Araştırma Makalesi
BibTex RIS Kaynak Göster

On the eigenvalue-separation properties of real tridiagonal matrices

Yıl 2023, , 210 - 221, 15.12.2023
https://doi.org/10.33205/cma.1330647

Öz

In this paper, we give a simple sufficient condition for the eigenvalue-separation properties of real tridiagonal matrices T. This result is much more than the statement that the pertinent eigenvalues are distinct. Its derivation is based on recurrence formulae satisfied by the polynomials made up by the minors of the characteristic polynomial det(xE-T) that are proven to form a Sturm sequence. This is a new result, and it proves the simple spectrum property of a symmetric tridiagonal matrix studied in Grünbaum's paper. Two numerical examples underpin the theoretical findings. The style of the paper is expository in order to address a large readership.

Teşekkür

Thank you for your consideration of the submitted manuscript. We look forward to hearing from you.

Kaynakça

  • G. H. Goloub, Ch. F. van Loan: Matrix Computations, The Johns Hopkins University Press, Baltimore and London (1989).
  • F. A. Grünbaum: Toeplitz Matrices Commuting with Tridiagonal Matrices, Linear Algebra Appl., 40 (1981), 25–36.
  • M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens (Foundations of Numerical Analysis and Scientific Computing), B. G. Teubner, Stuttgart, Leipzig, Wiesbaden (2002).
  • F. Stummel, K. Hainer: Introduction to Numerical Analysis, (English Translation by E.R. Dawson of the First Edition of the German Original of 1971,) Scottish Academic Press, Edinburgh (1980).
Yıl 2023, , 210 - 221, 15.12.2023
https://doi.org/10.33205/cma.1330647

Öz

Kaynakça

  • G. H. Goloub, Ch. F. van Loan: Matrix Computations, The Johns Hopkins University Press, Baltimore and London (1989).
  • F. A. Grünbaum: Toeplitz Matrices Commuting with Tridiagonal Matrices, Linear Algebra Appl., 40 (1981), 25–36.
  • M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens (Foundations of Numerical Analysis and Scientific Computing), B. G. Teubner, Stuttgart, Leipzig, Wiesbaden (2002).
  • F. Stummel, K. Hainer: Introduction to Numerical Analysis, (English Translation by E.R. Dawson of the First Edition of the German Original of 1971,) Scottish Academic Press, Edinburgh (1980).
Toplam 4 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sayısal ve Hesaplamalı Matematik (Diğer)
Bölüm Makaleler
Yazarlar

Yan Wu 0000-0002-7202-8980

Ludwig Kohaupt 0000-0003-1781-0600

Erken Görünüm Tarihi 20 Ekim 2023
Yayımlanma Tarihi 15 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Wu, Y., & Kohaupt, L. (2023). On the eigenvalue-separation properties of real tridiagonal matrices. Constructive Mathematical Analysis, 6(4), 210-221. https://doi.org/10.33205/cma.1330647
AMA Wu Y, Kohaupt L. On the eigenvalue-separation properties of real tridiagonal matrices. CMA. Aralık 2023;6(4):210-221. doi:10.33205/cma.1330647
Chicago Wu, Yan, ve Ludwig Kohaupt. “On the Eigenvalue-Separation Properties of Real Tridiagonal Matrices”. Constructive Mathematical Analysis 6, sy. 4 (Aralık 2023): 210-21. https://doi.org/10.33205/cma.1330647.
EndNote Wu Y, Kohaupt L (01 Aralık 2023) On the eigenvalue-separation properties of real tridiagonal matrices. Constructive Mathematical Analysis 6 4 210–221.
IEEE Y. Wu ve L. Kohaupt, “On the eigenvalue-separation properties of real tridiagonal matrices”, CMA, c. 6, sy. 4, ss. 210–221, 2023, doi: 10.33205/cma.1330647.
ISNAD Wu, Yan - Kohaupt, Ludwig. “On the Eigenvalue-Separation Properties of Real Tridiagonal Matrices”. Constructive Mathematical Analysis 6/4 (Aralık 2023), 210-221. https://doi.org/10.33205/cma.1330647.
JAMA Wu Y, Kohaupt L. On the eigenvalue-separation properties of real tridiagonal matrices. CMA. 2023;6:210–221.
MLA Wu, Yan ve Ludwig Kohaupt. “On the Eigenvalue-Separation Properties of Real Tridiagonal Matrices”. Constructive Mathematical Analysis, c. 6, sy. 4, 2023, ss. 210-21, doi:10.33205/cma.1330647.
Vancouver Wu Y, Kohaupt L. On the eigenvalue-separation properties of real tridiagonal matrices. CMA. 2023;6(4):210-21.