Derleme
BibTex RIS Kaynak Göster

Immüno-PET İçin Geliştirilen Zirkonyum-89 (89Zr) Radyofarmasötikleri

Yıl 2021, Cilt: 8 Sayı: 3, 534 - 542, 30.09.2021
https://doi.org/10.34087/cbusbed.840543

Öz

Kanser dokusunun görüntülenmesinde kullanılan moleküler görüntüleme ajanlarının geliştirilmesi hakkında çok çeşitli ve kapsamlı araştırmalar yapılmaktadır. Pozitron Emisyon Tomografi (PET) radyofarmasötikleri, pozitron yayan bir radyonüklidin ve bir moleküler yapıya bağlanması ile oluşturulur. 89Zr-Immüno-PET olarak adlandırılan,89Zr işaretli monoklonal antikorlar (mAb), peptitler, nanopartiküller, proteinler ve diğer bileşikler kanserli doku görüntülenmesinde kullanılmaktatır. Bu derlemede, uzun yarı ömrü ile Immüno-PET görüntülemede yaygın olarak kullanılan 89Zr radyonüklidi ile işaretli farmasötiklerin son beş yılda yapılan klinik öncesi ve klinik çalışamalardaki potansiyeli gözden geçirilmiş ve tartışılmıştır.

Destekleyen Kurum

yok

Proje Numarası

yok

Teşekkür

yok

Kaynakça

  • Loud, J.T, Murphy, J, Cancer Screening and Early Detection in the 21st Century, Seminars in Oncology Nursing, 2017, 33(2), 121-128.
  • Van de Watering, F.C, Rijpkema, M, Perk, L, Brinkmann, U, Oyen, W.J, Boerman, O.C, Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients, BioMed Research International, 2014, 203601.
  • Kasbollah, A, Eu, P, Cowell, S, Deb, P, Review on production of 89Zr in a medical cyclotron for PET radiopharmaceuticals, Journal of Nuclear Medicine Technology, 2013, 41(1):35-41.
  • Vugts, D.J, Visser, G.W, van Dongen, G.A, 89Zr-PET radiochemistry in the development and application of therapeutic monoclonal antibodies and other biologicals, Current Topics in Medicinal Chemistry, 2013, 13(4), 446-57.
  • Bhatt, N.B, Pandya, D.N, Wadas, T.J, Recent Advances in Zirconium-89 Chelator Development, Molecules, 2018, 23(3), 638.
  • Severin, G.W, Engle, J.W, Barnhart, T.E, Nickles, R.J, 89Zr radiochemistry for positron emission tomography, Medical Chemistry, 2011, 7(5), 389-94.
  • Vermeulen, K, Vandamme, M, Bormans, G, Cleeren, F, Design and Challenges of Radiopharmaceuticals, Seminars in Nuclear Medicine, 2019, 49(5), 339-356.
  • Van Dongen, G.A, Huisman, M.C, ve ark., 89Zr-immuno-PET for imaging of long circulating drugs and disease targets: why, how and when to be applied?, The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2014, 59(1), 18-38.
  • Zhang, Y, Hong, H, Cai, W, PET tracers based on Zirconium-89, Current Radiopharmaceuticals, 2011, 4(2), 131-9. 10. Yoon, J.K, Park, B.N, Ryu, E.K, An, Y.S, Lee, S.J, Current Perspectives on 89Zr-PET Imaging, International Journal of Molecular Sciences, 2020, 21(12), 4309.
  • Heskamp, S, Raavé, R, Boerman, O, Rijpkema, M, Goncalves, V, Denat, F, 89Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry, Bioconjugate Chemistry, 2017, 28(9), 2211-2223.
  • La, M.T, Tran, V.H, Kim, H.K, Progress of Coordination and Utilization of Zirconium-89 for Positron Emission Tomography (PET) Studies, Nuclear Medicine and Molecular Imaging, 2019, 53(2), 115-124.
  • Deri, M.A, Zeglis, B.M, Francesconi, L.C, Lewis, J.S, PET imaging with 89Zr: from radiochemistry to the clinic, Nuclear Medicine and Biology, 2013, 40(1), 3-14.
  • Şahmaran, T, Bayburt, M, Pozitron Emisyon Tomografi – Bilgisayar Tomografi (Pet-Bt) Uygulamalarında Hastanın Aldığı Radyasyon Dozunun Belirlenmesi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2020, 13(1), 58-63.
  • Wadsak, W, Mitterhauser, M, Basics and principles of radiopharmaceuticals for PET/BT, European Journal of Radiology, 2010, 73(3), 461-9.
  • Aluicio-Sarduy, E, Ellison, P.A, Barnhart, T.E, Cai, W, Nickles, RJ, Engle, J.W, PET radiometals for antibody labeling, Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61(9), 636-651.
  • Jauw, Y.W, Zijlstra, J.M, ve ark., Performance of 89Zr-Labeled-Rituximab-PET as an Imaging Biomarker to Assess CD20 Targeting: A Pilot Study in Patients with Relapsed/Refractory Diffuse Large B Cell Lymphoma, PLoS One, 2017, 12(1), e0169828.
  • Diebolder, P, Mpoy, C, Scott, J, et al, Preclinical Evaluation of an Engineered scFv-Fc Targeting Human CD44, Journal of Nuclear Medicine, 2020, 120.249557.
  • Menke-van der Houven van Oordt, C.W, Gomez-Roca, C, ve ark., First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumors, Oncotarget, 2016, 7(48), 80046-80058.
  • Pool, M, Kol, A, Lub-de Hooge, M.N, Gerdes, C.A, de Jong, S, de Vries, E.G, Terwisscha van Scheltinga, A.G, Extracellular domain shedding influences specific tumor uptake and organ distribution of the EGFR PET tracer 89Zr-imgatuzumab, Oncotarget, 2016, 7(42):68111-68121.
  • Chekol, R, Solomon, V.R, ve ark., 89Zr-nimotuzumab for Immuno-PET imaging of epidermal growth factor receptor I, Oncotarget, 2018, 9(24):17117-17132.
  • Tang, Y, Hu, Y, ve ark., A radiopharmaceutical 89Zr-DFO-nimotuzumab for immunoPET with epidermal growth factor receptor expression in vivo, Nuclear Medicine and Biology, 2019, 70, 23-31.
  • Benedetto, R, Massicano, AVF, ve ark., 89Zr-DFO-Cetuximab as a Molecular Imaging Agent to Identify Cetuximab Resistance in Head and Neck Squamous Cell Carcinoma, Cancer Biotherapy and Radiopharmaceuticals, 2019, 34(5), 288-296.
  • Chia, P.L, Parakh, S, ve ark., Targeting and Efficacy of Novel mAb806-Antibody-Drug Conjugates in Malignant Mesothelioma, Pharmaceuticals (Basel), 2020, 13(10), 289.
  • Menke-van der Houven van Oordt, C.W, Gootjes, E.C, ve ark., 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer, Oncotarget, 2015, 6(30), 30384-93.
  • Even, A.J, Hamming-Vrieze, O, ve ark., Quantitative assessment of Zirconium-89 labeled cetuximab using PET/BT imaging in patients with advanced head and neck cancer: a theragnostic approach, Oncotarget, 2017, 8(3), 3870-3880.
  • Lindenberg, L, Adler, S, ve ark., Dosimetry and first human experience with 89Zr-panitumumab, American Journal of Nuclear Medicine and Molecular Imaging, 2017, 7(4), 195-203.
  • Al-Saden, N, Lam, K, Chan, C, Reilly, RM, Positron-Emission Tomography of HER2-Positive Breast Cancer Xenografts in Mice with 89Zr-Labeled Trastuzumab-DM1: A Comparison with 89Zr-Labeled Trastuzumab, Molecular Pharmaceutics, 2018, 15(8), 3383-3393.
  • Massicano, A.V.F, Lee, S, ve ark., Imaging of HER2 with [89Zr] pertuzumab in Response to T-DM1 Therapy, Cancer Biotherapy and Radiopharmaceuticals, 2019, 34(4), 209-217.
  • Wei, W, Jiang, D, Rosenkrans, Z.T, ve ark., HER2-targeted multimodal imaging of anaplastic thyroid cancer, American Journal of Cancer Research, 2019, 9(11), 2413-2427.
  • Mendler, C.T, Gehring, T, Wester, H.J, Schwaiger, M, Skerra, A, 89Zr-Labeled Versus 124I-Labeled αHER2 Fab with Optimized Plasma Half-Life for High-Contrast Tumor Imaging In Vivo, The Journal of Nuclear Medicine, 2015, 56(7), 1112-8.
  • Cho, H, Al-Saden, N, Lam, H, Möbus, J, Reilly, R.M, Winnik, M.A, A comparison of DFO and DFO* conjugated to trastuzumab-DM1 for complexing 89Zr- In vitro stability and in vivo microPET/BT imaging studies in NOD/SCID mice with HER2-positive SK-OV-3 human ovarian cancer xenografts, Nuclear Medicine and Biology, 2020, 84-85, 11-19.
  • Raavé, R, Sandker, G, ve ark., Direct comparison of the in vitro and in vivo stability of DFO, DFO* and DFOcyclo* for 89Zr-immunoPET, European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46(9), 1966-1977.
  • Al-Saden, N, Cai, Z, Reilly, R.M, Tumor uptake and tumor/blood ratios for 89Zr-DFO-trastuzumab-DM1 on microPET/BT images in NOD/SCID mice with human breast cancer xenografts are directly correlated with HER2 expression and response to trastuzumab-DM1, Nuclear Medicine and Biology, 2018, 67, 43-51.
  • Ahn, S.H, Thach, D, ve ark., Linear Desferrichrome-Linked Silicon-Rhodamine Antibody Conjugate Enables Targeted Multimodal Imaging of HER2 in Vitro and in Vivo, Molecular Pharmaceutics, 2019, 16(3), 1412-1420.
  • Kristensen, L.K, Christensen, C, ve ark., Site-specifically labeled 89Zr-DFO-trastuzumab improves immuno-reactivity and tumor uptake for immuno-PET in a subcutaneous HER2-positive xenograft mouse model, Theranostics, 2019, 9(15), 4409-4420.
  • Jang, J.H, Han, S.J, Kim, J.Y, Kim, K.I, Lee, K.C, Kang, C.S, Synthesis and Feasibility Evaluation of a new Trastuzumab Conjugate Integrated with Paclitaxel and 89Zr for Theranostic Application Against HER2-Expressing Breast Cancers, ChemistryOpen, 2019, 8(4), 451-456.
  • Dehdashti, F, Wu, N, ve ark., Evaluation of 89Zr-trastuzumab-PET/BT in differentiating HER2-positive from HER2-negative breast cancer, Breast Cancer Research and Treatment, 2018, 169(3), 523-530.
  • Ulaner, G.A, Hyman, D.M, ve ark., Detection of HER2-Positive Metastases in Patients with HER2-Negative Primary Breast Cancer Using 89Zr-Trastuzumab PET/BT, The Journal of Nuclear Medicine, 2016, 57(10), 1523-1528.
  • O'Donoghue, J.A, Lewis, J.S, ve ark., Pharmacokinetics, Biodistribution, and Radiation Dosimetry for 89Zr-Trastuzumab in Patients with Esophagogastric Cancer, The Journal of Nuclear Medicine, 2018, 59(1), 161-166.
  • Bensch, F, Brouwers, A.H, ve ark., 89Zr-trastuzumab PET supports clinical decision making in breast cancer patients when HER2 status cannot be determined by a standard workup, European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45(13), 2300-2306.
  • Ulaner, G.A, Lyashchenko, S.K, ve ark., First-in-Human Human Epidermal Growth Factor Receptor 2-Targeted Imaging Using 89Zr-Pertuzumab PET/BT: Dosimetry and Clinical Application in Patients with Breast Cancer, The Journal of Nuclear Medicine, 2018, 59(6), 900-906.
  • Richter, A, Knorr, K, ve ark., First In-Human Medical Imaging with a PASylated 89Zr-Labeled Anti-HER2 Fab-Fragment in a Patient with Metastatic Breast Cancer, Nuclear Medicine and Molecular Imaging, 2020, 54(2), 114-119.
  • Vural, P, Fizyolojik ve Patolojik Anjiogenezde Vasküler Endotelyal Büyüme Faktörünün Rolü, Türk Klinik Biyokimya Dergisi, 2018, 16(1), 53-62.
  • Li, M, Jiang, D, ve ark., Immuno-PET imaging of VEGFR-2 expression in prostate cancer with 89Zr-labeled ramucirumab, American Journal of Cancer Research, 2019, 9(9), 2037-2046.
  • Jansen, M.H, Veldhuijzen van Zanten, S.E.M, ve ark., Molecular Drug Imaging: 89Zr-Bevacizumab PET in Children with Diffuse Intrinsic Pontine Glioma, The Journal of Nuclear Medicine, 2017, 58(5), 711-716.
  • Oosting, S.F, Brouwers, A.H, ve ark., 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment, The Journal of Nuclear Medicine, 2015, 56(1), 63-9.
  • Yuan, Q, Furukawa, T, ve ark., Immuno-PET Imaging of HER3 in a Model in which HER3 Signaling Plays a Critical Role, PLoS One, 2015, 10(11), e0143076.
  • Pool, M, Kol, A, de Jong, S, de Vries, E.G.E, Lub-de Hooge, M.N, Terwisscha van Scheltinga, A.G.T, 89Zr-mAb3481 PET for HER3 tumor status assessment during lapatinib treatment, MAbs, 2017, 9(8), 1370-1378.
  • Alsaid, H, Skedzielewski, T, ve ark., Non-invasive imaging assessment of the biodistribution of GSK2849330, an ADCC and CDC optimized anti HER3 mAb, and its role in tumor macrophage recruitment in human tumor-bearing mice, PLoS One, 2017, 12(4), e0176075.
  • Matsuda, M, Ishikawa, E, ve ark., Potential use of prostate-specific membrane antigen (PSMA) for detecting the tumor neovasculature of brain tumors by PET imaging with 89Zr-Df-IAB2M anti-PSMA mini body, Journal of Neuro-Oncology, 2018, 138(3), 581-589.
  • Joraku, A, Hatano, K, ve ark., Phase I/IIa PET imaging study with 89Zr labeled anti-PSMA mini body for urological malignancies, Annals of Nuclear Medicine, 2019, 33(2), 119-127.
  • Pandit-Taskar, N, O'Donoghue, J.A, ve ark., First-in-Human Imaging with 89Zr-Df-IAB2M Anti-PSMA Mini body in Patients with Metastatic Prostate Cancer: Pharmacokinetics, Biodistribution, Dosimetry, and Lesion Uptake, The Journal of Nuclear Medicine, 2016, 57(12), 1858-1864.
  • Pool, M, Terwisscha van Scheltinga, A.G.T, Kol, A, Giesen, D, de Vries, E.G.E, Lub-de Hooge, M.N, 89Zr-Onartuzumab PET imaging of c-MET receptor Dynamics, European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44(8), 1328-1336.
  • Cavaliere, A, Sun, S, ve ark., Development of 89Zr-DFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer, European Journal of Nuclear Medicine and Molecular Imaging, 2020, https://doi.org/10.1007/s00259-020-04978-6.
  • Price, E.W, Carnazza, K.E, ve ark., 89Zr-DFO-AMG102 Immuno-PET to Determine Local Hepatocyte Growth Factor Protein Levels in Tumors for Enhanced Patient Selection, The Journal of Nuclear Medicine, 2017, 58(9), 1386-1394.
  • Klingler, S, Fay, R, Holland, J.P, Light-Induced Radiosynthesis of 89Zr-DFO-Azepin-Onartuzumab for Imaging the Hepatocyte Growth Factor Receptor, The Journal of Nuclear Medicine, 2020, 61(7), 1072-1078.
  • England, C.G, Ehlerding, E.B, ve ark., Preclinical Pharmacokinetics and Biodistribution Studies of 89Zr-Labeled Pembrolizumab, The Journal of Nuclear Medicine, 2017, 58(1), 162-168.
  • Li, D, Cheng, S, ve ark., Immuno-PET Imaging of 89Zr Labeled Anti-PD-L1 Domain Antibody, Molecular Pharmaceutics, 2018, 15(4), 1674-1681.
  • Cole, E.L, Kim, J, ve ark., Radiosynthesis and pre-clinical PET evaluation of 89Zr-nivolumab (BMS-936558) in healthy non-human primates, Bioorganic & Medicinal Chemistry, 2017, 25(20), 5407-5414.
  • England, C.G, Jiang, D, ve ark., 89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer, European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45(1), 110-120.
  • Van der Veen, E.L, Giesen, D, Pot-de Jong, L, Jorritsma-Smit, A, De Vries, E.G.E, Lub-de Hooge, M.N, 89Zr-pembrolizumab biodistribution is influenced by PD-1-mediated uptake in lymphoid organs, Journal for ImmunoTherapy of Cancer, 2020, 8(2), e000938.
  • Vento, J, Mulgaonkar, A, ve ark., PD-L1 detection using 89Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response, Journal for ImmunoTherapy of Cancer, 2019, 7(1), 144.
  • Li, M, Ehlerding, E.B, ve ark., In vivo characterization of PD-L1 expression in breast cancer by immuno-PET with 89Zr-labeled avelumab, American Journal of Translational Research, 2020, 12(5), 1862-1872.
  • Karakaş, N, Öztürk, İ, Tosyalı, S, Bay, S, Nanobodies: Diagnostic and Therapeutic Antibody Fragments, Acta Oncologica Turcica, 2018, 51(2), 240-250.
  • Lee, J.Y, Vyas, C.K, ve ark., Red Blood Cell Membrane Bioengineered Zr-89 Labelled Hollow Mesoporous Silica Nanosphere for Overcoming Phagocytosis, Scientific Reports, 2019, 9(1), 7419.
  • Cheng, L, Shen, S, ve ark., Chelator-Free Labeling of Metal Oxide Nanostructures with Zirconium-89 for Positron Emission Tomography Imaging, ACS Nano, 2017, 11(12), 12193-12201.
  • Chen, D, Yang, D, ve ark., In Vivo Targeting and Positron Emission Tomography Imaging of Tumor with Intrinsically Radioactive Metal-Organic Frameworks Nanomaterials, ACS Nano, 2017, 11(4), 4315-4327.
  • Chen, F, Goel, S, ve ark., In Vivo Integrity and Biological Fate of Chelator-Free Zirconium-89-Labeled Mesoporous Silica Nanoparticles, ACS Nano, 2015, 9(8), 7950-9.
  • Cheng L, Kamkaew A, Shen S, ve ark., Facile Preparation of Multifunctional WS2 /WOx Nanodots for Chelator-Free 89Zr-Labeling and In Vivo PET Imaging, Small, 2016, 12(41), 5750-5758.
  • Zhan, Y, Ehlerding, E.B, et al., Intrinsically Zirconium-89-Labeled Manganese Oxide Nanoparticles for In Vivo Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging, Journal of Biomedical Nanotechnology, 2018, 14(5), 900-909.
  • Chen, F, Ma, K, et al, Target-or-Clear Zirconium-89 Labeled Silica Nanoparticles for Enhanced Cancer-Directed Uptake in Melanoma: A Comparison of Radiolabeling Strategies, Chemistry of Materials, 2017, 29(19), 8269-8281.
  • Hajdu, I, Makhlouf, A, et al, A 89Zr-labeled lipoplex nanosystem for image-guided gene delivery: design, evaluation of stability and in vivo behavior, International Journal of Nanomedicine, 2018, 13, 7801-7818.
  • McDonagh, P.R, Sundaresan, G, Yang, L, Sun, M, Mikkelsen, R, Zweit, J, Biodistribution and PET imaging of 89-zirconium labeled cerium oxide nanoparticles synthesized with several surface coatings, Nanomedicine, 2018, 14(4), 1429-1440.
  • Chen, F, Ma, K, et al, Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer, Nature Communications, 2018, 9(1), 4141.
  • Tolmachev, V, Orlova, A, Affibody Molecules as Targeting Vectors for PET Imaging, Cancers (Basel), 2020, 12(3), 651.
  • Garousi, J, Andersson, K.G, et al, PET imaging of epidermal growth factor receptor expression in tumors using 89Zr-labelled ZEGFR:2377 affibody molecules, International Journal of Oncology, 2016, 48(4), 1325-32.
  • Burley, T.A, Da Pieve, C, et al, Affibody-Based PET Imaging to Guide EGFR-Targeted Cancer Therapy in Head and Neck Squamous Cell Cancer Models, The Journal of Nuclear Medicine, 2019, 60(3), 353-361.
  • Martins, C.D, Da Pieve, C, et al, HER3-Mediated Resistance to Hsp90 Inhibition Detected in Breast Cancer Xenografts by Affibody-Based PET Imaging, Clinical Cancer Research, 2018, 24(8), 1853-1865.
  • Xu, Y, Wang, L, et al, Synthesis of a novel 89Zr-labeled HER2 affibody and its application study in tumor PET imaging, EJNMMI Research, 2020, 10(1), 58.

Zirkonium-89 (89Zr) Radiopharmaceutics Developed for Immuno-PET

Yıl 2021, Cilt: 8 Sayı: 3, 534 - 542, 30.09.2021
https://doi.org/10.34087/cbusbed.840543

Öz

A wide variety and comprehensive research are being conducted on the development of molecular imaging agents used in imaging cancer tissue. Positron Emission Tomography (PET) radiopharmaceuticals consist of a positron-emitting radionuclide and a molecular structure. 89Zr-labeled monoclonal antibodies (mAb), peptides, nanoparticles, proteins, and other compounds, called 89Zr-Immuno-PET, have been used in cancerous tissue imaging. In this review, the potential of 89Zr radionuclide-labeled pharmaceuticals, which are widely used in Immuno-PET imaging with their long half-life, in pre-clinical and clinical studies conducted in the last five years were reviewed and discussed.

Proje Numarası

yok

Kaynakça

  • Loud, J.T, Murphy, J, Cancer Screening and Early Detection in the 21st Century, Seminars in Oncology Nursing, 2017, 33(2), 121-128.
  • Van de Watering, F.C, Rijpkema, M, Perk, L, Brinkmann, U, Oyen, W.J, Boerman, O.C, Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients, BioMed Research International, 2014, 203601.
  • Kasbollah, A, Eu, P, Cowell, S, Deb, P, Review on production of 89Zr in a medical cyclotron for PET radiopharmaceuticals, Journal of Nuclear Medicine Technology, 2013, 41(1):35-41.
  • Vugts, D.J, Visser, G.W, van Dongen, G.A, 89Zr-PET radiochemistry in the development and application of therapeutic monoclonal antibodies and other biologicals, Current Topics in Medicinal Chemistry, 2013, 13(4), 446-57.
  • Bhatt, N.B, Pandya, D.N, Wadas, T.J, Recent Advances in Zirconium-89 Chelator Development, Molecules, 2018, 23(3), 638.
  • Severin, G.W, Engle, J.W, Barnhart, T.E, Nickles, R.J, 89Zr radiochemistry for positron emission tomography, Medical Chemistry, 2011, 7(5), 389-94.
  • Vermeulen, K, Vandamme, M, Bormans, G, Cleeren, F, Design and Challenges of Radiopharmaceuticals, Seminars in Nuclear Medicine, 2019, 49(5), 339-356.
  • Van Dongen, G.A, Huisman, M.C, ve ark., 89Zr-immuno-PET for imaging of long circulating drugs and disease targets: why, how and when to be applied?, The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2014, 59(1), 18-38.
  • Zhang, Y, Hong, H, Cai, W, PET tracers based on Zirconium-89, Current Radiopharmaceuticals, 2011, 4(2), 131-9. 10. Yoon, J.K, Park, B.N, Ryu, E.K, An, Y.S, Lee, S.J, Current Perspectives on 89Zr-PET Imaging, International Journal of Molecular Sciences, 2020, 21(12), 4309.
  • Heskamp, S, Raavé, R, Boerman, O, Rijpkema, M, Goncalves, V, Denat, F, 89Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry, Bioconjugate Chemistry, 2017, 28(9), 2211-2223.
  • La, M.T, Tran, V.H, Kim, H.K, Progress of Coordination and Utilization of Zirconium-89 for Positron Emission Tomography (PET) Studies, Nuclear Medicine and Molecular Imaging, 2019, 53(2), 115-124.
  • Deri, M.A, Zeglis, B.M, Francesconi, L.C, Lewis, J.S, PET imaging with 89Zr: from radiochemistry to the clinic, Nuclear Medicine and Biology, 2013, 40(1), 3-14.
  • Şahmaran, T, Bayburt, M, Pozitron Emisyon Tomografi – Bilgisayar Tomografi (Pet-Bt) Uygulamalarında Hastanın Aldığı Radyasyon Dozunun Belirlenmesi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2020, 13(1), 58-63.
  • Wadsak, W, Mitterhauser, M, Basics and principles of radiopharmaceuticals for PET/BT, European Journal of Radiology, 2010, 73(3), 461-9.
  • Aluicio-Sarduy, E, Ellison, P.A, Barnhart, T.E, Cai, W, Nickles, RJ, Engle, J.W, PET radiometals for antibody labeling, Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61(9), 636-651.
  • Jauw, Y.W, Zijlstra, J.M, ve ark., Performance of 89Zr-Labeled-Rituximab-PET as an Imaging Biomarker to Assess CD20 Targeting: A Pilot Study in Patients with Relapsed/Refractory Diffuse Large B Cell Lymphoma, PLoS One, 2017, 12(1), e0169828.
  • Diebolder, P, Mpoy, C, Scott, J, et al, Preclinical Evaluation of an Engineered scFv-Fc Targeting Human CD44, Journal of Nuclear Medicine, 2020, 120.249557.
  • Menke-van der Houven van Oordt, C.W, Gomez-Roca, C, ve ark., First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumors, Oncotarget, 2016, 7(48), 80046-80058.
  • Pool, M, Kol, A, Lub-de Hooge, M.N, Gerdes, C.A, de Jong, S, de Vries, E.G, Terwisscha van Scheltinga, A.G, Extracellular domain shedding influences specific tumor uptake and organ distribution of the EGFR PET tracer 89Zr-imgatuzumab, Oncotarget, 2016, 7(42):68111-68121.
  • Chekol, R, Solomon, V.R, ve ark., 89Zr-nimotuzumab for Immuno-PET imaging of epidermal growth factor receptor I, Oncotarget, 2018, 9(24):17117-17132.
  • Tang, Y, Hu, Y, ve ark., A radiopharmaceutical 89Zr-DFO-nimotuzumab for immunoPET with epidermal growth factor receptor expression in vivo, Nuclear Medicine and Biology, 2019, 70, 23-31.
  • Benedetto, R, Massicano, AVF, ve ark., 89Zr-DFO-Cetuximab as a Molecular Imaging Agent to Identify Cetuximab Resistance in Head and Neck Squamous Cell Carcinoma, Cancer Biotherapy and Radiopharmaceuticals, 2019, 34(5), 288-296.
  • Chia, P.L, Parakh, S, ve ark., Targeting and Efficacy of Novel mAb806-Antibody-Drug Conjugates in Malignant Mesothelioma, Pharmaceuticals (Basel), 2020, 13(10), 289.
  • Menke-van der Houven van Oordt, C.W, Gootjes, E.C, ve ark., 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer, Oncotarget, 2015, 6(30), 30384-93.
  • Even, A.J, Hamming-Vrieze, O, ve ark., Quantitative assessment of Zirconium-89 labeled cetuximab using PET/BT imaging in patients with advanced head and neck cancer: a theragnostic approach, Oncotarget, 2017, 8(3), 3870-3880.
  • Lindenberg, L, Adler, S, ve ark., Dosimetry and first human experience with 89Zr-panitumumab, American Journal of Nuclear Medicine and Molecular Imaging, 2017, 7(4), 195-203.
  • Al-Saden, N, Lam, K, Chan, C, Reilly, RM, Positron-Emission Tomography of HER2-Positive Breast Cancer Xenografts in Mice with 89Zr-Labeled Trastuzumab-DM1: A Comparison with 89Zr-Labeled Trastuzumab, Molecular Pharmaceutics, 2018, 15(8), 3383-3393.
  • Massicano, A.V.F, Lee, S, ve ark., Imaging of HER2 with [89Zr] pertuzumab in Response to T-DM1 Therapy, Cancer Biotherapy and Radiopharmaceuticals, 2019, 34(4), 209-217.
  • Wei, W, Jiang, D, Rosenkrans, Z.T, ve ark., HER2-targeted multimodal imaging of anaplastic thyroid cancer, American Journal of Cancer Research, 2019, 9(11), 2413-2427.
  • Mendler, C.T, Gehring, T, Wester, H.J, Schwaiger, M, Skerra, A, 89Zr-Labeled Versus 124I-Labeled αHER2 Fab with Optimized Plasma Half-Life for High-Contrast Tumor Imaging In Vivo, The Journal of Nuclear Medicine, 2015, 56(7), 1112-8.
  • Cho, H, Al-Saden, N, Lam, H, Möbus, J, Reilly, R.M, Winnik, M.A, A comparison of DFO and DFO* conjugated to trastuzumab-DM1 for complexing 89Zr- In vitro stability and in vivo microPET/BT imaging studies in NOD/SCID mice with HER2-positive SK-OV-3 human ovarian cancer xenografts, Nuclear Medicine and Biology, 2020, 84-85, 11-19.
  • Raavé, R, Sandker, G, ve ark., Direct comparison of the in vitro and in vivo stability of DFO, DFO* and DFOcyclo* for 89Zr-immunoPET, European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46(9), 1966-1977.
  • Al-Saden, N, Cai, Z, Reilly, R.M, Tumor uptake and tumor/blood ratios for 89Zr-DFO-trastuzumab-DM1 on microPET/BT images in NOD/SCID mice with human breast cancer xenografts are directly correlated with HER2 expression and response to trastuzumab-DM1, Nuclear Medicine and Biology, 2018, 67, 43-51.
  • Ahn, S.H, Thach, D, ve ark., Linear Desferrichrome-Linked Silicon-Rhodamine Antibody Conjugate Enables Targeted Multimodal Imaging of HER2 in Vitro and in Vivo, Molecular Pharmaceutics, 2019, 16(3), 1412-1420.
  • Kristensen, L.K, Christensen, C, ve ark., Site-specifically labeled 89Zr-DFO-trastuzumab improves immuno-reactivity and tumor uptake for immuno-PET in a subcutaneous HER2-positive xenograft mouse model, Theranostics, 2019, 9(15), 4409-4420.
  • Jang, J.H, Han, S.J, Kim, J.Y, Kim, K.I, Lee, K.C, Kang, C.S, Synthesis and Feasibility Evaluation of a new Trastuzumab Conjugate Integrated with Paclitaxel and 89Zr for Theranostic Application Against HER2-Expressing Breast Cancers, ChemistryOpen, 2019, 8(4), 451-456.
  • Dehdashti, F, Wu, N, ve ark., Evaluation of 89Zr-trastuzumab-PET/BT in differentiating HER2-positive from HER2-negative breast cancer, Breast Cancer Research and Treatment, 2018, 169(3), 523-530.
  • Ulaner, G.A, Hyman, D.M, ve ark., Detection of HER2-Positive Metastases in Patients with HER2-Negative Primary Breast Cancer Using 89Zr-Trastuzumab PET/BT, The Journal of Nuclear Medicine, 2016, 57(10), 1523-1528.
  • O'Donoghue, J.A, Lewis, J.S, ve ark., Pharmacokinetics, Biodistribution, and Radiation Dosimetry for 89Zr-Trastuzumab in Patients with Esophagogastric Cancer, The Journal of Nuclear Medicine, 2018, 59(1), 161-166.
  • Bensch, F, Brouwers, A.H, ve ark., 89Zr-trastuzumab PET supports clinical decision making in breast cancer patients when HER2 status cannot be determined by a standard workup, European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45(13), 2300-2306.
  • Ulaner, G.A, Lyashchenko, S.K, ve ark., First-in-Human Human Epidermal Growth Factor Receptor 2-Targeted Imaging Using 89Zr-Pertuzumab PET/BT: Dosimetry and Clinical Application in Patients with Breast Cancer, The Journal of Nuclear Medicine, 2018, 59(6), 900-906.
  • Richter, A, Knorr, K, ve ark., First In-Human Medical Imaging with a PASylated 89Zr-Labeled Anti-HER2 Fab-Fragment in a Patient with Metastatic Breast Cancer, Nuclear Medicine and Molecular Imaging, 2020, 54(2), 114-119.
  • Vural, P, Fizyolojik ve Patolojik Anjiogenezde Vasküler Endotelyal Büyüme Faktörünün Rolü, Türk Klinik Biyokimya Dergisi, 2018, 16(1), 53-62.
  • Li, M, Jiang, D, ve ark., Immuno-PET imaging of VEGFR-2 expression in prostate cancer with 89Zr-labeled ramucirumab, American Journal of Cancer Research, 2019, 9(9), 2037-2046.
  • Jansen, M.H, Veldhuijzen van Zanten, S.E.M, ve ark., Molecular Drug Imaging: 89Zr-Bevacizumab PET in Children with Diffuse Intrinsic Pontine Glioma, The Journal of Nuclear Medicine, 2017, 58(5), 711-716.
  • Oosting, S.F, Brouwers, A.H, ve ark., 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment, The Journal of Nuclear Medicine, 2015, 56(1), 63-9.
  • Yuan, Q, Furukawa, T, ve ark., Immuno-PET Imaging of HER3 in a Model in which HER3 Signaling Plays a Critical Role, PLoS One, 2015, 10(11), e0143076.
  • Pool, M, Kol, A, de Jong, S, de Vries, E.G.E, Lub-de Hooge, M.N, Terwisscha van Scheltinga, A.G.T, 89Zr-mAb3481 PET for HER3 tumor status assessment during lapatinib treatment, MAbs, 2017, 9(8), 1370-1378.
  • Alsaid, H, Skedzielewski, T, ve ark., Non-invasive imaging assessment of the biodistribution of GSK2849330, an ADCC and CDC optimized anti HER3 mAb, and its role in tumor macrophage recruitment in human tumor-bearing mice, PLoS One, 2017, 12(4), e0176075.
  • Matsuda, M, Ishikawa, E, ve ark., Potential use of prostate-specific membrane antigen (PSMA) for detecting the tumor neovasculature of brain tumors by PET imaging with 89Zr-Df-IAB2M anti-PSMA mini body, Journal of Neuro-Oncology, 2018, 138(3), 581-589.
  • Joraku, A, Hatano, K, ve ark., Phase I/IIa PET imaging study with 89Zr labeled anti-PSMA mini body for urological malignancies, Annals of Nuclear Medicine, 2019, 33(2), 119-127.
  • Pandit-Taskar, N, O'Donoghue, J.A, ve ark., First-in-Human Imaging with 89Zr-Df-IAB2M Anti-PSMA Mini body in Patients with Metastatic Prostate Cancer: Pharmacokinetics, Biodistribution, Dosimetry, and Lesion Uptake, The Journal of Nuclear Medicine, 2016, 57(12), 1858-1864.
  • Pool, M, Terwisscha van Scheltinga, A.G.T, Kol, A, Giesen, D, de Vries, E.G.E, Lub-de Hooge, M.N, 89Zr-Onartuzumab PET imaging of c-MET receptor Dynamics, European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44(8), 1328-1336.
  • Cavaliere, A, Sun, S, ve ark., Development of 89Zr-DFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer, European Journal of Nuclear Medicine and Molecular Imaging, 2020, https://doi.org/10.1007/s00259-020-04978-6.
  • Price, E.W, Carnazza, K.E, ve ark., 89Zr-DFO-AMG102 Immuno-PET to Determine Local Hepatocyte Growth Factor Protein Levels in Tumors for Enhanced Patient Selection, The Journal of Nuclear Medicine, 2017, 58(9), 1386-1394.
  • Klingler, S, Fay, R, Holland, J.P, Light-Induced Radiosynthesis of 89Zr-DFO-Azepin-Onartuzumab for Imaging the Hepatocyte Growth Factor Receptor, The Journal of Nuclear Medicine, 2020, 61(7), 1072-1078.
  • England, C.G, Ehlerding, E.B, ve ark., Preclinical Pharmacokinetics and Biodistribution Studies of 89Zr-Labeled Pembrolizumab, The Journal of Nuclear Medicine, 2017, 58(1), 162-168.
  • Li, D, Cheng, S, ve ark., Immuno-PET Imaging of 89Zr Labeled Anti-PD-L1 Domain Antibody, Molecular Pharmaceutics, 2018, 15(4), 1674-1681.
  • Cole, E.L, Kim, J, ve ark., Radiosynthesis and pre-clinical PET evaluation of 89Zr-nivolumab (BMS-936558) in healthy non-human primates, Bioorganic & Medicinal Chemistry, 2017, 25(20), 5407-5414.
  • England, C.G, Jiang, D, ve ark., 89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer, European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45(1), 110-120.
  • Van der Veen, E.L, Giesen, D, Pot-de Jong, L, Jorritsma-Smit, A, De Vries, E.G.E, Lub-de Hooge, M.N, 89Zr-pembrolizumab biodistribution is influenced by PD-1-mediated uptake in lymphoid organs, Journal for ImmunoTherapy of Cancer, 2020, 8(2), e000938.
  • Vento, J, Mulgaonkar, A, ve ark., PD-L1 detection using 89Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response, Journal for ImmunoTherapy of Cancer, 2019, 7(1), 144.
  • Li, M, Ehlerding, E.B, ve ark., In vivo characterization of PD-L1 expression in breast cancer by immuno-PET with 89Zr-labeled avelumab, American Journal of Translational Research, 2020, 12(5), 1862-1872.
  • Karakaş, N, Öztürk, İ, Tosyalı, S, Bay, S, Nanobodies: Diagnostic and Therapeutic Antibody Fragments, Acta Oncologica Turcica, 2018, 51(2), 240-250.
  • Lee, J.Y, Vyas, C.K, ve ark., Red Blood Cell Membrane Bioengineered Zr-89 Labelled Hollow Mesoporous Silica Nanosphere for Overcoming Phagocytosis, Scientific Reports, 2019, 9(1), 7419.
  • Cheng, L, Shen, S, ve ark., Chelator-Free Labeling of Metal Oxide Nanostructures with Zirconium-89 for Positron Emission Tomography Imaging, ACS Nano, 2017, 11(12), 12193-12201.
  • Chen, D, Yang, D, ve ark., In Vivo Targeting and Positron Emission Tomography Imaging of Tumor with Intrinsically Radioactive Metal-Organic Frameworks Nanomaterials, ACS Nano, 2017, 11(4), 4315-4327.
  • Chen, F, Goel, S, ve ark., In Vivo Integrity and Biological Fate of Chelator-Free Zirconium-89-Labeled Mesoporous Silica Nanoparticles, ACS Nano, 2015, 9(8), 7950-9.
  • Cheng L, Kamkaew A, Shen S, ve ark., Facile Preparation of Multifunctional WS2 /WOx Nanodots for Chelator-Free 89Zr-Labeling and In Vivo PET Imaging, Small, 2016, 12(41), 5750-5758.
  • Zhan, Y, Ehlerding, E.B, et al., Intrinsically Zirconium-89-Labeled Manganese Oxide Nanoparticles for In Vivo Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging, Journal of Biomedical Nanotechnology, 2018, 14(5), 900-909.
  • Chen, F, Ma, K, et al, Target-or-Clear Zirconium-89 Labeled Silica Nanoparticles for Enhanced Cancer-Directed Uptake in Melanoma: A Comparison of Radiolabeling Strategies, Chemistry of Materials, 2017, 29(19), 8269-8281.
  • Hajdu, I, Makhlouf, A, et al, A 89Zr-labeled lipoplex nanosystem for image-guided gene delivery: design, evaluation of stability and in vivo behavior, International Journal of Nanomedicine, 2018, 13, 7801-7818.
  • McDonagh, P.R, Sundaresan, G, Yang, L, Sun, M, Mikkelsen, R, Zweit, J, Biodistribution and PET imaging of 89-zirconium labeled cerium oxide nanoparticles synthesized with several surface coatings, Nanomedicine, 2018, 14(4), 1429-1440.
  • Chen, F, Ma, K, et al, Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer, Nature Communications, 2018, 9(1), 4141.
  • Tolmachev, V, Orlova, A, Affibody Molecules as Targeting Vectors for PET Imaging, Cancers (Basel), 2020, 12(3), 651.
  • Garousi, J, Andersson, K.G, et al, PET imaging of epidermal growth factor receptor expression in tumors using 89Zr-labelled ZEGFR:2377 affibody molecules, International Journal of Oncology, 2016, 48(4), 1325-32.
  • Burley, T.A, Da Pieve, C, et al, Affibody-Based PET Imaging to Guide EGFR-Targeted Cancer Therapy in Head and Neck Squamous Cell Cancer Models, The Journal of Nuclear Medicine, 2019, 60(3), 353-361.
  • Martins, C.D, Da Pieve, C, et al, HER3-Mediated Resistance to Hsp90 Inhibition Detected in Breast Cancer Xenografts by Affibody-Based PET Imaging, Clinical Cancer Research, 2018, 24(8), 1853-1865.
  • Xu, Y, Wang, L, et al, Synthesis of a novel 89Zr-labeled HER2 affibody and its application study in tumor PET imaging, EJNMMI Research, 2020, 10(1), 58.
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Radyoloji ve Organ Görüntüleme
Bölüm Derleme
Yazarlar

Burcu Altıparmak Güleç 0000-0001-8078-6960

Fatma Yurt 0000-0002-9394-6908

Proje Numarası yok
Yayımlanma Tarihi 30 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 3

Kaynak Göster

APA Altıparmak Güleç, B., & Yurt, F. (2021). Immüno-PET İçin Geliştirilen Zirkonyum-89 (89Zr) Radyofarmasötikleri. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 8(3), 534-542. https://doi.org/10.34087/cbusbed.840543
AMA Altıparmak Güleç B, Yurt F. Immüno-PET İçin Geliştirilen Zirkonyum-89 (89Zr) Radyofarmasötikleri. CBU-SBED. Eylül 2021;8(3):534-542. doi:10.34087/cbusbed.840543
Chicago Altıparmak Güleç, Burcu, ve Fatma Yurt. “Immüno-PET İçin Geliştirilen Zirkonyum-89 (89Zr) Radyofarmasötikleri”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8, sy. 3 (Eylül 2021): 534-42. https://doi.org/10.34087/cbusbed.840543.
EndNote Altıparmak Güleç B, Yurt F (01 Eylül 2021) Immüno-PET İçin Geliştirilen Zirkonyum-89 (89Zr) Radyofarmasötikleri. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8 3 534–542.
IEEE B. Altıparmak Güleç ve F. Yurt, “Immüno-PET İçin Geliştirilen Zirkonyum-89 (89Zr) Radyofarmasötikleri”, CBU-SBED, c. 8, sy. 3, ss. 534–542, 2021, doi: 10.34087/cbusbed.840543.
ISNAD Altıparmak Güleç, Burcu - Yurt, Fatma. “Immüno-PET İçin Geliştirilen Zirkonyum-89 (89Zr) Radyofarmasötikleri”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8/3 (Eylül 2021), 534-542. https://doi.org/10.34087/cbusbed.840543.
JAMA Altıparmak Güleç B, Yurt F. Immüno-PET İçin Geliştirilen Zirkonyum-89 (89Zr) Radyofarmasötikleri. CBU-SBED. 2021;8:534–542.
MLA Altıparmak Güleç, Burcu ve Fatma Yurt. “Immüno-PET İçin Geliştirilen Zirkonyum-89 (89Zr) Radyofarmasötikleri”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, c. 8, sy. 3, 2021, ss. 534-42, doi:10.34087/cbusbed.840543.
Vancouver Altıparmak Güleç B, Yurt F. Immüno-PET İçin Geliştirilen Zirkonyum-89 (89Zr) Radyofarmasötikleri. CBU-SBED. 2021;8(3):534-42.