Araştırma Makalesi
BibTex RIS Kaynak Göster

Alterations on the Activities of Ion ATPases in the Gill and Muscle of Freshwater Mussel (Unio tigridis) Exposed to Copper

Yıl 2021, , 150 - 155, 31.12.2021
https://doi.org/10.31594/commagene.1020323

Öz

Ion ATPases in the tissues of aquatic animals are sensitive to metal exposures. Mussels are filter-feeding animals and have a sedentary lifestyle that makes them good bio-indicator animals. Thus, the present study was carried out to investigate the effects of copper (0, 30, 90 µg/L) on the activities of Na-ATPase, Mg-ATPase, and Ca-ATPase in the gill and muscle of freshwater mussels (Unio tigridis) in different exposure durations (0, 7, 14, 21 days). Feeding of mussels during the experiments were done with the cultured unicellular algae (Cholorella vulgaris), serving them approximately 300,000 algae/ml. At the end of 21 days of exposure period, no mussel mortality was recorded. Total protein concentrations in the gill and muscle did not change significantly (P>0.05) in any exposure groups. Likewise, control ATPase activities did not alter significantly during different exposure periods. However, ATPase activities in the gill and muscle of mussels altered significantly (P<0.05) following exposure to copper, especially at the higher concentration. Although there were significant increases and decreases in the activity of Mg-ATPase in both tissues, Na-ATPase and Ca-ATPase activities did not fluctuate as there were only significant decreases at the higher exposure concentration. The present data demonstrated that copper at environmentally realistic concentrations was able to alter the activities of ion ATPases in the gill and muscle of mussels and emphasized osmoregulatory stress which mussels might face in waters contaminated with copper.

Teşekkür

I would like to thank to Dr. Uslu for the help in algae culturing. Experimental parts of this study were carried out in Biology Department of Çukurova University. So my thanks go to Dr. M. Canli for allowing me to carry out the experiments in his laboratory.

Kaynakça

  • Al-Fanharawi, A.A., Rabee, A.M., & Al-Mamoori, A.M. (2019). Multi-biomarker responses after exposure to organophosphates chlorpyrifos in the freshwater mussels Unio tigridis and snails Viviparous benglensis. Human and Ecological Risk Assessment: An International Journal, 25(5), 1137-1156. https://doi.org/10.1080/10807039.2018.1460800
  • Atkinson, A., Gatemby, A.O., & Lowe, A.G. (1973). The Determination of inorganic ortophosphate in biological systems. Biochimica Et Biophysica Acta, 320, 195-204. https://doi.org/10.1016/0304-4165(73)90178-5
  • Canli, M., & Stagg, R.M. (1996). The effects of in vivo exposure to cadmium, copper and zinc on the activities of gill ATPases in the Norway lobster, Nephrops norvegicus. Archives of Environmental Contamination and Toxicology, 31(4), 494-501. https://doi.org/10.1007/BF00212433
  • Canli, E.G., Celenk, A., & Canli, M. (2021). Accumulation and distribution of nanoparticles (Al2O3, CuO, TiO2) in tissues of freshwater mussel (Unio tigridis). Bulletin of Environmental Contamination and Toxicology (in press). https://doi.org/10.1007/s00128-021-03410-5
  • Canli, E.G., & Canli, M. (2021). Characterization of ATPases in the gill of freshwater mussel (Unio tigridis) and effects of ionic and nanoparticle forms of aluminium and copper. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 247, 109059. https://doi.org/10.1016/j.cbpc.2021.109059
  • Chandurvelan, R., Marsden, I.D., Gaw, S., & Glover, C.N. (2013). Biochemical biomarker responses of green-lipped mussel, Perna canaliculus, to acute and subchronic waterborne cadmium toxicity. Aquatic Toxicology, 140, 303-313. https://doi.org/10.1016/j.aquatox.2013.06.015
  • Clark, R.B. (1989). Marine pollution. Oxford: Oxford Scientific Publications, Clarendon Press.
  • Company, R., Serafim, A., Cosson, R.P., Fiala-Médioni, A., Camus, L., Colaço, A., & Bebianno, M.J. (2008). Antioxidant biochemical responses to long-term copper exposure in Bathymodiolus azoricus from Menez-Gwen hydrothermal vent. Science of Total Environment 389(2-3), 407-417. https://doi.org/10.1016/j.scitotenv.2007.08.056
  • Doyotte, A., Cossu, C., Jacquin, M.C., Babut, M., & Vasseur, P. (1997). Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquatic Toxicology, 39(2), 93-110. https://doi.org/10.1016/S0166-445X(97)00024-6
  • Falfushynska, H.I., Gnatyshyna, L.L., Ivanina, A.V., Sokolova, I.M., & Stoliar, O.B. (2018). Detoxification and cellular stress responses of unionid mussels Unio tumidus from two cooling ponds to combined nano-ZnO and temperature stress. Chemosphere, 193, 1127-1142. https://doi.org/10.1016/j.chemosphere.2017.11.079
  • Giacomin, M., Gillis, P.L., Bianchini, A., & Wood, C.M. (2013). Interactive effects of copper and dissolved organic matter on sodium uptake, copper bioaccumulation, and oxidative stress in juvenile freshwater mussels (Lampsilis siliquoidea). Aquatic Toxicology, 144, 105-115. https://doi.org/10.1016/j.aquatox.2013.09.028
  • Goswami, P., Hariharan, G., Godhantaraman, N., & Munuswamy, N. (2014). An integrated use of multiple biomarkers to investigate the individual and combined effect of copper and cadmium on the marine green mussel (Perna viridis). Journal of Environmental Science and Health, Part A, 49(13), 1564-1577. https://doi.org/10.1080/10934529.2014.938534
  • Jorge, M.B., Loro, V.L., Bianchini, A., Wood, C.M., & Gillis, P.L. (2013). Mortality, bioaccumulation and physiological responses in juvenile freshwater mussels (Lampsilis siliquoidea) chronically exposed to copper. Aquatic Toxicology, 126, 137-147. https://doi.org/10.1016/j.aquatox.2012.10.014
  • Le, T.Y., Nachev, M., Grabner, D., Garcia, M.R., Balsa-Canto, E., Hendriks, A.J., & Sures, B. (2021) Modelling chronic toxicokinetics and toxicodynamics of copper in mussels considering ionoregulatory homeostasis and oxidative stress. Environmental Pollution, 287, 117645. https://doi.org/10.1016/j.envpol.2021.117645
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193(1), 256-275.
  • Nugroho, A.P., & Frank, H. (2012). Effects of copper on lipid peroxidation, glutathione, metallothionein, and antioxidative enzymes in the freshwater mussel Anodonta anatina. Toxicological & Environmental Chemistry, 94(5), 918-929. https://doi.org/10.1080/02772248.2012.675156
  • Pagliarani, A., Ventrella, V., Trombetti, F., Pirini, M., Trigari, G., & Borgatti, A.R. (1996). Mussel microsomal Na+-Mg2+-ATPase sensitivity to waterborne mercury, zinc and ammonia. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 113, 185-191. https://doi.org/10.1016/0742-8413(95)02086-1
  • Rajalakshmi, S., & Mohandas, A. (2005). Copper-induced changes in tissue enzyme activity in a freshwater mussel. Ecotoxicology and Environmental Safety, 62(1), 140-143. https://doi.org/10.1016/j.ecoenv.2005.01.003
  • Sukhovskaya, I.V., Borvinskaya, E.V., Kochneva, A.A., Slukovsky, Z.I., Kurpe, S.R., Xu, K., …, & Li, C. (2021). Biochemical and metabolic responses of the deep-sea mussel Bathymodiolus platifrons to cadmium and copper exposure. Aquatic Toxicology, 236, 105845. https://doi.org/10.1016/j.aquatox.2021.105845
  • Viarengo, A., Pertica, M., Mancinelli, G., Burlando, B., Canesi, L., & Orunesu, M. (1996). In vivo effects of copper on the calcium homeostasis mechanisms of mussel gill cell plasma membranes. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 113(3), 421-425. https://doi.org/10.1016/0742-8413(96)00004-7
  • Vijayavel, K., Gopalakrishnan, S., & Balasubramanian, M.P. (2007). Sublethal effect of silver and chromium in the green mussel Perna viridis with reference to alterations in oxygen uptake, filtration rate and membrane bound ATPase system as biomarkers. Chemosphere 69(6), 979-986. https://doi.org/10.1016/j.chemosphere.2007.05.011
  • Zhou, L., Li, M., Zhong, Z., Chen, H., Wang, X., Wang, M., & Li, C. (2021). Biochemical and metabolic responses of the deep-sea mussel Bathymodiolus platifrons to cadmium and copper exposure. Aquatic Toxicology, 236, 105845. https://doi.org/10.1016/j.aquatox.2021.105845
  • Wood, C.M., Farrell, A.P., & Brauner, C.J. (2012a). Homeostasis and toxicology of essential metals. Fish Physiology 31A. Academic Press, London pp 497.
  • Wood, C.M., Farrell, A.P., & Brauner, C.J. (2012b). Homeostasis and toxicology of non-essential metals. Fish Physiology 31B. Academic Press, London pp 507.

Bakır Etkisinde Tatlı Su Midyelerinin (Unio tigridis) Solungaç ve Kaslarındaki İyon ATPaz Aktivitelerinin Değişimi

Yıl 2021, , 150 - 155, 31.12.2021
https://doi.org/10.31594/commagene.1020323

Öz

Suda yaşayan hayvanların dokularındaki iyon ATPazlar metal etkilerine karşı hassastır. Midyeler suyu filtre ederek yaşadıklarından ve yerleşik yaşam tarzları nedeniyle iyi biyoindikatör hayvanlar olarak bilinmektedir. Bu nedenle bu çalışma, tatlı su midyelerinin (Unio tigridis) solungaç ve kaslarındaki Na-ATPaz, Mg-ATPaz ve Ca-ATPaz aktiviteleri üzerine bakırın farklı derişimlerde (0, 30, 90 µg/L) ve farklı sürelerdeki (0, 7, 14, 21 gün) etkilerini araştırmak amacıyla yapılmıştır. Midyeler deney süresince kültür alglerle (Cholorella vulgaris) beslenmişlerdir (300.000 alg/ml). Yirmi bir günlük deney süresi sonunda herhangi bir midye ölümü kaydedilmemiştir. Solungaç ve kastaki toplam protein düzeyleri herhangi bir deney koşulunda istatistiki olarak anlamlı (P>0.05) bir değişim göstermemiştir. Benzer şekilde, kontrol ATPaz aktiviteleri de farklı deney süreçlerinde anlamlı bir değişim göstermemiştir. Ancak, midyelerin solungaç ve kaslarındaki ATPaz aktiviteleri, özellikle yüksek bakır etkisinde istatistiki olarak anlamlı (P<0.05) azalmalar göstermiştir. Mg-ATPaz aktivitesinde her iki dokuda da anlamlı artışlar ve azalışlar görülmesine rağmen, Na-ATPaz ve Ca-ATPaz aktivitelerinde dalgalanmalar görülmemiştir. Çünkü bu enzimlerin aktivitelerinde sadece anlamlı azalmalar olmuştur. Bu deneyin verileri, çevresel olarak düşük derişimlerdeki bakırın bile midyelerin solungaç ve kaslarındaki iyon ATPazların aktivitelerini değiştirebildiğini ve midyelerin bakırla kontamine olmuş sularda karşılaşabilecekleri osmoregülasyon sistem stresini vurgulamıştır.

Kaynakça

  • Al-Fanharawi, A.A., Rabee, A.M., & Al-Mamoori, A.M. (2019). Multi-biomarker responses after exposure to organophosphates chlorpyrifos in the freshwater mussels Unio tigridis and snails Viviparous benglensis. Human and Ecological Risk Assessment: An International Journal, 25(5), 1137-1156. https://doi.org/10.1080/10807039.2018.1460800
  • Atkinson, A., Gatemby, A.O., & Lowe, A.G. (1973). The Determination of inorganic ortophosphate in biological systems. Biochimica Et Biophysica Acta, 320, 195-204. https://doi.org/10.1016/0304-4165(73)90178-5
  • Canli, M., & Stagg, R.M. (1996). The effects of in vivo exposure to cadmium, copper and zinc on the activities of gill ATPases in the Norway lobster, Nephrops norvegicus. Archives of Environmental Contamination and Toxicology, 31(4), 494-501. https://doi.org/10.1007/BF00212433
  • Canli, E.G., Celenk, A., & Canli, M. (2021). Accumulation and distribution of nanoparticles (Al2O3, CuO, TiO2) in tissues of freshwater mussel (Unio tigridis). Bulletin of Environmental Contamination and Toxicology (in press). https://doi.org/10.1007/s00128-021-03410-5
  • Canli, E.G., & Canli, M. (2021). Characterization of ATPases in the gill of freshwater mussel (Unio tigridis) and effects of ionic and nanoparticle forms of aluminium and copper. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 247, 109059. https://doi.org/10.1016/j.cbpc.2021.109059
  • Chandurvelan, R., Marsden, I.D., Gaw, S., & Glover, C.N. (2013). Biochemical biomarker responses of green-lipped mussel, Perna canaliculus, to acute and subchronic waterborne cadmium toxicity. Aquatic Toxicology, 140, 303-313. https://doi.org/10.1016/j.aquatox.2013.06.015
  • Clark, R.B. (1989). Marine pollution. Oxford: Oxford Scientific Publications, Clarendon Press.
  • Company, R., Serafim, A., Cosson, R.P., Fiala-Médioni, A., Camus, L., Colaço, A., & Bebianno, M.J. (2008). Antioxidant biochemical responses to long-term copper exposure in Bathymodiolus azoricus from Menez-Gwen hydrothermal vent. Science of Total Environment 389(2-3), 407-417. https://doi.org/10.1016/j.scitotenv.2007.08.056
  • Doyotte, A., Cossu, C., Jacquin, M.C., Babut, M., & Vasseur, P. (1997). Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquatic Toxicology, 39(2), 93-110. https://doi.org/10.1016/S0166-445X(97)00024-6
  • Falfushynska, H.I., Gnatyshyna, L.L., Ivanina, A.V., Sokolova, I.M., & Stoliar, O.B. (2018). Detoxification and cellular stress responses of unionid mussels Unio tumidus from two cooling ponds to combined nano-ZnO and temperature stress. Chemosphere, 193, 1127-1142. https://doi.org/10.1016/j.chemosphere.2017.11.079
  • Giacomin, M., Gillis, P.L., Bianchini, A., & Wood, C.M. (2013). Interactive effects of copper and dissolved organic matter on sodium uptake, copper bioaccumulation, and oxidative stress in juvenile freshwater mussels (Lampsilis siliquoidea). Aquatic Toxicology, 144, 105-115. https://doi.org/10.1016/j.aquatox.2013.09.028
  • Goswami, P., Hariharan, G., Godhantaraman, N., & Munuswamy, N. (2014). An integrated use of multiple biomarkers to investigate the individual and combined effect of copper and cadmium on the marine green mussel (Perna viridis). Journal of Environmental Science and Health, Part A, 49(13), 1564-1577. https://doi.org/10.1080/10934529.2014.938534
  • Jorge, M.B., Loro, V.L., Bianchini, A., Wood, C.M., & Gillis, P.L. (2013). Mortality, bioaccumulation and physiological responses in juvenile freshwater mussels (Lampsilis siliquoidea) chronically exposed to copper. Aquatic Toxicology, 126, 137-147. https://doi.org/10.1016/j.aquatox.2012.10.014
  • Le, T.Y., Nachev, M., Grabner, D., Garcia, M.R., Balsa-Canto, E., Hendriks, A.J., & Sures, B. (2021) Modelling chronic toxicokinetics and toxicodynamics of copper in mussels considering ionoregulatory homeostasis and oxidative stress. Environmental Pollution, 287, 117645. https://doi.org/10.1016/j.envpol.2021.117645
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193(1), 256-275.
  • Nugroho, A.P., & Frank, H. (2012). Effects of copper on lipid peroxidation, glutathione, metallothionein, and antioxidative enzymes in the freshwater mussel Anodonta anatina. Toxicological & Environmental Chemistry, 94(5), 918-929. https://doi.org/10.1080/02772248.2012.675156
  • Pagliarani, A., Ventrella, V., Trombetti, F., Pirini, M., Trigari, G., & Borgatti, A.R. (1996). Mussel microsomal Na+-Mg2+-ATPase sensitivity to waterborne mercury, zinc and ammonia. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 113, 185-191. https://doi.org/10.1016/0742-8413(95)02086-1
  • Rajalakshmi, S., & Mohandas, A. (2005). Copper-induced changes in tissue enzyme activity in a freshwater mussel. Ecotoxicology and Environmental Safety, 62(1), 140-143. https://doi.org/10.1016/j.ecoenv.2005.01.003
  • Sukhovskaya, I.V., Borvinskaya, E.V., Kochneva, A.A., Slukovsky, Z.I., Kurpe, S.R., Xu, K., …, & Li, C. (2021). Biochemical and metabolic responses of the deep-sea mussel Bathymodiolus platifrons to cadmium and copper exposure. Aquatic Toxicology, 236, 105845. https://doi.org/10.1016/j.aquatox.2021.105845
  • Viarengo, A., Pertica, M., Mancinelli, G., Burlando, B., Canesi, L., & Orunesu, M. (1996). In vivo effects of copper on the calcium homeostasis mechanisms of mussel gill cell plasma membranes. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 113(3), 421-425. https://doi.org/10.1016/0742-8413(96)00004-7
  • Vijayavel, K., Gopalakrishnan, S., & Balasubramanian, M.P. (2007). Sublethal effect of silver and chromium in the green mussel Perna viridis with reference to alterations in oxygen uptake, filtration rate and membrane bound ATPase system as biomarkers. Chemosphere 69(6), 979-986. https://doi.org/10.1016/j.chemosphere.2007.05.011
  • Zhou, L., Li, M., Zhong, Z., Chen, H., Wang, X., Wang, M., & Li, C. (2021). Biochemical and metabolic responses of the deep-sea mussel Bathymodiolus platifrons to cadmium and copper exposure. Aquatic Toxicology, 236, 105845. https://doi.org/10.1016/j.aquatox.2021.105845
  • Wood, C.M., Farrell, A.P., & Brauner, C.J. (2012a). Homeostasis and toxicology of essential metals. Fish Physiology 31A. Academic Press, London pp 497.
  • Wood, C.M., Farrell, A.P., & Brauner, C.J. (2012b). Homeostasis and toxicology of non-essential metals. Fish Physiology 31B. Academic Press, London pp 507.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Esin Gülnaz Canlı 0000-0002-0132-3712

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 7 Kasım 2021
Kabul Tarihi 23 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Canlı, E. G. (2021). Alterations on the Activities of Ion ATPases in the Gill and Muscle of Freshwater Mussel (Unio tigridis) Exposed to Copper. Commagene Journal of Biology, 5(2), 150-155. https://doi.org/10.31594/commagene.1020323
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.