Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 4 Sayı: 3, 260 - 273, 16.09.2021
https://doi.org/10.33205/cma.793456

Öz

Kaynakça

  • M. U. Awan, N. Akhtar S. Iftikhar, M. A. Noor and Y.-M. Chu: New Hermite–Hadamard type inequalities for n polynomial harmonically convex functions, J. Inequal Appl., 2020:125 (2020).
  • W. W. Breckner: Continuity of generalized convex and generalized concave set-valued functions, Rev. Anal. Numér. Théor. Approx., 22 (1993), 39–51.
  • Y.-M. Chu, M. Adil Khan, T. U. Khan and T. Ali: Generalizations of Hermite–Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 4305–4316.
  • Y.-M. Chu, M. Adil Khan, T. U. Khan and J. Khan: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications, Open Math.,15 (2017), 1414–1430.
  • Y. Chalco–Cano, A. Flores–Franulic and H. Román–Flores: ˘ Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472.
  • Y. Chalco–Cano, W. A. Lodwick and W. Condori–Equice: Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300.
  • T. M. Costa, H. Román–Flores: Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci., 420 (2017), 110–125.
  • T. M. Costa: Jensens inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst., 327 (2017), 31–47.
  • M. R. Delavar, M. De La Sen: Some generalizations of Hermite–Hadamard type inequalities, SpringerPlus, 5:1661 (2016).
  • A. Guessab, G. Schmeisser: Sharp integral inequalities of the Hermite–Hadamard type, J. Approx. Theory, 115 (2) (2002), 260–288. [11] I. Iscan: Hermite–Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942.
  • A. Iqbal, M. Adil Khan, Sana Ullah and Y.-M. Chu: Some new Hermite–Hadamard type inequalities associated with conformable fractional integrals and their applications, Journal of Function Spaces, 2020 (2020), Art. ID 9845407.
  • M. A. Khan, Y. Khurshid and T. Ali: Hermite–Hadamard Inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenianae., LXXXVI (1) (2017), 153–164.
  • M. Adil Khan, T. Ali and T. U. Khan: Hermite–Hadamard Type Inequalities with Applications, Fasciculi Mathematici, 59 (2017), 57–74.
  • M. Adil Khan, N. Mohammad, E. R. Nwaeze and Y.-M. Chu: Quantum Hermite–Hadamard inequality by means of a green function, Adv. Diff. Equ., 2020:99 (2020).
  • J. Matkowski, K. Nikodem: An integral Jensen inequality for convex multifunctions, Results Math., 26 (1994), 348–353.
  • F.-C. Mitroi, K. Nikodem, S. Wa¸sowicz: Hermite–Hadamard inequalities for convex set-valued functions, Demonstratio Math., 46 (2013), 655–662.
  • R. E. Moore: Interval Analysis, Prentice-Hall: Englewood Cliffs, NJ, USA, (1966).
  • R. E. Moore: Method and Applications of Interval Analysis, SIAM: Philadelphia, PA, USA, (1979).
  • R. E. Moore, R. B. Kearfott and M. J. Cloud: Introduction to Interval Analysis, SIAM: Philadelphia, PA, USA, (2009).
  • K. Nikodem, J. L. Sánchez and L. Sánchez: Jensen and Hermite–Hadamard inequalities for strongly convex set-valued maps, Math. Æterna, 4 (2014), 979–987.
  • E. R. Nwaeze: Inequalities of the Hermite–Hadamard type for Quasi-convex functions via the (k, s)-Riemann–Liouville fractional integrals, Fractional Differ. Calc., 8(2) (2018), 327–336.
  • E. R. Nwaeze, D. F. M. Torres: Novel results on the Hermite–Hadamard kind inequality for η-convex functions by means of the (k, r)-fractional integral operators. In: Silvestru Sever Dragomir, Praveen Agarwal, Mohamed Jleli and Bessem Samet (eds.) Advances in Mathematical Inequalities and Applications (AMIA). Trends in Mathematics. Birkhäuser, Singapore, (2018), 311–321.
  • E. R. Nwaeze, Muhammad Adil Khan and Yu-Ming Chu: Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions, Adv. Diff. Equ., 2020:507 (2020).
  • E. Sadowska: Hadamard inequality and a refinement of Jensen inequality for set valued functions, Results Math., 32 (1997), 332–337.
  • J. Sun, B.-Y. Xi and F. Qi: Some new inequalities of the Hermite–Hadamard type for extended s-convex functions, J. Comput. Anal. Appl., 26(6) (2019), 985–996.
  • H. Román–Flores, Y. Chalco–Cano and W. A. Lodwick: Some integral inequalities for interval-valued functions, Comput. Appl. Math., 35 (2016), 1–13.
  • D. Zhao, T. An, G. Ye and W. Liu: New Jensen and HermiteHadamard type inequalities for h-convex interval-valued functions, J. Inequal Appl., 2018:302 (2018).
  • D. Zhao, T. An, G. Ye and D. F. M. Torres: On Hermite–Hadamard type inequalities for harmonical h-convex intervalvalued functions, Math. Inequal. Appl., 23 (1) (2020), 95–105.

Set Inclusions of the Hermite-Hadamard Type for $m$ Polynomial Harmonically Convex Interval Valued Functions

Yıl 2021, Cilt: 4 Sayı: 3, 260 - 273, 16.09.2021
https://doi.org/10.33205/cma.793456

Öz

We introduce the notion of $m$-polynomial harmonically convex interval-valued function. A relationship between a given interval-valued function and its component real-valued functions is pointed out. Moreover, some new Hermite--Hadamard type results are established for this class of functions. Our results complement and extend existing results in the literature. By taking $m\geq 2$, we derive loads of new and interesting inclusions. We anticipate that the idea outlined herein will trigger further investigations in this direction.

Kaynakça

  • M. U. Awan, N. Akhtar S. Iftikhar, M. A. Noor and Y.-M. Chu: New Hermite–Hadamard type inequalities for n polynomial harmonically convex functions, J. Inequal Appl., 2020:125 (2020).
  • W. W. Breckner: Continuity of generalized convex and generalized concave set-valued functions, Rev. Anal. Numér. Théor. Approx., 22 (1993), 39–51.
  • Y.-M. Chu, M. Adil Khan, T. U. Khan and T. Ali: Generalizations of Hermite–Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 4305–4316.
  • Y.-M. Chu, M. Adil Khan, T. U. Khan and J. Khan: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications, Open Math.,15 (2017), 1414–1430.
  • Y. Chalco–Cano, A. Flores–Franulic and H. Román–Flores: ˘ Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472.
  • Y. Chalco–Cano, W. A. Lodwick and W. Condori–Equice: Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300.
  • T. M. Costa, H. Román–Flores: Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci., 420 (2017), 110–125.
  • T. M. Costa: Jensens inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst., 327 (2017), 31–47.
  • M. R. Delavar, M. De La Sen: Some generalizations of Hermite–Hadamard type inequalities, SpringerPlus, 5:1661 (2016).
  • A. Guessab, G. Schmeisser: Sharp integral inequalities of the Hermite–Hadamard type, J. Approx. Theory, 115 (2) (2002), 260–288. [11] I. Iscan: Hermite–Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942.
  • A. Iqbal, M. Adil Khan, Sana Ullah and Y.-M. Chu: Some new Hermite–Hadamard type inequalities associated with conformable fractional integrals and their applications, Journal of Function Spaces, 2020 (2020), Art. ID 9845407.
  • M. A. Khan, Y. Khurshid and T. Ali: Hermite–Hadamard Inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenianae., LXXXVI (1) (2017), 153–164.
  • M. Adil Khan, T. Ali and T. U. Khan: Hermite–Hadamard Type Inequalities with Applications, Fasciculi Mathematici, 59 (2017), 57–74.
  • M. Adil Khan, N. Mohammad, E. R. Nwaeze and Y.-M. Chu: Quantum Hermite–Hadamard inequality by means of a green function, Adv. Diff. Equ., 2020:99 (2020).
  • J. Matkowski, K. Nikodem: An integral Jensen inequality for convex multifunctions, Results Math., 26 (1994), 348–353.
  • F.-C. Mitroi, K. Nikodem, S. Wa¸sowicz: Hermite–Hadamard inequalities for convex set-valued functions, Demonstratio Math., 46 (2013), 655–662.
  • R. E. Moore: Interval Analysis, Prentice-Hall: Englewood Cliffs, NJ, USA, (1966).
  • R. E. Moore: Method and Applications of Interval Analysis, SIAM: Philadelphia, PA, USA, (1979).
  • R. E. Moore, R. B. Kearfott and M. J. Cloud: Introduction to Interval Analysis, SIAM: Philadelphia, PA, USA, (2009).
  • K. Nikodem, J. L. Sánchez and L. Sánchez: Jensen and Hermite–Hadamard inequalities for strongly convex set-valued maps, Math. Æterna, 4 (2014), 979–987.
  • E. R. Nwaeze: Inequalities of the Hermite–Hadamard type for Quasi-convex functions via the (k, s)-Riemann–Liouville fractional integrals, Fractional Differ. Calc., 8(2) (2018), 327–336.
  • E. R. Nwaeze, D. F. M. Torres: Novel results on the Hermite–Hadamard kind inequality for η-convex functions by means of the (k, r)-fractional integral operators. In: Silvestru Sever Dragomir, Praveen Agarwal, Mohamed Jleli and Bessem Samet (eds.) Advances in Mathematical Inequalities and Applications (AMIA). Trends in Mathematics. Birkhäuser, Singapore, (2018), 311–321.
  • E. R. Nwaeze, Muhammad Adil Khan and Yu-Ming Chu: Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions, Adv. Diff. Equ., 2020:507 (2020).
  • E. Sadowska: Hadamard inequality and a refinement of Jensen inequality for set valued functions, Results Math., 32 (1997), 332–337.
  • J. Sun, B.-Y. Xi and F. Qi: Some new inequalities of the Hermite–Hadamard type for extended s-convex functions, J. Comput. Anal. Appl., 26(6) (2019), 985–996.
  • H. Román–Flores, Y. Chalco–Cano and W. A. Lodwick: Some integral inequalities for interval-valued functions, Comput. Appl. Math., 35 (2016), 1–13.
  • D. Zhao, T. An, G. Ye and W. Liu: New Jensen and HermiteHadamard type inequalities for h-convex interval-valued functions, J. Inequal Appl., 2018:302 (2018).
  • D. Zhao, T. An, G. Ye and D. F. M. Torres: On Hermite–Hadamard type inequalities for harmonical h-convex intervalvalued functions, Math. Inequal. Appl., 23 (1) (2020), 95–105.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Eze Nwaeze 0000-0002-1375-1474

Yayımlanma Tarihi 16 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 3

Kaynak Göster

APA Nwaeze, E. (2021). Set Inclusions of the Hermite-Hadamard Type for $m$ Polynomial Harmonically Convex Interval Valued Functions. Constructive Mathematical Analysis, 4(3), 260-273. https://doi.org/10.33205/cma.793456
AMA Nwaeze E. Set Inclusions of the Hermite-Hadamard Type for $m$ Polynomial Harmonically Convex Interval Valued Functions. CMA. Eylül 2021;4(3):260-273. doi:10.33205/cma.793456
Chicago Nwaeze, Eze. “Set Inclusions of the Hermite-Hadamard Type for $m$ Polynomial Harmonically Convex Interval Valued Functions”. Constructive Mathematical Analysis 4, sy. 3 (Eylül 2021): 260-73. https://doi.org/10.33205/cma.793456.
EndNote Nwaeze E (01 Eylül 2021) Set Inclusions of the Hermite-Hadamard Type for $m$ Polynomial Harmonically Convex Interval Valued Functions. Constructive Mathematical Analysis 4 3 260–273.
IEEE E. Nwaeze, “Set Inclusions of the Hermite-Hadamard Type for $m$ Polynomial Harmonically Convex Interval Valued Functions”, CMA, c. 4, sy. 3, ss. 260–273, 2021, doi: 10.33205/cma.793456.
ISNAD Nwaeze, Eze. “Set Inclusions of the Hermite-Hadamard Type for $m$ Polynomial Harmonically Convex Interval Valued Functions”. Constructive Mathematical Analysis 4/3 (Eylül 2021), 260-273. https://doi.org/10.33205/cma.793456.
JAMA Nwaeze E. Set Inclusions of the Hermite-Hadamard Type for $m$ Polynomial Harmonically Convex Interval Valued Functions. CMA. 2021;4:260–273.
MLA Nwaeze, Eze. “Set Inclusions of the Hermite-Hadamard Type for $m$ Polynomial Harmonically Convex Interval Valued Functions”. Constructive Mathematical Analysis, c. 4, sy. 3, 2021, ss. 260-73, doi:10.33205/cma.793456.
Vancouver Nwaeze E. Set Inclusions of the Hermite-Hadamard Type for $m$ Polynomial Harmonically Convex Interval Valued Functions. CMA. 2021;4(3):260-73.