Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 113 - 115, 14.09.2020
https://doi.org/10.33205/cma.758854

Öz

Kaynakça

  • J. Brzde¸k, D. Popa, I. Ra¸sa and Xu. B: Ulam stability of operators, Academic Press, London(2018).
  • D. S. Marinescu, M. Monea and C. Mortici: Some characterizations of inner product spaces via some geometrical inequalities, Appl. Anal. Discrete Math., 11 (2017), 424-433.
  • N. Minculete: Considerations about the several inequalities in an inner product space, Math. Inequalities, 1 (2018), 155– 161.
  • S. M. S. Nabavi: On mappings which approximately preserve angles, Aequationes Math. 92 (2018), 1079–1090.
  • D. Popa and I. Ra¸sa: Inequalities involving the inner product. JIPAM, 8 (3) (2007), Article 86.

Ulam Stability in Real Inner-Product Spaces

Yıl 2020, , 113 - 115, 14.09.2020
https://doi.org/10.33205/cma.758854

Öz

Roughly speaking an equation is called Ulam stable if near each approximate solution of the equation
there exists an exact solution. In this paper we prove that Cauchy-Schwarz equation, Ortogonality equation and Gram
equation are Ulam stable.

This paper is concerned with the Ulam stability of some classical equations arising in thecontext of inner-product spaces. For the general notion of Ulam stability see, e.q., [1]. Roughlyspeaking an equation is called Ulam stable if near every approximate solution there exists anexact solution; the precise meaning in each case presented in this paper is described in threetheorems. Related results can be found in [2, 3, 4]. See also [5] for some inequalities in innerproduct spaces.

Kaynakça

  • J. Brzde¸k, D. Popa, I. Ra¸sa and Xu. B: Ulam stability of operators, Academic Press, London(2018).
  • D. S. Marinescu, M. Monea and C. Mortici: Some characterizations of inner product spaces via some geometrical inequalities, Appl. Anal. Discrete Math., 11 (2017), 424-433.
  • N. Minculete: Considerations about the several inequalities in an inner product space, Math. Inequalities, 1 (2018), 155– 161.
  • S. M. S. Nabavi: On mappings which approximately preserve angles, Aequationes Math. 92 (2018), 1079–1090.
  • D. Popa and I. Ra¸sa: Inequalities involving the inner product. JIPAM, 8 (3) (2007), Article 86.
Toplam 5 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Bianca Mosnegutu

Alexandra Mǎdutǎ Bu kişi benim

Yayımlanma Tarihi 14 Eylül 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Mosnegutu, B., & Mǎdutǎ, A. (2020). Ulam Stability in Real Inner-Product Spaces. Constructive Mathematical Analysis, 3(3), 113-115. https://doi.org/10.33205/cma.758854
AMA Mosnegutu B, Mǎdutǎ A. Ulam Stability in Real Inner-Product Spaces. CMA. Eylül 2020;3(3):113-115. doi:10.33205/cma.758854
Chicago Mosnegutu, Bianca, ve Alexandra Mǎdutǎ. “Ulam Stability in Real Inner-Product Spaces”. Constructive Mathematical Analysis 3, sy. 3 (Eylül 2020): 113-15. https://doi.org/10.33205/cma.758854.
EndNote Mosnegutu B, Mǎdutǎ A (01 Eylül 2020) Ulam Stability in Real Inner-Product Spaces. Constructive Mathematical Analysis 3 3 113–115.
IEEE B. Mosnegutu ve A. Mǎdutǎ, “Ulam Stability in Real Inner-Product Spaces”, CMA, c. 3, sy. 3, ss. 113–115, 2020, doi: 10.33205/cma.758854.
ISNAD Mosnegutu, Bianca - Mǎdutǎ, Alexandra. “Ulam Stability in Real Inner-Product Spaces”. Constructive Mathematical Analysis 3/3 (Eylül 2020), 113-115. https://doi.org/10.33205/cma.758854.
JAMA Mosnegutu B, Mǎdutǎ A. Ulam Stability in Real Inner-Product Spaces. CMA. 2020;3:113–115.
MLA Mosnegutu, Bianca ve Alexandra Mǎdutǎ. “Ulam Stability in Real Inner-Product Spaces”. Constructive Mathematical Analysis, c. 3, sy. 3, 2020, ss. 113-5, doi:10.33205/cma.758854.
Vancouver Mosnegutu B, Mǎdutǎ A. Ulam Stability in Real Inner-Product Spaces. CMA. 2020;3(3):113-5.