım oranları ve sıcaklıklar belirlenerek olası sinerjik etkiler araştırılmıştır. Piroliz işleminden önce elde edilen kalorifik değerlerin işlem uygulandıktan sonra önemli bir artış gösterdiği gözlemlenmiştir. Linyite eklenen biyokütle miktarının artırılması, kalorifik değerde %13,87'lik bir artışa neden olmuş ve pozitif bir sinerji etkisi göstermiştir. Ayrıca, linyit ve asfaltite biyokütle eklenmesi kül içeriğini ve kükürt içeriğini azaltmıştır.

Kaynakça

  • [1]. GAP Bölge Kalkınma Programı 2022. http://www.gap-dogu-kalkinma.com2021-2023 (accessed at 10.05.2024), Tarım ve orman Bakanlığı, Tarımsal Araştırmalar (TAGEM), http://www. https://www.tarimorman.gov.tr/TAGEM (accessed at 10.05.2024).
  • [2]. Türkiye Kömür İşletmeleri 2025. www.tki.gov.tr. (accessed at 20.01.2025).
  • [3]. Merdun, H, Sezgin, İV.2018. Products distribution of catalytic co-pyrolysis of greenhouse vegetable wastes and coal. Energy; 162: 953-963.
  • [4]. 12. Kalkınma Planı 2024. https://www.sbb.gov.tr/wp-content/uploads/2023/12/On-Ikinci-Kalkinma-Plani_ (accessed at 18.01.2025).
  • [5]. Vuthaluru, HB. 2004. Thermal behaviour of coal/biomass blends during co-pyrolysis. Fuel Processing Technology; 85(2-3): 141–155.
  • [6]. Kastanaki E, Vamvuka, D, Grammelis, P, Kakaras E. 2002. Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization. Fuel Processing Technology; 77-78: 159–166.
  • [7]. Aboyade, A, Carrier, OM, Meyer, EL, Knoetze, H, Gorgens, JF. 2013. Slow and pressurized co-pyrolysis of coal and agricultural residues. Energy Conversion and Management; 65: 198–207.
  • [8]. Chen, X, He, Y. 2012. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresource Technology; 117: 264–273.
  • [9]. Shui, H, Shan, C, Cai, Z, Wang, Z, Lei, Z, Ren, S, Pan, C. 2011. Co-liquefaction behavior of a sub-bituminous coal and sawdust, Energy; 36(11): 6645–6650.
  • [10]. Wei, L, Zhang, S, Xu, P. 2011. Effects of feedstock on co-pyrolysis of biomass and coal in a free-fall reactor. Journal of Fuel Chemistry and Technology; 39(10): 728–734.
  • [11]. Li, S, Chen, X, Wang, L, Liu A, Yu, G. 2013. Co-pyrolysis behaviors of sawdust and Shenfu coal in drop tube furnace and fixed bed reactor. Bioresource Technology; 148: 24-29.
  • [12]. Wang, YJ, Ying, H, Sun, H, Jiang, JF, Gao, YW, Yu, WJ. 2013. Co-pyrolysis characteristics of torrefied pine sawdust with different rank coals. Bio Resources; 8(4): 5169-5183.
  • [13]. Wu, Z, Li, Y, Xu, D, Meng, H. 2019. Co-pyrolysis of lignocellulosic biomass with low-quality coal: Optimal design and synergistic effect from gaseous products distribution. Fuel; 236: 43-54.
  • [14]. Collard, FX, Blin, J. 2014. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews; 38: 594-608.
  • [15]. Abnisaand WM, Wandaud, A. 2014. A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management; 87: 71-85.
  • [16]. Mushtaq, F, Mat, R, Ani, FN. 2014. A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renewable and Sustainable Energy Reviews; 39: 555-574.
  • [17]. Chen, X, Liu, L, Zhang, L, Zhao, Y, Zhang, Z, Xie, X, Qiu, P, Chen, G, Pei, J. 2018. Thermogravimetric analysis and kinetics of the co-pyrolysis of coal blends with corn stalks. Thermochimica Acta; 659: 59-65.
  • [18]. Meng, H, Wang, S, Wu, Z, Zhao, J, Chen, L, Li, J. 2019. Thermochemical behavior and kinetic analysis during co-pyrolysis of starch biomass model compound and lignite. Energy Procedia; 158: 400-405.
  • [19]. Yi, S, He, XM. 2016. Synergistic effect in low-temperature co-pyrolysis of sugarcane bagasse and lignite. Korean Journal Chemical Engineering; 33(10): 2923-2929.
  • [20]. Hu, J, Shao, J, Yang, H, Lin, G, Chen, Y, Wang, X, Zhang, W, Chen H. 2017. Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char. Bioresource Technology; 244(1): 1-7.
  • [21]. Li, C, Su, Y, Zhang, L, Li, Q, Zhang, S, Hu X. 2022. Sequential pyrolysis of coal and biomass: Influence of coal-derived volatiles on property of biochar. Applications in Energy and Combustion Science; 9: 1-13.
  • [22]. Singh, K., Zondlo, J. 2017. Co-processing coal and torrefied biomass during direct liquefaction. Journal of the Energy Institute; 90(4): 497-504.
  • [23]. Zhao, J, Liu, H, Zhang, H, Song, X, Zuo, H, Wang, G, Xu, Z, Wu, M, Zhang, Z, Chi, R. 2023. Metallurgical performance and structural characteristics of cokes of hypercoal prepared from the mixture of low-rank coal and biomass residue. Fuel; 332: 1-11.
  • [24]. Zhang, P, Chen, Z, Zhang, Q, Zhang, S, Ning, X, Zhou, J. 2022. Co-pyrolysis characteristics and kinetics of low metamorphic coal and pine sawdust. RSC Advances; 12: 21725-21735.
  • [25]. Mohamed, A, Coşkun, T, Garib, A. 2024. Enhancing lignite coal quality with biomass waste in slow pyrolysis Fischer-Tropsch reactor. Journal of Engineering Research; In press.
  • [26]. Ma, M, Bai, Y, Song, X, Wang, J, Su, W, Yao, M, Yua, G. 2020. Investigation into the co-pyrolysis behaviors of cow manure and coal blending by TG–MS. Science of the Total Environment; 728: 1-9.
  • [27]. Cao, Y, He, M, Dutta, S, Luo, G, Zhang, S, Tsang, DCW. 2021. Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics. Renewable and Sustainable Energy Reviews; 152: 1-18.
  • [28]. Wei, J, Wang, M, Wang, F, Song, X, Yu, G, Liu, Y, Vuthaluru, H, Xu, J, Xu, Y, Zhang H, Zhang, S. 2021. A review on reactivity characteristics and synergy behavior of biomass and coal Co-gasification, International Journal of Hydrogen Energy; 46(33): 17116-17132.
  • [29]. Busch, A, Gensterblum, Y. 2011. CBM and CO2-ECBM related sorption processes in coal: A review. International Journal of Coal Geology; 87(2): 49-71.
  • [30]. Wang, YJ, Ying, H, Sun, Y, Jiang, JF, Jiang, JC, Gao, YW, Yu, WJ. 2013. Co-pyrolysis characteristics of torrefied pine sawdust with different rank coals. Bioresources; 8(4): 5169-5183.
  • [31]. Acma, HH, Yaman, S. 2007. Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis. Fuel; 86(3): 373–380.
  • [32]. Gonzales, JF., Roman, S, Encinar, JM, Martinez, G. 2009. Pyrolysis of various biomass residues and char utilization for the production of activated carbons. Journal of Analytical and Applied Pyrolysis; 85(1-2): 134-141.
  • [33]. Quan, C, Gao, N. 2016. Co-pyrolysis of biomass and coal: A review of effects of co-pyrolysis parameters, product properties and synergistic mechanisms. Biomed Research Internatiol; 2016: 1-11.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Veysi Kamar 0009-0004-3073-9225

Pınar Acar Bozkurt 0000-0001-8743-9734

Yayımlanma Tarihi 27 Haziran 2025
Gönderilme Tarihi 17 Mart 2025
Kabul Tarihi 27 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 21 Sayı: 2

Kaynak Göster

APA Kamar, V., & Acar Bozkurt, P. (2025). Co-pyrolysis of Different Coal Types with Biomass: Performance and Efficiency Evaluation by Thermogravimetric Analysis. Celal Bayar University Journal of Science, 21(2), 134-146. https://doi.org/10.18466/cbayarfbe.1659482
AMA Kamar V, Acar Bozkurt P. Co-pyrolysis of Different Coal Types with Biomass: Performance and Efficiency Evaluation by Thermogravimetric Analysis. Celal Bayar University Journal of Science. Haziran 2025;21(2):134-146. doi:10.18466/cbayarfbe.1659482
Chicago Kamar, Veysi, ve Pınar Acar Bozkurt. “Co-pyrolysis of Different Coal Types with Biomass: Performance and Efficiency Evaluation by Thermogravimetric Analysis”. Celal Bayar University Journal of Science 21, sy. 2 (Haziran 2025): 134-46. https://doi.org/10.18466/cbayarfbe.1659482.
EndNote Kamar V, Acar Bozkurt P (01 Haziran 2025) Co-pyrolysis of Different Coal Types with Biomass: Performance and Efficiency Evaluation by Thermogravimetric Analysis. Celal Bayar University Journal of Science 21 2 134–146.
IEEE V. Kamar ve P. Acar Bozkurt, “Co-pyrolysis of Different Coal Types with Biomass: Performance and Efficiency Evaluation by Thermogravimetric Analysis”, Celal Bayar University Journal of Science, c. 21, sy. 2, ss. 134–146, 2025, doi: 10.18466/cbayarfbe.1659482.
ISNAD Kamar, Veysi - Acar Bozkurt, Pınar. “Co-pyrolysis of Different Coal Types with Biomass: Performance and Efficiency Evaluation by Thermogravimetric Analysis”. Celal Bayar University Journal of Science 21/2 (Haziran2025), 134-146. https://doi.org/10.18466/cbayarfbe.1659482.
JAMA Kamar V, Acar Bozkurt P. Co-pyrolysis of Different Coal Types with Biomass: Performance and Efficiency Evaluation by Thermogravimetric Analysis. Celal Bayar University Journal of Science. 2025;21:134–146.
MLA Kamar, Veysi ve Pınar Acar Bozkurt. “Co-pyrolysis of Different Coal Types with Biomass: Performance and Efficiency Evaluation by Thermogravimetric Analysis”. Celal Bayar University Journal of Science, c. 21, sy. 2, 2025, ss. 134-46, doi:10.18466/cbayarfbe.1659482.
Vancouver Kamar V, Acar Bozkurt P. Co-pyrolysis of Different Coal Types with Biomass: Performance and Efficiency Evaluation by Thermogravimetric Analysis. Celal Bayar University Journal of Science. 2025;21(2):134-46.