Derleme
BibTex RIS Kaynak Göster

Biyogaz Akımı İçerisindeki Siloksan Bileşiklerinin Adsorpsiyon Yöntemi ile Gideriminin Araştırılması

Yıl 2021, Cilt: 1 Sayı: 2, 25 - 40, 31.12.2021

Öz

Küresel ısınmanın gündemde olduğu bu dönemde alternatif enerji kaynaklarına olan eğilim gün geçtikçe artmaktadır. Biyogaz, enerji gereksiniminin sağlanması noktasında en etkili teknolojilerden biri olarak görülmektedir. Söz konusu bu gaz yakıtın enerji verimliliğinin yüksek olması için içerisinde bulunan CO2, H2S ve siloksan gibi safsızlıkların giderilmesi gerekmektedir. Biyogaz akımı içerisinde bulunan siloksan bileşiklerinin enerji üretimi sırasında motor aksamlarında oluşturduğu hasarlardan
dolayı bu bileşiklerin giderilmesi öncelikli hale gelmiştir. Biyogaz içerisinde bulunan siloksanlar yakıldığında, camsı mikrokristal silika formunda beyaz bir toz oluşturmakta ve bu beyaz toz, gaz motorlarında probleme yol açmaktadır. Günümüzde uygulamada en geçerli siloksan giderim teknolojileri adsorpsiyon, absorpsiyon, soğutma/yoğunlaştırma iken bunların dışında asit ile bozundurma, membran filtrasyon gibi teknolojilerde son zamanlarda uygulanmaya başlamıştır. En yaygın  kullanılan siloksan giderim teknolojisi ise katı adsorbanlar ile adsorpsiyon olup aktif karbon en fazla tercih edilen adsorban olarak değerlendirilmektedir. Kullanılan adsorbanın yüzey alanı, mezo ve mikro gözenek hacmi, adsorbanın rejenerasyon kapasitesi ve biyogaz kompozisyonu adsorban seçiminde en önemli parametreler olarak görülmektedir. Bu çalışmada, katı atık düzenli depolama sahalarında ve atıksu arıtma tesisleri anaerobik çamur çürütücülerinde oluşan biyogaz içerisindeki uçucu metil siloksan bileşiklerinin yarattığı problemler ve giderim yöntemleri hakkında bilgiler derlenmiş ve aynı zamanda siloksanların örneklemesi ve adsorpsiyon prosesi ile siloksan giderim mekanizmaları detaylı bir şekilde araştırılmış ve ortaya konmuştur.

Destekleyen Kurum

TÜBİTAK ve Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

TÜBİTAK 119R011 ve PAUBAP 2018FEBE053

Teşekkür

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) 1002 – Hızlı Destek Programı tarafından 119R011 nolu proje ve Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından 2018FEBE053 nolu proje ile desteklenmiştir.

Kaynakça

  • Accettola F., Guebitz G.M., Schoeftner R., Siloxane removal from biogas by biofiltration: biodegradation studies, Clean Technologies and Environmental Policy, 10, 211–218, 2008.
  • Ajhar M., Bannwarth S., Stollenwerk K.H., Spalding G.,. Yüce S., Wessling M., Melin T., Siloxane removal using silicone-rubber membranes, Seperation and Purification Technology, 89, 234-244, 2012.
  • Ajhar.M., Travesset S., Yüce S., Melin T., Siloxane removal from landfill and digester gas – A technology overview, Bioresource Technology, 101, 2913-2923, 2010.
  • Ajhar M. ve Melin T., Siloxane removal with gas permeation membranes, Desalination, 200, 234–235, 2006.
  • Alvarez-Florez J. ve Egusquiza E., Analysis of damage caused by siloxanes in stationary reciprocating internal combustion engines operating with landfill gas, Engineering Failure Analysis, 50, 29-38, 2015.
  • Appels L., Baeyens J., Dewil R., Siloxane removal from biosolids by peroxidation, Energy Conversion and Management, 49, 2859–2864, 2008.
  • Arnold, M.; Kajolinna, T., Development of on-line measurement techniques for siloxanes and other trace compounds in biogas, Waste Management, 30, 1011-1017, 2010.
  • Awe O.W., Zhao Y., Nzihou, A., Minh, D.P., Lyczko, N., A Review of Biogas Utilisation, Purification and Upgrading Technologies, Waste and Biomass Valorization, 8, 267-283, 2017.
  • Bletsou A.A., Asimakopoulos A.G., Stasinakis A.S., Thomaidis N.S., Kannan K., Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in Greece, Environmental Science & Technology, 47, 1824–1832, 2013.
  • Cabrera-Codony A., Montes-Morán M.A., Sánchez-Polo M., Martin M.A., Biogas upgrading: optimal activated carbon properties for siloxane removal, Environmental Science & Technology, 48, 7187–7195, 2014.
  • Chen X.Y., Vinh-Thang H., Ramirez A.A., Rodrigue D., Kaliaguine S., Membrane gas separation technologies for biogas upgrading, Royal Society of Chemistry, 5, 24399-24448, 2015.
  • Dewil R., Appels, L., Baeyens, J, Energy use of biogas hampered by the presence of siloxanes, Energy Conversion Management, 47, 1711–1722, 2006.
  • Ersan G., Kaya Y., Apul O.G., Karanfil T., Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions, Science of the Total Environment, 55, 811-817, 2016.
  • Finocchio E., Montanari T., Garuti G., Pistarino C., Federici F., Cugino M., Busca G., Purification of biogases from siloxanes by adsorption: On the regenerability of activated carbon sorbents., Energy Fuels, 23, 4156–4159, 2009.
  • Gong H., Chen Z., Fan Y., Zhang M.,. Wu W., Surface modification of activated carbon for siloxane adsorption, Renewable Energy, 83, 144-150, 2015.
  • Hagmann, Hesse E., Hentschel P., Purification of biogas removal of volatile silicones, Eight international waste management and landfill symposium, Sardinia: CISA, 641–644, 2001.
  • Hayes H.C., Saeed S.,. Graening G.J., Kao S., A Summary of Available Analytical Methods for The Determination of Siloxanes in Biogas, Technical notes, Air Toxics Ltd., 2002.
  • Huertas J.I., Giraldo N., Izquierdo S., Removal of H2S and CO2 from Biogas by Amine Absorption, Mass Transfer in Chemical Engineering Processes, Editör: Markos J., 133–135, 2011.
  • Huppmann R., Lohoff H.W., Schröder H.F., Cyclic siloxanes in the biological wastewater treatment process-determination, quantification and possibilities of elimination, Fresenius Journal of Analytical Chemistry, 354, 66-71, 1996.
  • Jafari T., Jiang T., Zhong W., Khakpasha N., Delljoo B., Aindow M., Singh P., Suib S.L, Modified mesoporous silica for efficient siloxane captur, Langmuir, 32, 2369–2377, 2016.
  • Jiang T., Poyraz A.S., Iyer A., Zhang Y., Luo Z., Zhong W., Synthesis of mesoporous iron oxides by an inverse micelle method and their application in the degradation of orange II under visible light at neutral pH, The Journal of Physical Chemistry, 119, 10454–10468, 2015.
  • Jiang T., Zhong W., Jafari T., Du S., He J., Fu Y.J., Singh P., Suib S.L., Siloxane D4 adsorption by mesoporous aluminosilicates, Chemical Engineering Journal, 289, 356–364, 2016.
  • Kochetkov A., Smith J.S., Ravikrishna R., Valsaraj K.T., Thibodeaux L., Air-water partition constants for volatile methyl siloxanes, Environmental Toxicology and Chemistry, 20, 2184-2188, 2001.
  • Kuhn J.N., Elwell A.C., Elsaed N.H., Joseph B., Requirements, techniques, and costs for contaminants removal from landfill gas, Waste Management, 63,. 246-256, 2017.
  • Latimer L.H., Kamens R.M., Chandra G., The atmospheric partitioning of decamethylcyclopentasiloxanes (D5) and 1-hydroxynonamethylcyclopentasiloxane (D4TOH) on different types of atmospheric particles, Chemosphere 36, 2401-2414, 1998.
  • Lowry, T.H. ve Richardson K.S., Mechanism and Theory in Organic Chemistry,. Harper and Row Publishers, New York, 1987.
  • Marine S., Pedrouzo M., Marce R.M., Fonseca I., Borrull F., Comparison between sampling and analytical methods in characterization of pollutants in biogas, Talanta, 100, 145-152, 2012.
  • Matsui M. ve Imamura S. Removal of siloxane from digestion gas of sewage sludge, Bioresource Technology, 101, S29–S32, 2010.
  • Mojsiewicz-Piekowska K. ve Krenczkowska D., Evolution of consciousness of exposure to siloxanes - Review of publications, Chemosphere, 191, 204-217, 2018.
  • Montanaria T., Finocchioa E., Bozzanoa I., Garutib G., Giordanob A., Pistarinoc C., Busca G., Purification of landfill biogases from siloxanes by adsorption: A study of silica and 13X zeolite adsorbents on hexamethylcyclotrisiloxane separation, Chemical Engineering Journal, 165, 859–863, 2010.
  • Nam S., Namkoong W., Kang J.H., Park J., Lee N., Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test, Waste Management, 33, 2091-2098, 2013.
  • Oshita K., Ishihara Y., Takaoka M., Takeda N., Matsumoto T., Morisawa S., Kitayama A., Behaviour and adsorptive removal of siloxanes in sewage sludge biogas, Water Science and Technology, 61, 2003-2012, 2010.
  • Östürk Ö. ve Sevimoğlu O., Çöp gazından gelen siloksanların enerji üretimindeki sınırlamaları ve gazdan uzaklaştırma metotları, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 7, 42-53, 2017.
  • Piechota G., Hagmann M., Buczkowski, R., Removal and determination of trimethylsilanol from the landfill gas, Bioresource Technology, 103, 16-20, 2012.
  • Rasi S., Läntelä J., Rintala J., Trace compounds affecting biogas energy utilisation—A review, Energ Convers Manage, 52, 3369–3375, 2011.
  • Ricaure-Ortega D. ve Subrenat A., Siloxane treatment by adsorption into porous materials, Environmental Technology, 30, 1073–1083, 2009.
  • Ruiling G., Shikun C., Zifu L., Research progress of siloxane removal from biogas, International Journal of Agricultural and Biological Engineering, 10, 30-39, 2017.
  • Schweigkofler M. ve Niessner, R., Removal of siloxanes in biogases,Journal of Hazardous Materials B83, 183–196, 2001.
  • Schweigkofler, M; Niessner, R, Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis, Environmental Science and technology, 33 (20), 3680-3685, 1999.
  • Shen M., Zhang Y., Hu D., Fan J., Zeng G., A review on removal of siloxanes from biogas: with a special focus on volatile methlysiloxanes, Environmental Science and Pollution Research, 25, 30847-30862, 2018.
  • Sigot L., Ducom G., Benadda B., Labouré C., Adsorption of octamethylcyclotetrasiloxane on silica gel for biogas purification, Fuel 135, 205–209, 2014.
  • Sigot L., Ducom G., Benadda B., Labouré C., Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell, Environmental Technology, 37, 86–95, 2016.
  • Soreanu G., Beland M., Falletta P., Edmonson K., Svoboda L., Al-Jamal M., Seto P., Approaches concerning siloxane removal from biogas – A review, Canadian Biosystem Engineering, 53, 8.1 - 8.17, 2011.
  • Soreanu G., Falletta P., Be´land M., Edmonson K., Seto P., Abiotic and biotic mitigation of volatile methylsiloxanes in anaerobic gas-phase biomatrices, Environmental Engineering and Management Journal, 8, 1235-1240, 2009.
  • Stoddart J., Zhu M., Staines J., Rothery E., Lewicki R., Experience with halogenated hydrocarbons removal from landfill gas, Proceedings Sardinia 1999, Seventh International Waste Management and Landfill Symposium, 2, 489–498, 1999.
  • Tower P., New technology for removal of siloxanes in digester gas results in lower maintenance costs and air quality benefits in power generation equipment, Proceeding of the Water Environment Federation, 440–447, 2003.
  • Urban W., Lohmann H., Gomez J.I.S., Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells, Journal of Power Sources, 193:1, 359-366, 2009.
  • Varaprath S., Frye C.L., Hamelink J., Aqueous solubility of permethylsiloxanes (silicones). Environmental Toxicology and Chemistry, 15, 1263-1265, 1996.
  • Whelles E. ve Pierce J., Siloxanes in Landfill and Digester Gas Update, 27th Annual SWANA LFG Symposium, 8 sayfa, 2004. XEBEC Adsorption Inc, Treatment Solutions for Landfill Gas Fuel Applications. Teknik Not. 14 sayfa, 2007.
  • Yang S.S., Chen Y., Huang Y., Cao Z.R., Source of siloxane in biogas and its removal, China Water and Wastewater, 29, 19–21, 2013.
  • Yu M., Gong H., Chen Z., Zhang M., Adsorption characteristics of activated carbon for siloxanes, Environmental Chemical Engineering, 1, 1182-1187, 2013.
  • Zhang N., An evaluation of onsite siloxane monitoring technique and siloxane adsorption isotherm derivatives, Yüksek Lisans Tezi. Guelph Üniversitesi, Canada, 2009.
  • Air Liquide. Services related to our Biogas solutions. https://www.airliquideadvancedseparations.com/our-membranes/biogas. Erişim tarihi Aralık 30, 2020.

Investigation of the Removal of Siloxane Compounds in Biogas by Adsorption Method

Yıl 2021, Cilt: 1 Sayı: 2, 25 - 40, 31.12.2021

Öz

In this period when global warming is on the agenda, the tendency towards alternative energy sources is constantly increasing. Biogas is one of the most effective technologies in terms of providing energy requirements. In order to increase the energy efficiency of this gas fuel, the CO2, H2S, and siloxane impurities must be removed. The elimination of siloxane compounds in the biogas stream due to the damage caused by engine components during energy production has become a priority. When the siloxanes in the biogas stream are burned, the glassy microcrystalline silica forms a white powder, which leads to problems in gas engines. Today, the most applicable siloxane removal technologies in practice, adsorption, absorption, cooling/condensation, also acid degradation, membrane filtration has recently been applied technologies. The most widely used siloxane removal technology is adsorption with solid adsorbents and activated carbon is considered as the most preferred adsorbent material. The surface area, meso and microporous volume of the adsorbent used, regeneration capacity of the adsorbent and biogas composition is seen as the most important parameters in the adsorbent selection. In this study, the problems and removal methods of volatile methyl siloxane compounds in biogas formed in anaerobic sludge digesters in solid waste landfills and wastewater treatment plants were compiled and siloxane removal and adsorption process and siloxane removal mechanisms were investigated in detail. 

Proje Numarası

TÜBİTAK 119R011 ve PAUBAP 2018FEBE053

Kaynakça

  • Accettola F., Guebitz G.M., Schoeftner R., Siloxane removal from biogas by biofiltration: biodegradation studies, Clean Technologies and Environmental Policy, 10, 211–218, 2008.
  • Ajhar M., Bannwarth S., Stollenwerk K.H., Spalding G.,. Yüce S., Wessling M., Melin T., Siloxane removal using silicone-rubber membranes, Seperation and Purification Technology, 89, 234-244, 2012.
  • Ajhar.M., Travesset S., Yüce S., Melin T., Siloxane removal from landfill and digester gas – A technology overview, Bioresource Technology, 101, 2913-2923, 2010.
  • Ajhar M. ve Melin T., Siloxane removal with gas permeation membranes, Desalination, 200, 234–235, 2006.
  • Alvarez-Florez J. ve Egusquiza E., Analysis of damage caused by siloxanes in stationary reciprocating internal combustion engines operating with landfill gas, Engineering Failure Analysis, 50, 29-38, 2015.
  • Appels L., Baeyens J., Dewil R., Siloxane removal from biosolids by peroxidation, Energy Conversion and Management, 49, 2859–2864, 2008.
  • Arnold, M.; Kajolinna, T., Development of on-line measurement techniques for siloxanes and other trace compounds in biogas, Waste Management, 30, 1011-1017, 2010.
  • Awe O.W., Zhao Y., Nzihou, A., Minh, D.P., Lyczko, N., A Review of Biogas Utilisation, Purification and Upgrading Technologies, Waste and Biomass Valorization, 8, 267-283, 2017.
  • Bletsou A.A., Asimakopoulos A.G., Stasinakis A.S., Thomaidis N.S., Kannan K., Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in Greece, Environmental Science & Technology, 47, 1824–1832, 2013.
  • Cabrera-Codony A., Montes-Morán M.A., Sánchez-Polo M., Martin M.A., Biogas upgrading: optimal activated carbon properties for siloxane removal, Environmental Science & Technology, 48, 7187–7195, 2014.
  • Chen X.Y., Vinh-Thang H., Ramirez A.A., Rodrigue D., Kaliaguine S., Membrane gas separation technologies for biogas upgrading, Royal Society of Chemistry, 5, 24399-24448, 2015.
  • Dewil R., Appels, L., Baeyens, J, Energy use of biogas hampered by the presence of siloxanes, Energy Conversion Management, 47, 1711–1722, 2006.
  • Ersan G., Kaya Y., Apul O.G., Karanfil T., Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions, Science of the Total Environment, 55, 811-817, 2016.
  • Finocchio E., Montanari T., Garuti G., Pistarino C., Federici F., Cugino M., Busca G., Purification of biogases from siloxanes by adsorption: On the regenerability of activated carbon sorbents., Energy Fuels, 23, 4156–4159, 2009.
  • Gong H., Chen Z., Fan Y., Zhang M.,. Wu W., Surface modification of activated carbon for siloxane adsorption, Renewable Energy, 83, 144-150, 2015.
  • Hagmann, Hesse E., Hentschel P., Purification of biogas removal of volatile silicones, Eight international waste management and landfill symposium, Sardinia: CISA, 641–644, 2001.
  • Hayes H.C., Saeed S.,. Graening G.J., Kao S., A Summary of Available Analytical Methods for The Determination of Siloxanes in Biogas, Technical notes, Air Toxics Ltd., 2002.
  • Huertas J.I., Giraldo N., Izquierdo S., Removal of H2S and CO2 from Biogas by Amine Absorption, Mass Transfer in Chemical Engineering Processes, Editör: Markos J., 133–135, 2011.
  • Huppmann R., Lohoff H.W., Schröder H.F., Cyclic siloxanes in the biological wastewater treatment process-determination, quantification and possibilities of elimination, Fresenius Journal of Analytical Chemistry, 354, 66-71, 1996.
  • Jafari T., Jiang T., Zhong W., Khakpasha N., Delljoo B., Aindow M., Singh P., Suib S.L, Modified mesoporous silica for efficient siloxane captur, Langmuir, 32, 2369–2377, 2016.
  • Jiang T., Poyraz A.S., Iyer A., Zhang Y., Luo Z., Zhong W., Synthesis of mesoporous iron oxides by an inverse micelle method and their application in the degradation of orange II under visible light at neutral pH, The Journal of Physical Chemistry, 119, 10454–10468, 2015.
  • Jiang T., Zhong W., Jafari T., Du S., He J., Fu Y.J., Singh P., Suib S.L., Siloxane D4 adsorption by mesoporous aluminosilicates, Chemical Engineering Journal, 289, 356–364, 2016.
  • Kochetkov A., Smith J.S., Ravikrishna R., Valsaraj K.T., Thibodeaux L., Air-water partition constants for volatile methyl siloxanes, Environmental Toxicology and Chemistry, 20, 2184-2188, 2001.
  • Kuhn J.N., Elwell A.C., Elsaed N.H., Joseph B., Requirements, techniques, and costs for contaminants removal from landfill gas, Waste Management, 63,. 246-256, 2017.
  • Latimer L.H., Kamens R.M., Chandra G., The atmospheric partitioning of decamethylcyclopentasiloxanes (D5) and 1-hydroxynonamethylcyclopentasiloxane (D4TOH) on different types of atmospheric particles, Chemosphere 36, 2401-2414, 1998.
  • Lowry, T.H. ve Richardson K.S., Mechanism and Theory in Organic Chemistry,. Harper and Row Publishers, New York, 1987.
  • Marine S., Pedrouzo M., Marce R.M., Fonseca I., Borrull F., Comparison between sampling and analytical methods in characterization of pollutants in biogas, Talanta, 100, 145-152, 2012.
  • Matsui M. ve Imamura S. Removal of siloxane from digestion gas of sewage sludge, Bioresource Technology, 101, S29–S32, 2010.
  • Mojsiewicz-Piekowska K. ve Krenczkowska D., Evolution of consciousness of exposure to siloxanes - Review of publications, Chemosphere, 191, 204-217, 2018.
  • Montanaria T., Finocchioa E., Bozzanoa I., Garutib G., Giordanob A., Pistarinoc C., Busca G., Purification of landfill biogases from siloxanes by adsorption: A study of silica and 13X zeolite adsorbents on hexamethylcyclotrisiloxane separation, Chemical Engineering Journal, 165, 859–863, 2010.
  • Nam S., Namkoong W., Kang J.H., Park J., Lee N., Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test, Waste Management, 33, 2091-2098, 2013.
  • Oshita K., Ishihara Y., Takaoka M., Takeda N., Matsumoto T., Morisawa S., Kitayama A., Behaviour and adsorptive removal of siloxanes in sewage sludge biogas, Water Science and Technology, 61, 2003-2012, 2010.
  • Östürk Ö. ve Sevimoğlu O., Çöp gazından gelen siloksanların enerji üretimindeki sınırlamaları ve gazdan uzaklaştırma metotları, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 7, 42-53, 2017.
  • Piechota G., Hagmann M., Buczkowski, R., Removal and determination of trimethylsilanol from the landfill gas, Bioresource Technology, 103, 16-20, 2012.
  • Rasi S., Läntelä J., Rintala J., Trace compounds affecting biogas energy utilisation—A review, Energ Convers Manage, 52, 3369–3375, 2011.
  • Ricaure-Ortega D. ve Subrenat A., Siloxane treatment by adsorption into porous materials, Environmental Technology, 30, 1073–1083, 2009.
  • Ruiling G., Shikun C., Zifu L., Research progress of siloxane removal from biogas, International Journal of Agricultural and Biological Engineering, 10, 30-39, 2017.
  • Schweigkofler M. ve Niessner, R., Removal of siloxanes in biogases,Journal of Hazardous Materials B83, 183–196, 2001.
  • Schweigkofler, M; Niessner, R, Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis, Environmental Science and technology, 33 (20), 3680-3685, 1999.
  • Shen M., Zhang Y., Hu D., Fan J., Zeng G., A review on removal of siloxanes from biogas: with a special focus on volatile methlysiloxanes, Environmental Science and Pollution Research, 25, 30847-30862, 2018.
  • Sigot L., Ducom G., Benadda B., Labouré C., Adsorption of octamethylcyclotetrasiloxane on silica gel for biogas purification, Fuel 135, 205–209, 2014.
  • Sigot L., Ducom G., Benadda B., Labouré C., Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell, Environmental Technology, 37, 86–95, 2016.
  • Soreanu G., Beland M., Falletta P., Edmonson K., Svoboda L., Al-Jamal M., Seto P., Approaches concerning siloxane removal from biogas – A review, Canadian Biosystem Engineering, 53, 8.1 - 8.17, 2011.
  • Soreanu G., Falletta P., Be´land M., Edmonson K., Seto P., Abiotic and biotic mitigation of volatile methylsiloxanes in anaerobic gas-phase biomatrices, Environmental Engineering and Management Journal, 8, 1235-1240, 2009.
  • Stoddart J., Zhu M., Staines J., Rothery E., Lewicki R., Experience with halogenated hydrocarbons removal from landfill gas, Proceedings Sardinia 1999, Seventh International Waste Management and Landfill Symposium, 2, 489–498, 1999.
  • Tower P., New technology for removal of siloxanes in digester gas results in lower maintenance costs and air quality benefits in power generation equipment, Proceeding of the Water Environment Federation, 440–447, 2003.
  • Urban W., Lohmann H., Gomez J.I.S., Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells, Journal of Power Sources, 193:1, 359-366, 2009.
  • Varaprath S., Frye C.L., Hamelink J., Aqueous solubility of permethylsiloxanes (silicones). Environmental Toxicology and Chemistry, 15, 1263-1265, 1996.
  • Whelles E. ve Pierce J., Siloxanes in Landfill and Digester Gas Update, 27th Annual SWANA LFG Symposium, 8 sayfa, 2004. XEBEC Adsorption Inc, Treatment Solutions for Landfill Gas Fuel Applications. Teknik Not. 14 sayfa, 2007.
  • Yang S.S., Chen Y., Huang Y., Cao Z.R., Source of siloxane in biogas and its removal, China Water and Wastewater, 29, 19–21, 2013.
  • Yu M., Gong H., Chen Z., Zhang M., Adsorption characteristics of activated carbon for siloxanes, Environmental Chemical Engineering, 1, 1182-1187, 2013.
  • Zhang N., An evaluation of onsite siloxane monitoring technique and siloxane adsorption isotherm derivatives, Yüksek Lisans Tezi. Guelph Üniversitesi, Canada, 2009.
  • Air Liquide. Services related to our Biogas solutions. https://www.airliquideadvancedseparations.com/our-membranes/biogas. Erişim tarihi Aralık 30, 2020.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Bilimleri
Bölüm Makaleler
Yazarlar

Yağmur Meltem Aydın Kızılkaya 0000-0003-3172-4215

Vedat Uyak 0000-0002-9368-8224

Proje Numarası TÜBİTAK 119R011 ve PAUBAP 2018FEBE053
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 11 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 1 Sayı: 2

Kaynak Göster

APA Aydın Kızılkaya, Y. M., & Uyak, V. (2021). Biyogaz Akımı İçerisindeki Siloksan Bileşiklerinin Adsorpsiyon Yöntemi ile Gideriminin Araştırılması. Sürdürülebilir Çevre Dergisi, 1(2), 25-40.
AMA Aydın Kızılkaya YM, Uyak V. Biyogaz Akımı İçerisindeki Siloksan Bileşiklerinin Adsorpsiyon Yöntemi ile Gideriminin Araştırılması. Çevre. Aralık 2021;1(2):25-40.
Chicago Aydın Kızılkaya, Yağmur Meltem, ve Vedat Uyak. “Biyogaz Akımı İçerisindeki Siloksan Bileşiklerinin Adsorpsiyon Yöntemi Ile Gideriminin Araştırılması”. Sürdürülebilir Çevre Dergisi 1, sy. 2 (Aralık 2021): 25-40.
EndNote Aydın Kızılkaya YM, Uyak V (01 Aralık 2021) Biyogaz Akımı İçerisindeki Siloksan Bileşiklerinin Adsorpsiyon Yöntemi ile Gideriminin Araştırılması. Sürdürülebilir Çevre Dergisi 1 2 25–40.
IEEE Y. M. Aydın Kızılkaya ve V. Uyak, “Biyogaz Akımı İçerisindeki Siloksan Bileşiklerinin Adsorpsiyon Yöntemi ile Gideriminin Araştırılması”, Çevre, c. 1, sy. 2, ss. 25–40, 2021.
ISNAD Aydın Kızılkaya, Yağmur Meltem - Uyak, Vedat. “Biyogaz Akımı İçerisindeki Siloksan Bileşiklerinin Adsorpsiyon Yöntemi Ile Gideriminin Araştırılması”. Sürdürülebilir Çevre Dergisi 1/2 (Aralık 2021), 25-40.
JAMA Aydın Kızılkaya YM, Uyak V. Biyogaz Akımı İçerisindeki Siloksan Bileşiklerinin Adsorpsiyon Yöntemi ile Gideriminin Araştırılması. Çevre. 2021;1:25–40.
MLA Aydın Kızılkaya, Yağmur Meltem ve Vedat Uyak. “Biyogaz Akımı İçerisindeki Siloksan Bileşiklerinin Adsorpsiyon Yöntemi Ile Gideriminin Araştırılması”. Sürdürülebilir Çevre Dergisi, c. 1, sy. 2, 2021, ss. 25-40.
Vancouver Aydın Kızılkaya YM, Uyak V. Biyogaz Akımı İçerisindeki Siloksan Bileşiklerinin Adsorpsiyon Yöntemi ile Gideriminin Araştırılması. Çevre. 2021;1(2):25-40.