Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 73 - 87, 07.11.2018
https://doi.org/10.33205/cma.442151

Öz

Kaynakça

  • [1] Acu, A. M., Properties and applications of Pn-simple functionals, Positivity, 21 (2017), No. 1, 283–297
  • [2] Abel, U. and Ivan, M., New representation of the remainder in the Bernstein approximation, J. Math. Anal. Appl., 381 (2011), No. 2, 952–956
  • [3] Agratini, O., Approximation by linear operators (in Romanian), Presa Universitar˘a Clujean˘a, Cluj-Napoca, 2000
  • [4] Arama, O., Propriet˘a¸ti privind monotonia ¸sirului polinoamelor de interpolare ale lui S. N. Bernstein ¸si aplicarea lor la studiul aproxim˘arii func¸tiilor , Studii ¸si Cerc. Mat., 8 (1957), 195–210
  • [5] Barbosu, D., Aproximarea func¸tiilor de mai multe variabile prin sume booleene de operatori liniari de tip interpolator, Ed. Risoprint, Cluj-Napoca, 2002 (in Romanian)
  • [6] Barbosu, D., Schurer-Stancu type operators, Studia Univ. "Babe¸s-Bolyai" Math., 48 (2003), No. 3, 31–35
  • [7] Barbosu, D., Bivariate operators of Schurer-Stancu type, An. ¸Stiin¸t. Univ. Ovidius Constan¸ta Ser. Mat., 11 (2003), No. 1, 1–8
  • [8] Barbosu, D., GBS operators of Schurer-Stancu type, An. Univ. Craiova Ser. Mat. Inform., 30 (2003), No. 2, 34–39
  • [9] Barbosu, D., Polynomial approximation by means of Schurer-Stancu type operators, Ed. Univ. de Nord, Baia Mare, 2006
  • [10] Barbosu, D., Two dimensional divided differences revisited, Creat. Math. Inform., 17 (2008), 1–7
  • [11] Barbosu, D. and Pop, O. T., A note on the GBS Bernstein’s approximation formula, An. Univ. Craiova Ser. Mat. Inform., 35 (2008), 1–6
  • [12] Barbosu, D. and Pop, O. T., On the Bernstein bivariate approximation formula , Carpathian J. Math., 24 (2008), No. 3, 293–298
  • [13] Barbosu, D. and Pop, O. T., Bivariate Schurer-Stancu operators revisited, Carpathian J. Math., 26 (2010), No. 1, 24–35
  • [14] Barbosu, D., On the monotonicity of Schurer-Stancu’s polynomials, Automat. Comput. Appl. Math., 15 (2006), No. 1, 27–35 (2007) [15] Barbosu, D. and Micl˘au¸s, D., On the Stancu operators and their applications, Creat. Math. Inform., 26 (2017), No. 1, 29–36
  • [16] Barbosu, D., On the approximation of convex functions using linear positive operators, Creat. Math. Inform., 26 (2017), No. 2, 137–143
  • [17] Barbosu, D., On the monotonicity of bivariate Bernstein polynomials, Creat. Math. Inform., 27 (2018), No. 1, 9–14
  • [18] Bernstein, S. N., Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow, 13 (1912-1913), No. 2, 1–2
  • [19] Gupta, V., Differences of Operators of Lupa¸s Type, Constructive Mathematical Analysis 1 (1) (2018), 9–14
  • [20] Della Vecchia, B., On the approximation of functions by means of the operators of D. D. Stancu, Studia Univ. Babe¸s- Bolyai, Mathematica, 37 (1992), No. 1, 3–36
  • [21] Delvos, F. J. and Schempp, W., Boolean methods in interpolation and approximation, Pitman Research Notes in Math., Series 230, New York, 1989
  • [22] Ionescu, D. V., Divided differences (in Romanian), Ed. Acad. R.S.R., Bucure¸sti, 1978
  • [23] Ivan, M., Elements of Interpolation Theory, Mediamira Science Publisher, Cluj-Napoca (2004), 61-68
  • [24] Miclau¸s, D., The revision of some results for Bernstein-Stancu type operators, Carpathian J. Math., 28 (2012), No. 2, 289–300
  • [25] Miclau¸s, D., On the GBS Bernstein-Stancu’s type operators, Creat. Math. Inform., 22 (2013), No. 1, 73–80
  • [26] Miclau¸s, D., On the monotonicity property for the sequence of Stancu type polynomials, An. ¸Stiin¸t. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.), 62 (2016), No. 1, 141–149
  • [27] Miclau¸s, D., On the Stancu type bivariate approximation formula, Carpathian J. Math., 32 (2016), No. 1, 103–111
  • [28] Muraru, C., On the monotonicity of Schurer type polynomials, Carpathian J. Math., 21 (2005), No. 1-2, 89–94
  • [29] Pop, O. T. and Barbosu, D., Two dimensional divided differences with multiple knots, An. ¸Stiin¸t. Univ. "Ovidius” Constan ta Ser. Mat.,17 (2009), No. 2, 181–190
  • [30] Popoviciu, T., Sur quelques proprietes des fonctions d’une ou deux variables réelles, Mathematica (1934), 1–85
  • [31] Popoviciu, T., Introduction à la théorie des différences divisées, (French) Bull. Math. Soc. Roumaine Sci., 42 (1940), No. 1, 65–78
  • [32] Rockafeller, R. T. Convex Analysis, Ed. Theta, Bucharest, 1992 ( in Romanian, translated by Ingrid and Daniel Belti¸ta)
  • [33] Schurer, F., Linear positive operators in approximation theory, Math. Inst. Tech. Univ Delft Report, 1962
  • [34] Stancu, D. D., Some Bernstein poiynomials in two variables and their applications,Soviet Math. Dokl., 1 (1961), 1025– 1028
  • [35] Stancu, D. D., The remainder of certain linear approximation formulas in two variables, J. SIAM Numer. Anal., 1 (1964), 137–163
  • [36] Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, rev. Roum. Math. Pures et Appl., 13 (1968), No. 8, 1173–1194
  • [37] Stancu, D. D., Asupra unei generalizari a polinoamelor lui Bernstein (Romanian), Studia Univ. "Babe¸s-Bolyai", Ser. Mathematica-Physica, (1969), No. 2, 31–45
  • [38] Stancu, D. D. On the remainder of approximation of functions by means of a parameter-dependent linear polynomial operator, Studia Univ. Babe¸s-Bolyai Ser. Math.-Mech., 16 (1971), No. 2, 59–66
  • [39] Stancu, D. D. Application of divided differences to the study of monotonicity of the derivatives of the sequence of Bernstein polynomials, Calcolo 16 (1979), No. 4, 431–445 (1980)
  • [40] Stancu, D. D., Coman, Gh., Agratini, O. and Trâmbi¸ta¸s, R., Analiza numerica ¸si teoria aproximarii, vol. I, Presa Universitar˘a Clujean˘a, Cluj-Napoca, 2001 (in Romanian)

On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators

Yıl 2018, , 73 - 87, 07.11.2018
https://doi.org/10.33205/cma.442151

Öz

The paper is a survey concerning representations for the remainder term of Bernstein-Schurer-Stancu and respectively Stancu (based on factorial powers) bivariate approximation formulas, using bivariate divided differences. As particular cases the remainder terms of bivariate Bernstein-Stancu, Schurer and classical Bernstein bivariate approximation formulas are obtained. Finally, one presents some mean value properties, similar to those of the remainder term of classical Bernstein univariate approximation formula.

Kaynakça

  • [1] Acu, A. M., Properties and applications of Pn-simple functionals, Positivity, 21 (2017), No. 1, 283–297
  • [2] Abel, U. and Ivan, M., New representation of the remainder in the Bernstein approximation, J. Math. Anal. Appl., 381 (2011), No. 2, 952–956
  • [3] Agratini, O., Approximation by linear operators (in Romanian), Presa Universitar˘a Clujean˘a, Cluj-Napoca, 2000
  • [4] Arama, O., Propriet˘a¸ti privind monotonia ¸sirului polinoamelor de interpolare ale lui S. N. Bernstein ¸si aplicarea lor la studiul aproxim˘arii func¸tiilor , Studii ¸si Cerc. Mat., 8 (1957), 195–210
  • [5] Barbosu, D., Aproximarea func¸tiilor de mai multe variabile prin sume booleene de operatori liniari de tip interpolator, Ed. Risoprint, Cluj-Napoca, 2002 (in Romanian)
  • [6] Barbosu, D., Schurer-Stancu type operators, Studia Univ. "Babe¸s-Bolyai" Math., 48 (2003), No. 3, 31–35
  • [7] Barbosu, D., Bivariate operators of Schurer-Stancu type, An. ¸Stiin¸t. Univ. Ovidius Constan¸ta Ser. Mat., 11 (2003), No. 1, 1–8
  • [8] Barbosu, D., GBS operators of Schurer-Stancu type, An. Univ. Craiova Ser. Mat. Inform., 30 (2003), No. 2, 34–39
  • [9] Barbosu, D., Polynomial approximation by means of Schurer-Stancu type operators, Ed. Univ. de Nord, Baia Mare, 2006
  • [10] Barbosu, D., Two dimensional divided differences revisited, Creat. Math. Inform., 17 (2008), 1–7
  • [11] Barbosu, D. and Pop, O. T., A note on the GBS Bernstein’s approximation formula, An. Univ. Craiova Ser. Mat. Inform., 35 (2008), 1–6
  • [12] Barbosu, D. and Pop, O. T., On the Bernstein bivariate approximation formula , Carpathian J. Math., 24 (2008), No. 3, 293–298
  • [13] Barbosu, D. and Pop, O. T., Bivariate Schurer-Stancu operators revisited, Carpathian J. Math., 26 (2010), No. 1, 24–35
  • [14] Barbosu, D., On the monotonicity of Schurer-Stancu’s polynomials, Automat. Comput. Appl. Math., 15 (2006), No. 1, 27–35 (2007) [15] Barbosu, D. and Micl˘au¸s, D., On the Stancu operators and their applications, Creat. Math. Inform., 26 (2017), No. 1, 29–36
  • [16] Barbosu, D., On the approximation of convex functions using linear positive operators, Creat. Math. Inform., 26 (2017), No. 2, 137–143
  • [17] Barbosu, D., On the monotonicity of bivariate Bernstein polynomials, Creat. Math. Inform., 27 (2018), No. 1, 9–14
  • [18] Bernstein, S. N., Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow, 13 (1912-1913), No. 2, 1–2
  • [19] Gupta, V., Differences of Operators of Lupa¸s Type, Constructive Mathematical Analysis 1 (1) (2018), 9–14
  • [20] Della Vecchia, B., On the approximation of functions by means of the operators of D. D. Stancu, Studia Univ. Babe¸s- Bolyai, Mathematica, 37 (1992), No. 1, 3–36
  • [21] Delvos, F. J. and Schempp, W., Boolean methods in interpolation and approximation, Pitman Research Notes in Math., Series 230, New York, 1989
  • [22] Ionescu, D. V., Divided differences (in Romanian), Ed. Acad. R.S.R., Bucure¸sti, 1978
  • [23] Ivan, M., Elements of Interpolation Theory, Mediamira Science Publisher, Cluj-Napoca (2004), 61-68
  • [24] Miclau¸s, D., The revision of some results for Bernstein-Stancu type operators, Carpathian J. Math., 28 (2012), No. 2, 289–300
  • [25] Miclau¸s, D., On the GBS Bernstein-Stancu’s type operators, Creat. Math. Inform., 22 (2013), No. 1, 73–80
  • [26] Miclau¸s, D., On the monotonicity property for the sequence of Stancu type polynomials, An. ¸Stiin¸t. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.), 62 (2016), No. 1, 141–149
  • [27] Miclau¸s, D., On the Stancu type bivariate approximation formula, Carpathian J. Math., 32 (2016), No. 1, 103–111
  • [28] Muraru, C., On the monotonicity of Schurer type polynomials, Carpathian J. Math., 21 (2005), No. 1-2, 89–94
  • [29] Pop, O. T. and Barbosu, D., Two dimensional divided differences with multiple knots, An. ¸Stiin¸t. Univ. "Ovidius” Constan ta Ser. Mat.,17 (2009), No. 2, 181–190
  • [30] Popoviciu, T., Sur quelques proprietes des fonctions d’une ou deux variables réelles, Mathematica (1934), 1–85
  • [31] Popoviciu, T., Introduction à la théorie des différences divisées, (French) Bull. Math. Soc. Roumaine Sci., 42 (1940), No. 1, 65–78
  • [32] Rockafeller, R. T. Convex Analysis, Ed. Theta, Bucharest, 1992 ( in Romanian, translated by Ingrid and Daniel Belti¸ta)
  • [33] Schurer, F., Linear positive operators in approximation theory, Math. Inst. Tech. Univ Delft Report, 1962
  • [34] Stancu, D. D., Some Bernstein poiynomials in two variables and their applications,Soviet Math. Dokl., 1 (1961), 1025– 1028
  • [35] Stancu, D. D., The remainder of certain linear approximation formulas in two variables, J. SIAM Numer. Anal., 1 (1964), 137–163
  • [36] Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, rev. Roum. Math. Pures et Appl., 13 (1968), No. 8, 1173–1194
  • [37] Stancu, D. D., Asupra unei generalizari a polinoamelor lui Bernstein (Romanian), Studia Univ. "Babe¸s-Bolyai", Ser. Mathematica-Physica, (1969), No. 2, 31–45
  • [38] Stancu, D. D. On the remainder of approximation of functions by means of a parameter-dependent linear polynomial operator, Studia Univ. Babe¸s-Bolyai Ser. Math.-Mech., 16 (1971), No. 2, 59–66
  • [39] Stancu, D. D. Application of divided differences to the study of monotonicity of the derivatives of the sequence of Bernstein polynomials, Calcolo 16 (1979), No. 4, 431–445 (1980)
  • [40] Stancu, D. D., Coman, Gh., Agratini, O. and Trâmbi¸ta¸s, R., Analiza numerica ¸si teoria aproximarii, vol. I, Presa Universitar˘a Clujean˘a, Cluj-Napoca, 2001 (in Romanian)
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Dan Bărbosu

Yayımlanma Tarihi 7 Kasım 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Bărbosu, D. (2018). On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators. Constructive Mathematical Analysis, 1(2), 73-87. https://doi.org/10.33205/cma.442151
AMA Bărbosu D. On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators. CMA. Kasım 2018;1(2):73-87. doi:10.33205/cma.442151
Chicago Bărbosu, Dan. “On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators”. Constructive Mathematical Analysis 1, sy. 2 (Kasım 2018): 73-87. https://doi.org/10.33205/cma.442151.
EndNote Bărbosu D (01 Kasım 2018) On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators. Constructive Mathematical Analysis 1 2 73–87.
IEEE D. Bărbosu, “On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators”, CMA, c. 1, sy. 2, ss. 73–87, 2018, doi: 10.33205/cma.442151.
ISNAD Bărbosu, Dan. “On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators”. Constructive Mathematical Analysis 1/2 (Kasım 2018), 73-87. https://doi.org/10.33205/cma.442151.
JAMA Bărbosu D. On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators. CMA. 2018;1:73–87.
MLA Bărbosu, Dan. “On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators”. Constructive Mathematical Analysis, c. 1, sy. 2, 2018, ss. 73-87, doi:10.33205/cma.442151.
Vancouver Bărbosu D. On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators. CMA. 2018;1(2):73-87.