Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 331 - 339, 23.06.2023
https://doi.org/10.31801/cfsuasmas.1062426

Öz

Kaynakça

  • Arslan, K., Bayram, B. K., Bulca, B., Öztürk, G., Generalized rotation surfaces in $E^{4}$, Results Math., 61(3) (2012), 315–327. https://doi.org/10.1007/s00025-011-0103-3
  • Arslan, K., Deszcz, R., Yaprak, S¸., On Weyl pseudosymmetric hypersurfaces, Colloq. Math., 72(2) (1997), 353–361.
  • Arslan, K., Milousheva, V., Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space, Taiwanese J. Math., 20(2) (2016), 311–332. https://doi.org/10.11650/tjm.19.2015.5722
  • Arvanitoyeorgos, A. , Kaimakamis, G., Magid, M., Lorentz hypersurfaces in $E_{1}^{4}$ satisfying $\Delta H=\alpha H,$ Illinois J. Math., 53(2) (2009), 581–590. https://doi.org/10.1215/ijm/1266934794
  • Beneki, Chr. C., Kaimakamis, G., Papantoniou, B. J., Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl., 275 (2002), 586–614. https://doi.org/10.1016/S0022-247X(02)00269-X
  • Chen, B. Y., Total Mean Curvature and Submanifolds of Finite Type, 2nd Ed., World Scientific, Singapore, 2014. https://doi.org/10.1142/9237
  • Cheng, Q. M., Wan, Q. R., Complete hypersurfaces of $R^{4}$ with constant mean curvature, Monatsh. Math., 118 (1994), 171–204. https://doi.org/10.1007/BF01301688
  • Cheng, S. Y., Yau, S. T., Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195–204. https://doi.org/10.1007/BF01425237
  • Dillen, F., Fastenakels, J., Van der Veken, J., Rotation hypersurfaces of $S^{n}×R$ and $H^{n}×R,$ Note Mat., 29(1) (2009), 41–54. https://doi.org/10.1285/i15900932v29n1p41
  • Do Carmo, M. P., Dajczer, M., Rotation hypersurfaces in spaces of constant curvature, Trans. Am. Math. Soc., 277 (1983), 685–709. https://doi.org/10.1007/978-3-642-25588-517
  • Dursun, U., Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math., 11(5) (2007), 1407–1416. https://doi.org/10.11650/twjm/1500404873
  • Dursun, U., Turgay, N. C., Space-like surfaces in Minkowski space $E_{1}^{4}$ with pointwise 1-type Gauss map, Ukr. Math. J., 71(1) (2019), 64–80. https://doi.org/10.1007/s11253-019-01625-8
  • Ferrandez, A., Garay, O. J., Lucas, P., On a certain class of conformally flat Euclidean hypersurfaces, In Global Differential Geometry and Global Analysis, Lecture Notes in Mathematics, vol 1481. Springer, Heidelberg, Berlin, Germany, 1991, 48–54. https://doi.org/10.1007/BFb0083627
  • Ganchev, G., Milousheva, V., General rotational surfaces in the 4-dimensional Minkowski space, Turkish J. Math., 38 (2014), 883–895. https://doi.org/10.3906/mat-1312-10
  • Güler, E., Helical hypersurfaces in Minkowski geometry $E_{1}^{4}$, Symmetry, 12(8) (2020), 1–16. https://doi.org/10.3390/sym12081206
  • Güler, E., Fundamental form IV and curvature formulas of the hypersphere, Malaya J. Mat., 8(4) (2020), 2008–2011. https://doi.org/10.26637/MJM0804/0116
  • Güler, E., Rotational hypersurfaces satisfying $\Delta ^{I}R = AR$ in the four-dimensional Euclidean space, J. Polytech., 24(2) (2021), 517–520. https://doi.org/10.2339/politeknik.670333
  • Güler, E., Hacısalihoglu, H. H., Kim, Y.H., The Gauss map and the third Laplace–Beltrami operator of the rotational hypersurface in 4-space, Symmetry, 10(9) (2018), 1–12. https://doi.org/10.3390/sym10090398
  • Güler, E., Magid, M., Yaylı, Y., Laplace–Beltrami operator of a helicoidal hypersurface in four-space, J. Geom. Symmetry Phys., 41 (2016), 77–95. https://doi.org/10.7546/jgsp-41-2016-77-95
  • Güler, E., Turgay, N. C., Cheng–Yau operator and Gauss map of rotational hypersurfaces in 4-space, Mediterr. J. Math., 16(3) (2019), 1–16. https://doi.org/10.1007/s00009-019-1333-y
  • Hasanis, Th., Vlachos, Th., Hypersurfaces in $E^{4} with harmonic mean curvature vector field, Math. Nachr., 172 (1995), 145–169. https://doi.org/10.1002/mana.19951720112
  • Kim, Y. H., Turgay, N. C., Surfaces in $E^{4}$ with $L_{1}$-pointwise 1-type Gauss map, Bull. Korean Math. Soc., 50(3) (2013), 935–949. http://dx.doi.org/10.4134/BKMS.2013.50.3.935
  • Lawson, H. B., Lectures on Minimal Submanifolds, Vol. I., Second ed., Mathematics Lecture Series, 9. Publish or Perish, Wilmington, Del., 1980.
  • Magid, M., Scharlach, C., Vrancken, L., Affine umbilical surfaces in R4, Manuscripta Math., 88 (1995), 275–289. http://dx.doi.org/10.1007/BF02567823
  • Moore, C., Surfaces of rotation in a space of four dimensions, Ann. Math., 21 (1919), 81–93. https://doi.org/10.2307/2007223
  • Moore, C., Rotation surfaces of constant curvature in space of four dimensions, Bull. Amer. Math. Soc., 26 (1920), 454–460. https://doi.org/10.1090/S0002-9904-1920-03336-7
  • O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
  • Takahashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380–385. https://doi.org/10.2969/jmsj/01840380
  • Turgay, N. C., Upadhyay, A., On biconservative hypersurfaces in 4-dimensional Riemannian space forms, Math. Nachr., 292(4) (2019), 905–921. https://doi.org/10.1002/mana.201700328

Timelike rotational hypersurfaces with timelike axis in Minkowski four-space

Yıl 2023, , 331 - 339, 23.06.2023
https://doi.org/10.31801/cfsuasmas.1062426

Öz

We introduce the timelike rotational hypersurfaces $\textbf{x}$ with timelike axis in Minkowski 4-space $\mathbb{E}_1^{4}$. We obtain the equations for the curvatures of the hypersurface. Moreover, we present a theorem for the rotational hypersurfaces with timelike axis supplying $\Delta\textbf{x}=\mathcal{T}\textbf{x}$, where $\mathcal{T}$ is a 4x4 real matrix.

Kaynakça

  • Arslan, K., Bayram, B. K., Bulca, B., Öztürk, G., Generalized rotation surfaces in $E^{4}$, Results Math., 61(3) (2012), 315–327. https://doi.org/10.1007/s00025-011-0103-3
  • Arslan, K., Deszcz, R., Yaprak, S¸., On Weyl pseudosymmetric hypersurfaces, Colloq. Math., 72(2) (1997), 353–361.
  • Arslan, K., Milousheva, V., Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space, Taiwanese J. Math., 20(2) (2016), 311–332. https://doi.org/10.11650/tjm.19.2015.5722
  • Arvanitoyeorgos, A. , Kaimakamis, G., Magid, M., Lorentz hypersurfaces in $E_{1}^{4}$ satisfying $\Delta H=\alpha H,$ Illinois J. Math., 53(2) (2009), 581–590. https://doi.org/10.1215/ijm/1266934794
  • Beneki, Chr. C., Kaimakamis, G., Papantoniou, B. J., Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl., 275 (2002), 586–614. https://doi.org/10.1016/S0022-247X(02)00269-X
  • Chen, B. Y., Total Mean Curvature and Submanifolds of Finite Type, 2nd Ed., World Scientific, Singapore, 2014. https://doi.org/10.1142/9237
  • Cheng, Q. M., Wan, Q. R., Complete hypersurfaces of $R^{4}$ with constant mean curvature, Monatsh. Math., 118 (1994), 171–204. https://doi.org/10.1007/BF01301688
  • Cheng, S. Y., Yau, S. T., Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195–204. https://doi.org/10.1007/BF01425237
  • Dillen, F., Fastenakels, J., Van der Veken, J., Rotation hypersurfaces of $S^{n}×R$ and $H^{n}×R,$ Note Mat., 29(1) (2009), 41–54. https://doi.org/10.1285/i15900932v29n1p41
  • Do Carmo, M. P., Dajczer, M., Rotation hypersurfaces in spaces of constant curvature, Trans. Am. Math. Soc., 277 (1983), 685–709. https://doi.org/10.1007/978-3-642-25588-517
  • Dursun, U., Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math., 11(5) (2007), 1407–1416. https://doi.org/10.11650/twjm/1500404873
  • Dursun, U., Turgay, N. C., Space-like surfaces in Minkowski space $E_{1}^{4}$ with pointwise 1-type Gauss map, Ukr. Math. J., 71(1) (2019), 64–80. https://doi.org/10.1007/s11253-019-01625-8
  • Ferrandez, A., Garay, O. J., Lucas, P., On a certain class of conformally flat Euclidean hypersurfaces, In Global Differential Geometry and Global Analysis, Lecture Notes in Mathematics, vol 1481. Springer, Heidelberg, Berlin, Germany, 1991, 48–54. https://doi.org/10.1007/BFb0083627
  • Ganchev, G., Milousheva, V., General rotational surfaces in the 4-dimensional Minkowski space, Turkish J. Math., 38 (2014), 883–895. https://doi.org/10.3906/mat-1312-10
  • Güler, E., Helical hypersurfaces in Minkowski geometry $E_{1}^{4}$, Symmetry, 12(8) (2020), 1–16. https://doi.org/10.3390/sym12081206
  • Güler, E., Fundamental form IV and curvature formulas of the hypersphere, Malaya J. Mat., 8(4) (2020), 2008–2011. https://doi.org/10.26637/MJM0804/0116
  • Güler, E., Rotational hypersurfaces satisfying $\Delta ^{I}R = AR$ in the four-dimensional Euclidean space, J. Polytech., 24(2) (2021), 517–520. https://doi.org/10.2339/politeknik.670333
  • Güler, E., Hacısalihoglu, H. H., Kim, Y.H., The Gauss map and the third Laplace–Beltrami operator of the rotational hypersurface in 4-space, Symmetry, 10(9) (2018), 1–12. https://doi.org/10.3390/sym10090398
  • Güler, E., Magid, M., Yaylı, Y., Laplace–Beltrami operator of a helicoidal hypersurface in four-space, J. Geom. Symmetry Phys., 41 (2016), 77–95. https://doi.org/10.7546/jgsp-41-2016-77-95
  • Güler, E., Turgay, N. C., Cheng–Yau operator and Gauss map of rotational hypersurfaces in 4-space, Mediterr. J. Math., 16(3) (2019), 1–16. https://doi.org/10.1007/s00009-019-1333-y
  • Hasanis, Th., Vlachos, Th., Hypersurfaces in $E^{4} with harmonic mean curvature vector field, Math. Nachr., 172 (1995), 145–169. https://doi.org/10.1002/mana.19951720112
  • Kim, Y. H., Turgay, N. C., Surfaces in $E^{4}$ with $L_{1}$-pointwise 1-type Gauss map, Bull. Korean Math. Soc., 50(3) (2013), 935–949. http://dx.doi.org/10.4134/BKMS.2013.50.3.935
  • Lawson, H. B., Lectures on Minimal Submanifolds, Vol. I., Second ed., Mathematics Lecture Series, 9. Publish or Perish, Wilmington, Del., 1980.
  • Magid, M., Scharlach, C., Vrancken, L., Affine umbilical surfaces in R4, Manuscripta Math., 88 (1995), 275–289. http://dx.doi.org/10.1007/BF02567823
  • Moore, C., Surfaces of rotation in a space of four dimensions, Ann. Math., 21 (1919), 81–93. https://doi.org/10.2307/2007223
  • Moore, C., Rotation surfaces of constant curvature in space of four dimensions, Bull. Amer. Math. Soc., 26 (1920), 454–460. https://doi.org/10.1090/S0002-9904-1920-03336-7
  • O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
  • Takahashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380–385. https://doi.org/10.2969/jmsj/01840380
  • Turgay, N. C., Upadhyay, A., On biconservative hypersurfaces in 4-dimensional Riemannian space forms, Math. Nachr., 292(4) (2019), 905–921. https://doi.org/10.1002/mana.201700328
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Erhan Güler 0000-0003-3264-6239

Yayımlanma Tarihi 23 Haziran 2023
Gönderilme Tarihi 24 Ocak 2022
Kabul Tarihi 27 Kasım 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Güler, E. (2023). Timelike rotational hypersurfaces with timelike axis in Minkowski four-space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(2), 331-339. https://doi.org/10.31801/cfsuasmas.1062426
AMA Güler E. Timelike rotational hypersurfaces with timelike axis in Minkowski four-space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Haziran 2023;72(2):331-339. doi:10.31801/cfsuasmas.1062426
Chicago Güler, Erhan. “Timelike Rotational Hypersurfaces With Timelike Axis in Minkowski Four-Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, sy. 2 (Haziran 2023): 331-39. https://doi.org/10.31801/cfsuasmas.1062426.
EndNote Güler E (01 Haziran 2023) Timelike rotational hypersurfaces with timelike axis in Minkowski four-space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 2 331–339.
IEEE E. Güler, “Timelike rotational hypersurfaces with timelike axis in Minkowski four-space”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 72, sy. 2, ss. 331–339, 2023, doi: 10.31801/cfsuasmas.1062426.
ISNAD Güler, Erhan. “Timelike Rotational Hypersurfaces With Timelike Axis in Minkowski Four-Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/2 (Haziran 2023), 331-339. https://doi.org/10.31801/cfsuasmas.1062426.
JAMA Güler E. Timelike rotational hypersurfaces with timelike axis in Minkowski four-space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:331–339.
MLA Güler, Erhan. “Timelike Rotational Hypersurfaces With Timelike Axis in Minkowski Four-Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 72, sy. 2, 2023, ss. 331-9, doi:10.31801/cfsuasmas.1062426.
Vancouver Güler E. Timelike rotational hypersurfaces with timelike axis in Minkowski four-space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(2):331-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.