İnceleme Makalesi
BibTex RIS Kaynak Göster

Investigation of Metallurgical and Mechanical Properties for Refractory Materials

Yıl 2024, Cilt: 3 Sayı: 2, 1 - 17, 02.12.2025
https://doi.org/10.55205/joctensa.3220241746647

Öz

Refractory materials involved in most metallurgical processes are often exposed to thermal stresses exceeding their mechanical strength, but this does not cause well-designed refractory linings to fail causing major material damage. On the contrary, they are partially subjected to a gradual wear process and maintain their structural stability despite damage. For this reason, classical mechanical tests performed by considering tensile strength are not sufficient to measure the resistance of refractory products to damage. Despite significant advances in the determination of the fracture process and the resistance of refractory materials to damage, empirical data and scientific studies on the fracture behavior of typical refractory materials, especially at high temperatures, have still not reached a sufficient level. The aim of this study is to contribute to literature an article detailing the academic and technical applications that will eliminate the mentioned deficiency. For this purpose, wedge splitting tests, which have proven to be quite effective for investigating the fracture behavior of refractory materials, were carried out up to 1500°C on four typical refractory materials commonly used, and the findings were supported by microscopic examinations. As a result of the study, it was determined that high alumina bricks remained stable up to at least 1500°C. It has been observed that the mechanical strength of cement-bonded high-alumina castable bricks decreases above 1400°C and shows a significant increase in specific fracture energy above 1100°C. It was supported by data that Andalusite and silica bricks have a brittle feature even at lower temperatures than high-alumina castable bricks. It has been determined that the specific fracture energy of Andalusite bricks weakens significantly with the formation of the liquid phase above 1100°C, while the specific fracture energy of silica bricks increases strongly at 1000°C, and shows a brittle fracture character at temperatures above 1100°C.

Kaynakça

  • Albrecht, G., Kaiser, S., Giessen, H., & Hentschel, M. (2017). Refractory plasmonics without refractory materials. Nano letters, 17(10), 6402-6408.
  • Antusch, S., Reiser, J., Hoffmann, J., & Onea, A. (2017). Refractory materials for energy applications. Energy Technology, 5(7), 1064-1070.
  • Bazhin, V. Y., & Glaz’ev, M. V. (2021). Combined refractory materials with addition of technogenic waste for metallurgical assemblies. Refractories and Industrial Ceramics, 61, 644-648.
  • Bradt, R. C. (2004). Fracture of refractories. MECHANICAL ENGINEERING-NEW YORK AND BASEL-MARCEL DEKKER THEN CRC PRESS/TAYLOR AND FRANCIS, 178, 11
  • Brochen, E., Dannert, C., Paul, J., & Krause, O. (2022). Investigation of fracture behavior of typical refractory materials up to service temperatures. International Journal of Ceramic Engineering & Science, 4(2), 68-76.
  • Harmuth, H., & Bradt, R. C. (2010). Investigation of refractory brittleness by fracture mechanical and fractographic methods. Interceram/Refractories manual, 6-10.
  • Harmuth, H., & Tschegg, E. K. (1997). A fracture mechanics approach for the development of refractory materials with reduced brittleness. Fatigue & Fracture of Engineering Materials & Structures, 20(11), 1585-1603.
  • Horckmans, L., Nielsen, P., Dierckx, P., & Ducastel, A. (2019). Recycling of refractory bricks used in basic steelmaking: A review. Resources, Conservation and Recycling, 140, 297-304.
  • Horvat, B., & Ducman, V. (2020). Influence of particle size on compressive strength of alkali activated refractory materials. Materials, 13(10), 2227.
  • Klunghirun, W., Theerapapvisetpong, A., & Serivalsatit, K. (2024). Castable refractory materials from magnesium oxychloride cement-bonded cordierite-mullite. Materials Letters, 375, 137217.
  • Lee, J., Mahandra, H., Hein, G. A., Ramsay, J., & Ghahreman, A. (2021). Toward sustainable solution for biooxidation of waste and refractory materials using neutrophilic and alkaliphilic microorganisms—A review. ACS Applied Bio Materials, 4(3), 2274-2292.
  • Liu, H., Huo, X., Zhao, P., Xu, R., Zhang, X., Yu, J., ... & Ding, B. (2024). Confined Gelation Synthesis of Flexible Barium Aluminate Nanofibers as a High-Performance Refractory Material. ACS nano.
  • Liutyi, R., Liuta, D., & Petryk, I. (2021). Structural construction of binders based on orthophosphoric acid and refractory materials. Advances in Materials Science and Engineering, 2021(1), 6667769.
  • Mamen, B., Kolli, M., Ouedraogo, E., Hamidouche, M., Djoudi, H., & Fanttozi, G. (2019). Experimental characterisation and numerical simulation of the thermomechanical damage behaviour of kaolinitic refractory materials. Journal of the Australian Ceramic Society, 55, 555-565.
  • Marini, B. (2020). Empirical estimation of uncertainties of Charpy impact testing transition temperatures for an RPV steel. EPJ N-Nuclear Sciences & Technologies, 6, 57.
  • Nakayama, J. (1965). Direct measurement of fracture energies of brittle heterogeneous materials. Journal of the American Ceramic Society, 48(11), 583-587.
  • Podwórny, J., Dudek, K., Psiuk, B., Krause, O., Holleyn, F., Brochen, E., ... & Dannert, C. (2018, September). High-temperature phase transformations in the matrix of high-alumina monolithics. In Proceedings of the 61st International Colloquium on Refractories, UROGRESS, Aachen, Germany (pp. 26-27).
  • Shulong M., Yong L., Jialin S., Yue L., Wenbin X. (2011). Advanced Materials Research, Preparation and Properties of MgO-MgAl2O4-FeAl2O4 Bricks in Cement Kiln, 250 [25], 554-560.
  • Stec, J., Tarasiuk, J., Wroński, S., Kubica, P., Tomala, J., & Filipek, R. (2021). Investigation of molten metal infiltration into micropore carbon refractory materials using X-ray computed tomography. Materials, 14(12), 3148.
  • Tschegg, E. K., & Linsbauer, H. N. (1986). Prüfeinrichtung zur Ermittlung von bruchmechanischen Kennwerten. Austrian Patent AT B, 390328.
  • Vadász, P., Medveď, D., Plešingerová, B., & Labaj, J. (2022). Evaluation of Corrosion of Refractory Materials Using Electron Microscopy. Microscopy and Microanalysis, 28(3), 983-992.

Yıl 2024, Cilt: 3 Sayı: 2, 1 - 17, 02.12.2025
https://doi.org/10.55205/joctensa.3220241746647

Öz

Kaynakça

  • Albrecht, G., Kaiser, S., Giessen, H., & Hentschel, M. (2017). Refractory plasmonics without refractory materials. Nano letters, 17(10), 6402-6408.
  • Antusch, S., Reiser, J., Hoffmann, J., & Onea, A. (2017). Refractory materials for energy applications. Energy Technology, 5(7), 1064-1070.
  • Bazhin, V. Y., & Glaz’ev, M. V. (2021). Combined refractory materials with addition of technogenic waste for metallurgical assemblies. Refractories and Industrial Ceramics, 61, 644-648.
  • Bradt, R. C. (2004). Fracture of refractories. MECHANICAL ENGINEERING-NEW YORK AND BASEL-MARCEL DEKKER THEN CRC PRESS/TAYLOR AND FRANCIS, 178, 11
  • Brochen, E., Dannert, C., Paul, J., & Krause, O. (2022). Investigation of fracture behavior of typical refractory materials up to service temperatures. International Journal of Ceramic Engineering & Science, 4(2), 68-76.
  • Harmuth, H., & Bradt, R. C. (2010). Investigation of refractory brittleness by fracture mechanical and fractographic methods. Interceram/Refractories manual, 6-10.
  • Harmuth, H., & Tschegg, E. K. (1997). A fracture mechanics approach for the development of refractory materials with reduced brittleness. Fatigue & Fracture of Engineering Materials & Structures, 20(11), 1585-1603.
  • Horckmans, L., Nielsen, P., Dierckx, P., & Ducastel, A. (2019). Recycling of refractory bricks used in basic steelmaking: A review. Resources, Conservation and Recycling, 140, 297-304.
  • Horvat, B., & Ducman, V. (2020). Influence of particle size on compressive strength of alkali activated refractory materials. Materials, 13(10), 2227.
  • Klunghirun, W., Theerapapvisetpong, A., & Serivalsatit, K. (2024). Castable refractory materials from magnesium oxychloride cement-bonded cordierite-mullite. Materials Letters, 375, 137217.
  • Lee, J., Mahandra, H., Hein, G. A., Ramsay, J., & Ghahreman, A. (2021). Toward sustainable solution for biooxidation of waste and refractory materials using neutrophilic and alkaliphilic microorganisms—A review. ACS Applied Bio Materials, 4(3), 2274-2292.
  • Liu, H., Huo, X., Zhao, P., Xu, R., Zhang, X., Yu, J., ... & Ding, B. (2024). Confined Gelation Synthesis of Flexible Barium Aluminate Nanofibers as a High-Performance Refractory Material. ACS nano.
  • Liutyi, R., Liuta, D., & Petryk, I. (2021). Structural construction of binders based on orthophosphoric acid and refractory materials. Advances in Materials Science and Engineering, 2021(1), 6667769.
  • Mamen, B., Kolli, M., Ouedraogo, E., Hamidouche, M., Djoudi, H., & Fanttozi, G. (2019). Experimental characterisation and numerical simulation of the thermomechanical damage behaviour of kaolinitic refractory materials. Journal of the Australian Ceramic Society, 55, 555-565.
  • Marini, B. (2020). Empirical estimation of uncertainties of Charpy impact testing transition temperatures for an RPV steel. EPJ N-Nuclear Sciences & Technologies, 6, 57.
  • Nakayama, J. (1965). Direct measurement of fracture energies of brittle heterogeneous materials. Journal of the American Ceramic Society, 48(11), 583-587.
  • Podwórny, J., Dudek, K., Psiuk, B., Krause, O., Holleyn, F., Brochen, E., ... & Dannert, C. (2018, September). High-temperature phase transformations in the matrix of high-alumina monolithics. In Proceedings of the 61st International Colloquium on Refractories, UROGRESS, Aachen, Germany (pp. 26-27).
  • Shulong M., Yong L., Jialin S., Yue L., Wenbin X. (2011). Advanced Materials Research, Preparation and Properties of MgO-MgAl2O4-FeAl2O4 Bricks in Cement Kiln, 250 [25], 554-560.
  • Stec, J., Tarasiuk, J., Wroński, S., Kubica, P., Tomala, J., & Filipek, R. (2021). Investigation of molten metal infiltration into micropore carbon refractory materials using X-ray computed tomography. Materials, 14(12), 3148.
  • Tschegg, E. K., & Linsbauer, H. N. (1986). Prüfeinrichtung zur Ermittlung von bruchmechanischen Kennwerten. Austrian Patent AT B, 390328.
  • Vadász, P., Medveď, D., Plešingerová, B., & Labaj, J. (2022). Evaluation of Corrosion of Refractory Materials Using Electron Microscopy. Microscopy and Microanalysis, 28(3), 983-992.

Refrakter Malzemelerin Metalurjik ve Mekanik Özelliklerinin İncelenmesi

Yıl 2024, Cilt: 3 Sayı: 2, 1 - 17, 02.12.2025
https://doi.org/10.55205/joctensa.3220241746647

Öz

Metalurjik süreçlerin büyük bir kısmında yer alan refrakter malzemeler genellikle mekanik dayanımlarını aşan termal gerilimlere maruz kalır ancak bu durum iyi tasarlanmış refrakter astarların büyük maddi hasarlar oluşturacak şekilde başarısız olmasına yol açmaz. Tam aksine kısmen kademeli bir aşınma sürecine tabi tutulur ve hasara rağmen yapısal stabilitelerini korurlar. Bu nedenle çekme mukavemeti dikkate alınarak gerçekleştirilen klasik mekanik testler refrakter ürünlerin hasara karşı direncini ölçmek için yeterli değildir. Kırılma sürecinin ve refrakter malzemelerin hasara karşı direncinin tespitindeki önemli ilerlemelere rağmen tipik refrakter malzemelerin özellikle yüksek sıcaklıktaki kırılma davranışına ilişkin ampirik veriler ve bilimsel çalışmalar halen yeterli seviyeye ulaşamamıştır. Bu çalışmanın amacı bahsi geçen eksikliği giderecek akademik ve teknik uygulamaların detaylarının aktarıldığı bir makalenin literatüre kazandırılmasıdır. Bu amaçla yaygın olarak kullanılan dört tipik refrakter malzeme üzerinde refrakter malzemelerin kırılma davranışını araştırmak için oldukça etkili olduğu kanıtlanan kama yarılma testleri 1500°C'ye kadar gerçekleştirilmiş ve bulgular mikroskobik incelemelerle desteklenmiştir. Çalışma neticesinde yüksek alüminalı tuğlaların en az 1500°C'ye kadar stabil durumda kaldığı tespit edilmiştir. Çimento bağlı yüksek alüminalı dökülebilir tuğlaların ise 1400°C'nin üzerinde mekanik dayanımında azalma meydana geldiği ve 1100°C'nin üzerinde spesifik kırılma enerjisinde ciddi bir artış gösterdiği gözlenmiştir. Andaluzit ve silika tuğlalar ise yüksek alüminalı dökülebilir tuğlalara göre daha düşük sıcaklıklarda bile kırılgan bir özelliğe sahip olduğu verilerle desteklenmiştir. Andaluzit tuğlaların özgül kırılma enerjisi 1100°C'nin üzerinde sıvı fazın oluşmasıyla önemli ölçüde zayıfladığı, silika tuğlalarının özgül kırılma enerjilerinin ise 1000°C'de güçlü bir şekilde yükseldiği gözlenirken, 1100°C'nin üzerindeki sıcaklıklarda gevrek bir kırılma karakteri gösterdiği tespit edilmiştir.

Kaynakça

  • Albrecht, G., Kaiser, S., Giessen, H., & Hentschel, M. (2017). Refractory plasmonics without refractory materials. Nano letters, 17(10), 6402-6408.
  • Antusch, S., Reiser, J., Hoffmann, J., & Onea, A. (2017). Refractory materials for energy applications. Energy Technology, 5(7), 1064-1070.
  • Bazhin, V. Y., & Glaz’ev, M. V. (2021). Combined refractory materials with addition of technogenic waste for metallurgical assemblies. Refractories and Industrial Ceramics, 61, 644-648.
  • Bradt, R. C. (2004). Fracture of refractories. MECHANICAL ENGINEERING-NEW YORK AND BASEL-MARCEL DEKKER THEN CRC PRESS/TAYLOR AND FRANCIS, 178, 11
  • Brochen, E., Dannert, C., Paul, J., & Krause, O. (2022). Investigation of fracture behavior of typical refractory materials up to service temperatures. International Journal of Ceramic Engineering & Science, 4(2), 68-76.
  • Harmuth, H., & Bradt, R. C. (2010). Investigation of refractory brittleness by fracture mechanical and fractographic methods. Interceram/Refractories manual, 6-10.
  • Harmuth, H., & Tschegg, E. K. (1997). A fracture mechanics approach for the development of refractory materials with reduced brittleness. Fatigue & Fracture of Engineering Materials & Structures, 20(11), 1585-1603.
  • Horckmans, L., Nielsen, P., Dierckx, P., & Ducastel, A. (2019). Recycling of refractory bricks used in basic steelmaking: A review. Resources, Conservation and Recycling, 140, 297-304.
  • Horvat, B., & Ducman, V. (2020). Influence of particle size on compressive strength of alkali activated refractory materials. Materials, 13(10), 2227.
  • Klunghirun, W., Theerapapvisetpong, A., & Serivalsatit, K. (2024). Castable refractory materials from magnesium oxychloride cement-bonded cordierite-mullite. Materials Letters, 375, 137217.
  • Lee, J., Mahandra, H., Hein, G. A., Ramsay, J., & Ghahreman, A. (2021). Toward sustainable solution for biooxidation of waste and refractory materials using neutrophilic and alkaliphilic microorganisms—A review. ACS Applied Bio Materials, 4(3), 2274-2292.
  • Liu, H., Huo, X., Zhao, P., Xu, R., Zhang, X., Yu, J., ... & Ding, B. (2024). Confined Gelation Synthesis of Flexible Barium Aluminate Nanofibers as a High-Performance Refractory Material. ACS nano.
  • Liutyi, R., Liuta, D., & Petryk, I. (2021). Structural construction of binders based on orthophosphoric acid and refractory materials. Advances in Materials Science and Engineering, 2021(1), 6667769.
  • Mamen, B., Kolli, M., Ouedraogo, E., Hamidouche, M., Djoudi, H., & Fanttozi, G. (2019). Experimental characterisation and numerical simulation of the thermomechanical damage behaviour of kaolinitic refractory materials. Journal of the Australian Ceramic Society, 55, 555-565.
  • Marini, B. (2020). Empirical estimation of uncertainties of Charpy impact testing transition temperatures for an RPV steel. EPJ N-Nuclear Sciences & Technologies, 6, 57.
  • Nakayama, J. (1965). Direct measurement of fracture energies of brittle heterogeneous materials. Journal of the American Ceramic Society, 48(11), 583-587.
  • Podwórny, J., Dudek, K., Psiuk, B., Krause, O., Holleyn, F., Brochen, E., ... & Dannert, C. (2018, September). High-temperature phase transformations in the matrix of high-alumina monolithics. In Proceedings of the 61st International Colloquium on Refractories, UROGRESS, Aachen, Germany (pp. 26-27).
  • Shulong M., Yong L., Jialin S., Yue L., Wenbin X. (2011). Advanced Materials Research, Preparation and Properties of MgO-MgAl2O4-FeAl2O4 Bricks in Cement Kiln, 250 [25], 554-560.
  • Stec, J., Tarasiuk, J., Wroński, S., Kubica, P., Tomala, J., & Filipek, R. (2021). Investigation of molten metal infiltration into micropore carbon refractory materials using X-ray computed tomography. Materials, 14(12), 3148.
  • Tschegg, E. K., & Linsbauer, H. N. (1986). Prüfeinrichtung zur Ermittlung von bruchmechanischen Kennwerten. Austrian Patent AT B, 390328.
  • Vadász, P., Medveď, D., Plešingerová, B., & Labaj, J. (2022). Evaluation of Corrosion of Refractory Materials Using Electron Microscopy. Microscopy and Microanalysis, 28(3), 983-992.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Refrakter Teknolojisi
Bölüm İnceleme Makalesi
Yazarlar

Erhan Özkan 0000-0002-3849-6713

Gönderilme Tarihi 21 Temmuz 2025
Kabul Tarihi 20 Kasım 2025
Yayımlanma Tarihi 2 Aralık 2025
Yayımlandığı Sayı Yıl 2024 Cilt: 3 Sayı: 2

Kaynak Göster

APA Özkan, E. (2025). Refrakter Malzemelerin Metalurjik ve Mekanik Özelliklerinin İncelenmesi. Cihannüma Teknoloji Fen ve Mühendislik Bilimleri Akademi Dergisi, 3(2), 1-17. https://doi.org/10.55205/joctensa.3220241746647