Araştırma Makalesi
BibTex RIS Kaynak Göster

Solution of KdV and Boussinesq using Darboux Transformation

Yıl 2018, Cilt: 3 Sayı: 3, 16 - 27, 31.12.2018

Öz

Two Darboux transformations of the Korteweg-de Vries (KdV) equation and Boussinesq equation are constructed through
the Darboux method. Soliton solutions of these two equations are presented by applying the Darboux transformations.

Kaynakça

  • [1] V. B. Matveev and M. A. Salle, Darboux Transformation and Solitons. Springer. (1991).
  • [2] C. Rogers and W. K. Schief, B¨acklund and Darboux transformations: geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics. (2002).
  • [3] A. A. Halim, Korteweg-de-Vries equations in problems of fluid dynamic. (2001) 1-10.
  • [4] P.G. Estevez and J .Prada, Singular manifold method for an equation in 2 + 1 dimensions, Journal of Nonlinear Mathematical Physics. 12 (2005) 266–279.
  • [5] J.Weiss, M. Tabor and G. Carnevale, The Painlev´e property for partial differential equations, J. Math. Phys. 24 (1983) 522-526.
  • [6] P.G. Estevez and P.R. Gordoa, The Singular Manifold Method: Darboux Transformations and Nonclassical Symmetries, Nonlinear Mathematical Physics. 2 (1995) 334–355.
  • [7] G. Chaohao, H. Hesheng and Z. Zixiang, Darboux Transformations In Integrable Systems Theory And Their Applications To Geometry, Institute of Mathematics, Fudan University, Shanghai, China. (2005) PP. 2.
  • [8] L.Wazzan, A modifed tanh–coth method for solving the KdV and the KdV–Burgers’ equations, Communications in Nonlinear Science and Numerical Simulation .14 (2009) 443–450.
  • [9] G. Chaohao, H. Hesheng and Z. Zixiang, Darboux Transformations In Integrable Systems Theory And Their Applications To Geometry, Institute of Mathematics, Fudan University, Shanghai, China.(2005) PP. 85.
  • [10] R. Sadat, M. Kassem, Explicit Solutions for the (2+ 1)-Dimensional Jaulent–Miodek Equation Using the Integrating Factors Method in an Unbounded Domain. Mathematical and Computational Applications, 23(1)(2018) 1-9.
  • [11] M. A. Ramadan, M. R. Ali, An effcient hybrid method for solving fredholm integral equations using triangular functions, New Trends in Mathematical Sciences,5(1) (2017) 213-224.
  • [12] M. A. Ramadan, M. R. Ali, Numerical Solution of Volterra-Fredholm Integral Equations Using Hybrid Orthonormal Bernstein and Block-Pulse Functions, Asian Research Journal of Mathematics,4(4) (2017) 1-14.
  • [13] M. A. Ramadan, M. R. Ali, Application of Bernoulli wavelet method for numerical solution of fuzzy linear Volterra-Fredholm integral equations, Communication in Mathematical Modeling and Applications,2(3)(2017) 40-49.
  • [14] M. A. Ramadan, M. R. Ali, Solution of integral and Integro-Differential equations system using Hybrid orthonormal Bernstein and block-pulse functions, Journal of abstract and computational mathematics,2(1)(2017) 35-48.
Yıl 2018, Cilt: 3 Sayı: 3, 16 - 27, 31.12.2018

Öz

Kaynakça

  • [1] V. B. Matveev and M. A. Salle, Darboux Transformation and Solitons. Springer. (1991).
  • [2] C. Rogers and W. K. Schief, B¨acklund and Darboux transformations: geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics. (2002).
  • [3] A. A. Halim, Korteweg-de-Vries equations in problems of fluid dynamic. (2001) 1-10.
  • [4] P.G. Estevez and J .Prada, Singular manifold method for an equation in 2 + 1 dimensions, Journal of Nonlinear Mathematical Physics. 12 (2005) 266–279.
  • [5] J.Weiss, M. Tabor and G. Carnevale, The Painlev´e property for partial differential equations, J. Math. Phys. 24 (1983) 522-526.
  • [6] P.G. Estevez and P.R. Gordoa, The Singular Manifold Method: Darboux Transformations and Nonclassical Symmetries, Nonlinear Mathematical Physics. 2 (1995) 334–355.
  • [7] G. Chaohao, H. Hesheng and Z. Zixiang, Darboux Transformations In Integrable Systems Theory And Their Applications To Geometry, Institute of Mathematics, Fudan University, Shanghai, China. (2005) PP. 2.
  • [8] L.Wazzan, A modifed tanh–coth method for solving the KdV and the KdV–Burgers’ equations, Communications in Nonlinear Science and Numerical Simulation .14 (2009) 443–450.
  • [9] G. Chaohao, H. Hesheng and Z. Zixiang, Darboux Transformations In Integrable Systems Theory And Their Applications To Geometry, Institute of Mathematics, Fudan University, Shanghai, China.(2005) PP. 85.
  • [10] R. Sadat, M. Kassem, Explicit Solutions for the (2+ 1)-Dimensional Jaulent–Miodek Equation Using the Integrating Factors Method in an Unbounded Domain. Mathematical and Computational Applications, 23(1)(2018) 1-9.
  • [11] M. A. Ramadan, M. R. Ali, An effcient hybrid method for solving fredholm integral equations using triangular functions, New Trends in Mathematical Sciences,5(1) (2017) 213-224.
  • [12] M. A. Ramadan, M. R. Ali, Numerical Solution of Volterra-Fredholm Integral Equations Using Hybrid Orthonormal Bernstein and Block-Pulse Functions, Asian Research Journal of Mathematics,4(4) (2017) 1-14.
  • [13] M. A. Ramadan, M. R. Ali, Application of Bernoulli wavelet method for numerical solution of fuzzy linear Volterra-Fredholm integral equations, Communication in Mathematical Modeling and Applications,2(3)(2017) 40-49.
  • [14] M. A. Ramadan, M. R. Ali, Solution of integral and Integro-Differential equations system using Hybrid orthonormal Bernstein and block-pulse functions, Journal of abstract and computational mathematics,2(1)(2017) 35-48.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Mohamed R. Ali Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 3 Sayı: 3

Kaynak Göster

APA Ali, M. R. (2018). Solution of KdV and Boussinesq using Darboux Transformation. Communication in Mathematical Modeling and Applications, 3(3), 16-27.
AMA Ali MR. Solution of KdV and Boussinesq using Darboux Transformation. CMMA. Aralık 2018;3(3):16-27.
Chicago Ali, Mohamed R. “Solution of KdV and Boussinesq Using Darboux Transformation”. Communication in Mathematical Modeling and Applications 3, sy. 3 (Aralık 2018): 16-27.
EndNote Ali MR (01 Aralık 2018) Solution of KdV and Boussinesq using Darboux Transformation. Communication in Mathematical Modeling and Applications 3 3 16–27.
IEEE M. R. Ali, “Solution of KdV and Boussinesq using Darboux Transformation”, CMMA, c. 3, sy. 3, ss. 16–27, 2018.
ISNAD Ali, Mohamed R. “Solution of KdV and Boussinesq Using Darboux Transformation”. Communication in Mathematical Modeling and Applications 3/3 (Aralık 2018), 16-27.
JAMA Ali MR. Solution of KdV and Boussinesq using Darboux Transformation. CMMA. 2018;3:16–27.
MLA Ali, Mohamed R. “Solution of KdV and Boussinesq Using Darboux Transformation”. Communication in Mathematical Modeling and Applications, c. 3, sy. 3, 2018, ss. 16-27.
Vancouver Ali MR. Solution of KdV and Boussinesq using Darboux Transformation. CMMA. 2018;3(3):16-27.