Galeodes araneoides (Pallas, 1772) (Arachnida: Solifugae) Türünden Kitin Ekstraksiyonu ve Fizikokimyasal Karakterizasyonu
Yıl 2024,
, 75 - 79, 31.12.2024
Dilek Demirtaş
,
Osman Seyyar
,
Fatma Seyyar
Öz
Teknolojinin birçok alanında yüksek bir kullanım alanına sahip olan kitin önemli bir biyomateryaldir. Mantarların hücre duvarında, eklembacaklıların ekzoiskelet iskeletlerinde ve kabuklarının temel yapısında bulunmaktadır. Kitin, selülozdan sonra doğada en fazla bulunan ve yapısında azot bulunduran biyopolimerdir. Son yıllarda geleneksel kitin kaynakları dışında böcekler, araknidler, mercan/kabuklu yumurtaları ve hatta yarasa guanosunun alternatif kitin kaynakları olduğu bildirilmiştir. Bu çalışmada bir böğü türü olarak bilinen Galeodes araneoides (Pallas, 1772) türünün ekzoiskeletinden ilk kez kitin elde edilmiştir. FTIR, SEM, TGA ve XRD değerlerine bakılarak bu kitinin karakterizasyonu yapılmıştır. Elde edilen kitinin alfa formda olduğu, termal kararlılığının yüksek, yüzey morfolojisinin nanofiber ve nanoporlardan oluştuğu görülmüş ve alternatif bir kitin kaynağı olabileceği önerilmiştir.
Proje Numarası
FMT 2022/14- LÜTEP
Kaynakça
- Galed, G., & Heras, A. (2009). Functional Characterization of Chitin and Chitosan. Current Chemical Biology, 3, 203-230. https://doi.org/10.2174/187231309788166415
- Demir, Z., & Seyyar, O. (2017). Isolation and Physicochemical Characterization of Chitin and Chitosan from Aculepeira ceropegia (Walckenaer, 1802). Acta Biologica Turcica, 33(4), 252-257.
- Dutta, P.K., Dutta, J., & Tripathi, V. (2004). Chitin and chitosan: Chemistry, properties and applications, Journal of Scientific and Industrial Research, 63, 20-31. https://doi.org/10.1016/j.foodhyd.2010.08.008
- Erdek, M. (2019). Description of the new solifuge Gylippus (Paragylippus) hakkaricus sp. n. (Gylippidae, Solifugae). Zootaxa, 4695 (6), 559-567. https://doi.org/10.11646/zootaxa.4695.6.6
- Ifuku, S., Nomura, R., Morimoto, M., & Saimoto, H. (2011). Preparation of chitin nanofibers from mushrooms. Materials, 4(8), 1417-1425. https://doi.org/10.3390/ma4081417
- Jang, M.K., Kong, B.G., Jeong, Y.I., Lee, C.H., & Nah, J.W. (2004). Physicochemical characterization of α‐chitin, β‐chitin, and γ‐chitin separated from natural resources. Journal of Polymer Science Part A: Polymer Chemistry, 42, 3423-3432. https://doi.org/10.1002/pola.20176
- Juarez-de la Rosa, B.A., Quintana, P., Ardisson, P.L., Yanez-Limon, J.M., & Alvarado-Gil, J.J. (2011). Effects of thermal treatments on the structure of two black coral species chitinous exoskeleton. Journal of Materials Science, 47, 990-998. https://doi.org/10.1007/s10853-011-5878-9
- Kaya, M., Tozak, K.Ö., Baran, T., Sezen, G., & Sargin, I. (2013). Natural porous and nano fiber chitin structure from Gammarus argaeus (Gammaridae, Crustacea)” EXCLI Journal, 12, 503-510. https://doi.org/10.17877/DE290R-7353
- Kaya M., Seyyar, O., Baran T., & Türkeş, T. (2014a). Bat guano as new and attractive chitin and chitosan source, Frontiers in Zoology, 11, 59. https://doi.org/10.1186/s12983-014-0059-8
- Kaya, M., Seyyar, O., Baran, T., Erdogan, S., & Kar, M. (2014b). A physicochemical characterization of fully acetylated chitin structure isolated from two spider species: With new surface morphology, International Journal of Biological Macromolecules, 65, 553-558. https://doi.org/10.1016/j.ijbiomac.2014.02.010
- Kaya, M., Lelesius, E., Nagrockaite, R., Sargin, I., Arslan, G., Mol, A., Baran, T., Can, E., & Bitim, B. (2015). Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species, PloS One 10, e0115531, 1-14. https://doi.org/10.1371/journal.pone.0115531
- Kaya, M., Baublys, V., Sargin, I., Satkauskiene, I., Paulauskas, A., Akyuz, B., Bulut, E., Tubelyte, V., Baran, T., Seyyar, O., Kabalak, M., & Yürtmen, H. (2016). How Taxonomic Relations Affect the Physicochemical Properties of Chitin, Food Biophysics,11, 10-19. https://doi.org/10.1007/s11483-015-9404-5
- Liu, S., Sun, J., Yu, L., Zhang, C., Bi, J., Zhu, F., Qu, M., Jiang, C., & Yang, Q. (2012). Extraction and characterization of chitin from the beetle Holotrichia parallela Motschulsky. Molecules, 17, 4604-4611. https://doi.org/10.3390/molecules17044604
- Punzo, F. (1998). The Biology of Camel Spiders (Arachnida, Solifugae). Kluwer Academic Publishers, Boston/Dordrecht/London. 301 pp.
- Sajomsang, W., & Gonil, P. (2010). Preparation and characterization of α-chitin from cicada sloughs, Materials Science and Engineering: C, 30, 357-363. https://doi.org/10.1016/j.msec.2009.11.014
- Seyyar, F., & Demir, H. (2017). Extraction and Physicochemical Characterization of Chitin from Phalangium opilio Linnaeus, 1758 (Arachnida: Opiliones). Acta Biologica Turcica, 33(4), 258-263.
- Tang W.J., Fernandez J., Sohn J.J., & Amemiya C.T. (2015). Chitin is endogenously produced in vertebrates. Current Biology, 25(7), 897-900. https://doi.org/10.1016/j.cub.2015.01.058
- Wang, Y., Chang, Y., Yu, L., Zhang, C., Xu, X., Xue, Y., Li, Z., & Xue, C. (2013). Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydrate Polymers, 92, 90-97. https://doi.org/10.1016/j.carbpol.2012.09.084
- Yen, M.T., & Mau, J.L. (2006). Preparation of fungal chitin and chitosan from shiitake stipes, Fungal Science, 21 (1,2), 1-11.
- Yen, M.T., & Mau, J.L. (2007). Physico-chemical characterization of fungal chitosan from shiitake stipes. Food Science and Technology, 40, 472-479. https://doi.org/10.1016/j.lwt.2006.01.002
- Yen, M.T., Yang J.H., & Mau, J.L. (2009). Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 75, 15-21. https://doi.org/10.1016/j.carbpol.2008.06.006
- Zhang, M., Haga, A., Sekigushi, H., & Hirano, S. (2000). Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. International Journal Biological Macromolecules, 27, 99-105. pmid:10704991. https://doi.org/10.1016/s0141-8130(99)00123-3
Extraction and Physicochemical Characterization of Chitin from Galeodes araneoides (Pallas, 1772) (Arachnida: Solifugae)
Yıl 2024,
, 75 - 79, 31.12.2024
Dilek Demirtaş
,
Osman Seyyar
,
Fatma Seyyar
Öz
: Chitin is a biomaterial which has a high potential of use in many areas of technology. It is found as a structural material in the outer skeletons of arthropods, the cell walls of mushrooms, and the shells of marine invertebrates. Chitin is the most abundant biopolymer in nature after cellulose and contains nitrogen in its structure. In recent years, apart from traditional chitin sources, insects, arachnids, coral/crustacean eggs and even bat guano have been reported as alternative chitin sources. In this study, chitin was first extracted from external skeleton of a solifugids species, Galeodes araneoides (Pallas, 1772) and the isolated chitin was characterized by SEM, FTIR, XRD, and TGA. The obtained chitin has been found to have high thermal stability, nanofiber and nanoporous surface, and alpha form and it is suggested that it can be an alternative chitin source.
Destekleyen Kurum
Niğde Ömer Halisdemir University
Proje Numarası
FMT 2022/14- LÜTEP
Teşekkür
The authors are indebted to the Niğde Ömer Halisdemir University Scientific Research Project Unit (Project No.FMT 2022/14- LÜTEP) for financial support of this work. This paper includes some datas from the master thesis of the first author.
Kaynakça
- Galed, G., & Heras, A. (2009). Functional Characterization of Chitin and Chitosan. Current Chemical Biology, 3, 203-230. https://doi.org/10.2174/187231309788166415
- Demir, Z., & Seyyar, O. (2017). Isolation and Physicochemical Characterization of Chitin and Chitosan from Aculepeira ceropegia (Walckenaer, 1802). Acta Biologica Turcica, 33(4), 252-257.
- Dutta, P.K., Dutta, J., & Tripathi, V. (2004). Chitin and chitosan: Chemistry, properties and applications, Journal of Scientific and Industrial Research, 63, 20-31. https://doi.org/10.1016/j.foodhyd.2010.08.008
- Erdek, M. (2019). Description of the new solifuge Gylippus (Paragylippus) hakkaricus sp. n. (Gylippidae, Solifugae). Zootaxa, 4695 (6), 559-567. https://doi.org/10.11646/zootaxa.4695.6.6
- Ifuku, S., Nomura, R., Morimoto, M., & Saimoto, H. (2011). Preparation of chitin nanofibers from mushrooms. Materials, 4(8), 1417-1425. https://doi.org/10.3390/ma4081417
- Jang, M.K., Kong, B.G., Jeong, Y.I., Lee, C.H., & Nah, J.W. (2004). Physicochemical characterization of α‐chitin, β‐chitin, and γ‐chitin separated from natural resources. Journal of Polymer Science Part A: Polymer Chemistry, 42, 3423-3432. https://doi.org/10.1002/pola.20176
- Juarez-de la Rosa, B.A., Quintana, P., Ardisson, P.L., Yanez-Limon, J.M., & Alvarado-Gil, J.J. (2011). Effects of thermal treatments on the structure of two black coral species chitinous exoskeleton. Journal of Materials Science, 47, 990-998. https://doi.org/10.1007/s10853-011-5878-9
- Kaya, M., Tozak, K.Ö., Baran, T., Sezen, G., & Sargin, I. (2013). Natural porous and nano fiber chitin structure from Gammarus argaeus (Gammaridae, Crustacea)” EXCLI Journal, 12, 503-510. https://doi.org/10.17877/DE290R-7353
- Kaya M., Seyyar, O., Baran T., & Türkeş, T. (2014a). Bat guano as new and attractive chitin and chitosan source, Frontiers in Zoology, 11, 59. https://doi.org/10.1186/s12983-014-0059-8
- Kaya, M., Seyyar, O., Baran, T., Erdogan, S., & Kar, M. (2014b). A physicochemical characterization of fully acetylated chitin structure isolated from two spider species: With new surface morphology, International Journal of Biological Macromolecules, 65, 553-558. https://doi.org/10.1016/j.ijbiomac.2014.02.010
- Kaya, M., Lelesius, E., Nagrockaite, R., Sargin, I., Arslan, G., Mol, A., Baran, T., Can, E., & Bitim, B. (2015). Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species, PloS One 10, e0115531, 1-14. https://doi.org/10.1371/journal.pone.0115531
- Kaya, M., Baublys, V., Sargin, I., Satkauskiene, I., Paulauskas, A., Akyuz, B., Bulut, E., Tubelyte, V., Baran, T., Seyyar, O., Kabalak, M., & Yürtmen, H. (2016). How Taxonomic Relations Affect the Physicochemical Properties of Chitin, Food Biophysics,11, 10-19. https://doi.org/10.1007/s11483-015-9404-5
- Liu, S., Sun, J., Yu, L., Zhang, C., Bi, J., Zhu, F., Qu, M., Jiang, C., & Yang, Q. (2012). Extraction and characterization of chitin from the beetle Holotrichia parallela Motschulsky. Molecules, 17, 4604-4611. https://doi.org/10.3390/molecules17044604
- Punzo, F. (1998). The Biology of Camel Spiders (Arachnida, Solifugae). Kluwer Academic Publishers, Boston/Dordrecht/London. 301 pp.
- Sajomsang, W., & Gonil, P. (2010). Preparation and characterization of α-chitin from cicada sloughs, Materials Science and Engineering: C, 30, 357-363. https://doi.org/10.1016/j.msec.2009.11.014
- Seyyar, F., & Demir, H. (2017). Extraction and Physicochemical Characterization of Chitin from Phalangium opilio Linnaeus, 1758 (Arachnida: Opiliones). Acta Biologica Turcica, 33(4), 258-263.
- Tang W.J., Fernandez J., Sohn J.J., & Amemiya C.T. (2015). Chitin is endogenously produced in vertebrates. Current Biology, 25(7), 897-900. https://doi.org/10.1016/j.cub.2015.01.058
- Wang, Y., Chang, Y., Yu, L., Zhang, C., Xu, X., Xue, Y., Li, Z., & Xue, C. (2013). Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydrate Polymers, 92, 90-97. https://doi.org/10.1016/j.carbpol.2012.09.084
- Yen, M.T., & Mau, J.L. (2006). Preparation of fungal chitin and chitosan from shiitake stipes, Fungal Science, 21 (1,2), 1-11.
- Yen, M.T., & Mau, J.L. (2007). Physico-chemical characterization of fungal chitosan from shiitake stipes. Food Science and Technology, 40, 472-479. https://doi.org/10.1016/j.lwt.2006.01.002
- Yen, M.T., Yang J.H., & Mau, J.L. (2009). Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 75, 15-21. https://doi.org/10.1016/j.carbpol.2008.06.006
- Zhang, M., Haga, A., Sekigushi, H., & Hirano, S. (2000). Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. International Journal Biological Macromolecules, 27, 99-105. pmid:10704991. https://doi.org/10.1016/s0141-8130(99)00123-3