Araştırma Makalesi
BibTex RIS Kaynak Göster

Lens culinaris'te Sitokinin ve Oksinin Bitki Gelişimi ve Vasküler Dokular Üzerine Etkileri

Yıl 2020, Cilt: 4 Sayı: 1, 16 - 21, 29.06.2020
https://doi.org/10.31594/commagene.704271

Öz

Sitokininler ve oksinlerin Lens culinaris’te daha önce çalışılmasına rağmen bunların vasküler dokular ve bitki gelişimi üzerine olan etkileri hakkında bilgi bulunmamaktadır. Bu çalışmada, bütün mercimek bitkicikleri çeşitli BAP (1 mg/L) ve NAA dozlarında (0.3, 0.6, 0.9, 1.2 mg/L) periyodik 7, 14, 21, 28 ve 35 gün aralıklarında in vitro koşullarda kültüre alınmıştır. Bitki boyu, her bitkideki sürgün sayısı ve köklenmenin rejenerasyon davranışlarının; floem ve ksilem bölgesinin kalınlığının gelişimsel davranışı ve gövde çapının kalınlığı ile bir ilişkisinin olup olmadığı araştırılmıştır. Çoğu durumda, 7 günlük kültür koşulları tüm bitki büyüme düzenleyicileri dozlarında en iyi sonuçları göstermiştir. Yüksek dozdaki BAP ve NAA uygulamaları, uzatılan kültür günü sürelerinde bitki gelişimi ve vasküler dokular üzerinde sağlıksız gelişime neden olmuştur. Floem bölgesinin kalınlığı kontrol grubunda en yüksek olurken, ksilem bölgesinin yalnızca 1 mg/L BAP uygulamasında en yüksek kalınlığa sahip olduğu bulunmuştur. Ayrıca, yüksek BAP ve NAA dozları floem ve ksilem bölgesinde deformasyona ve daralmaya neden olmuştur ve gövde çapında daralmaya yol açmıştır. Bu sonuçlar, uzayan kültür günü sürelerindeki bitki büyüme düzenleyicileri uygulamalarının olumsuz etkilerini ortaya çıkarmaktadır. Vasküler dokular ve diğer dokulardaki hasarı azaltmak, dokulardaki istenen büyüme ve gelişmeyi elde etmek için gün periyodunun tam olarak optimize edilmesi gerektiği sonucuna varılmaktadır.

Kaynakça

  • Aloni, R. (1995). The Induction of Vascular Tissues by Auxin and Cytokinin. Plant Hormones, 531-546.
  • Bhatty, R.S. (1988). Composition and quality of lentil (Lens culinaris Medik.): a review. Canadian Institute of Food Science and Technology Journal, 21, 144-160. https://doi.org/10.1016/S0315-5463(88)70770-1
  • Björklund, S., Antti, H., Uddestrand, I., Moritz, T., & Sundberg, B. (2007). Cross-talk between gibberellin and auxin in development of Populus wood: Gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. The Plant Journal, 52, 499-511. https://doi:10.1111/j.1365-313X.2007. 03250.x
  • Chhabra, G., Chaudhary, D., Varma, M., Sainger, M., & Jaiwal, P.K. (2008). TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiology and Molecular Biology of Plants, 14, 347-353. https://doi:10.1007/s12298-008-0033-z
  • Eriksson, M.E., Israelsson, M., Olsson, O., & Moritz, T. (2000). Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, 18, 7847–7888. https://doi: 10.1038/77355
  • Esau, K. (1977). Anatomy of seed plants. 2nd ed. New York, John Wiley and Sons. 550 pp.
  • Evans, D.A., Sharp, W.R., & Flick, C.E. (1981). Growth and behavior of cell cultures: embryogenesis and organogenesis. In: T. A. Thorpe (Ed), Plant cell culture: methods and applications in agriculture. New York, USA, Academic Press, 45-113.
  • Grant, M., & Fuller, K.W. (1970). Biochemical changes associated with the growth of root tips of Vicia faba in vitro, and the effect of 2,4-dichlorophenoxyacetic acid. Journal of Experimental Botany, 22, 49-59.
  • Guo, H., Wang, Y., Liu, H., Hu, P., Jia, Y. Zhang, C., Wang, Y., Gu, Yang, C., & Wang, C. (2015). Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla. International Journal of Molecular Sciences, 16, 22960–22975. https://doi: 10.3390/ijms160922960
  • Johansen, D.A. (1940). Plant Microtechnique. New York, USA, McGraw-Hill Book Company, 523 pp.
  • Johnsson, C., Jin, X., Xue, W., Dubreuil, C., Lezhneva, L., & Fischer, U. (2018). The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors. Physiologia Plantarum, 165(4), 673 689. https://doi:10.1111/ppl.12766
  • Khanam, R., Sarker, R.H., Hoque, M.I., & Haque, M.M. (1995). In vitro root morphogenesis in lentil (Lens culinaris Medik.). Plant Tissue Culture, 5, 35–41.
  • Khawar, K.M., Sancak, C., Uranbey, C., & Ozcan, S. (2004). Effect of Thidiazuron on shoot regeneration from different explants of lentil (Lens culinaris Medik.) via organogenesis. Turkish Journal of Botany, 28, 421-426.
  • Khawar, K.M., & Ozcan, S. (2002). Effect of indole-3-butyric acid on in vitro root development in lentil (Lens culinaris Medik.). Turkish Journal of Botany, 26(2), 109-111.
  • Little, C.H.A., & Pharis, R.P. (1995). Hormonal control of radial and longitudinal growth in the tree stem. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, 281–319.
  • Matsumoto-Kitano, M., Kusumoto, T., Tarkowski, P., Kinoshita-Tsujimura, K., Václavíková, K., Miyawaki, K., & Kakimoto, T. (2008). Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences, 105(50), 20027-20031. https://doi: 10.1073/pnas.0805619105
  • Milhinhos, A., & Miguel, C.M. (2013). Hormone interactions in xylem development: a matter of signals. Plant Cell Report, 32, 867–883. https://doi:10.1007/s00299-013-1420-7
  • Monder, M.J., Kozakiewicz, P., & Jankowskab, A. (2019). Anatomical structure changes in stem cuttings of rambler roses induced with plant origin preparations. Scientia Horticulturae, 255, 242-254. https://doi:10.1016/j.scienta.2019.05.034
  • Müller, D., & Leyser, O. (2011). Auxin, cytokinin and the control of shoot branching. Annals of Botany, 107, 1203–1212. https://doi.org/10.1093/aob/mcr069
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
  • Ozdemir, F.A., Turker, M., & Khawar, K.M. (2015). Effects of plant growth regulators on lentil (Lens culinaris Medik.) cultivars. Bangladesh Journal of Botany, 44(1), 79-84. https://doi: 10.3329/bjb.v44i1.22727
  • Polanco, M.C., Pelaez, M.I., & Ruiz, M.L. (1988). Factor affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik. Plant Cell Tissue Organ Culture, 15, 175–182.
  • Polanco, M.C., & Ruiz, M.L. (1997). Effect of benzylaminopurine on in vitro and in vivo root development in lentil. Plant Cell Reports, 44(17), 22-26. https://doi:10.1007/s002990050345
  • Sarker, R.H., Mustafa, B.M., Biswas, A., Mahbub, S., Nahar, M., Hashem, R., & Hoque, M.I. (2003). In vitro regeneration in lentil (Lens culinaris Medik.). Plant Tissue Culture, 13, 155–163.
  • Savidge, R.A. (1996). Xylogenesis, genetic and environmental regulation. International Association of Wood Anatomists Journal, 17(3), 269-310. https://doi:10.1163/22941932-90001580
  • Saxena, P.K., & King, J. (1987). Morphogenesis in lentil: plant regeneration from callus cultures of Lens culinaris Medik. via somatic embryogenesis. Plant Science, 52, 223–227.
  • Scott, P.C., & Norris, L.A. (1970). Separation of auxin and ethylene in pea roots. Nature, 227, 1366-1367.
  • Sevimay, C.S., Khawar, K.M., & Yuzbasioglu, E. (2005). Adventitious shoot regeneration from different explants of wild lentil (Lens culinaris subsp. orientalis). Biotechnology & Biotechnological Equipment, 19(2), 46-49.
  • Solh, M., & Erskine, W. (1984). Genetic Resources of Lentils, Genetic Resources and Their Exploitation-Chickpeas, Faba Beans and Lentils. In J.R. Witcombe, W. Erskine(Eds), Martinus Nijhoff/Dr. W. Junk Publishers, Advances in Agricultural Biotechnology, 6, 205-221. https://doi.org/10.1007/978-94-009-6131-9_17
  • Su, Y.H., Liu, Y.B., & Zhang, X.S. (2011). Auxin-cytokinin interaction regulates meristem development. Molecular Plant, 4(4), 616–625. https://doi.org/10.1093/mp/ssr007
  • Yuan, H., Zhao, L., Guo, W., Yu, Y., Tao, L, Zhang, L., Song, X., Huang, W., Cheng, L., Chen, J., Guan, F., Wu, G., & Li, H. (2019). Exogenous Application of Plant growth regulators Promotes Growth and Regulates Expression of Wood Formation-Related Genes in Populus simonii × P. nigra. International Journal of Molecular Sciences, 20(3), 792. https://doi: 10.3390/ijms20030792

Effects of Cytokinin and Auxin on Plant Development and Vascular Tissues in Lens culinaris

Yıl 2020, Cilt: 4 Sayı: 1, 16 - 21, 29.06.2020
https://doi.org/10.31594/commagene.704271

Öz

Cytokinins and auxins were studied in Lens culinaris before; however, there was lack of information about their effects on vascular tissues and their relation with plant development. In this study, intact lentil seedlings were treated with different doses of BAP (1 mg/L) and NAA (0.3, 0.6, 0.9, 1.2 mg/L) with periodic intervals of 7, 14, 21, 28, and 35 days under in vitro conditions. The behaviors of plant height, number of shoots per plant, and rooting were investigated to find if their regeneration behavior is related with the developmental behavior of phloem and xylem thickness and stem radius. In most instances, seven-day culture conditions in all plant growth regulators (PGRs) doses demonstrated the best results. BAP and NAA treatments with high doses on prolonged days of culture caused unhealthy growing on plant development and vascular tissues. While phloem region thickness was the highest in control group, xylem region was found to have the highest thickness in 1 mg/L BAP treatment used singly. Moreover, high doses of BAP and NAA caused deformity and shrinking in phloem and xylem regions that also lead to shrinking in stem radius. These results reveal negative effects of BAP and NAA treatments on prolonged days of culture and conclude that the time period of treatment must be optimized precisely to avoid damages to vascular and other tissues and promote desirable growth and development of tissues.

Teşekkür

This study was derived from a M.Sc. thesis of the first author at Department of Agricultural Sciences at Institute of Natural and Applied Sciences, Usak University, Usak, Turkey. The authors would like to express their gratitude to Assoc. Prof. Dr. Ahmet Kahraman from Department of Biology, Faculty of Arts and Sciences, Plant Systematics and Phylogenetics Laboratory (PSPL), Usak University for his constructive comments on the manuscript and excellent technical assistance on anatomical study.

Kaynakça

  • Aloni, R. (1995). The Induction of Vascular Tissues by Auxin and Cytokinin. Plant Hormones, 531-546.
  • Bhatty, R.S. (1988). Composition and quality of lentil (Lens culinaris Medik.): a review. Canadian Institute of Food Science and Technology Journal, 21, 144-160. https://doi.org/10.1016/S0315-5463(88)70770-1
  • Björklund, S., Antti, H., Uddestrand, I., Moritz, T., & Sundberg, B. (2007). Cross-talk between gibberellin and auxin in development of Populus wood: Gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. The Plant Journal, 52, 499-511. https://doi:10.1111/j.1365-313X.2007. 03250.x
  • Chhabra, G., Chaudhary, D., Varma, M., Sainger, M., & Jaiwal, P.K. (2008). TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiology and Molecular Biology of Plants, 14, 347-353. https://doi:10.1007/s12298-008-0033-z
  • Eriksson, M.E., Israelsson, M., Olsson, O., & Moritz, T. (2000). Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, 18, 7847–7888. https://doi: 10.1038/77355
  • Esau, K. (1977). Anatomy of seed plants. 2nd ed. New York, John Wiley and Sons. 550 pp.
  • Evans, D.A., Sharp, W.R., & Flick, C.E. (1981). Growth and behavior of cell cultures: embryogenesis and organogenesis. In: T. A. Thorpe (Ed), Plant cell culture: methods and applications in agriculture. New York, USA, Academic Press, 45-113.
  • Grant, M., & Fuller, K.W. (1970). Biochemical changes associated with the growth of root tips of Vicia faba in vitro, and the effect of 2,4-dichlorophenoxyacetic acid. Journal of Experimental Botany, 22, 49-59.
  • Guo, H., Wang, Y., Liu, H., Hu, P., Jia, Y. Zhang, C., Wang, Y., Gu, Yang, C., & Wang, C. (2015). Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla. International Journal of Molecular Sciences, 16, 22960–22975. https://doi: 10.3390/ijms160922960
  • Johansen, D.A. (1940). Plant Microtechnique. New York, USA, McGraw-Hill Book Company, 523 pp.
  • Johnsson, C., Jin, X., Xue, W., Dubreuil, C., Lezhneva, L., & Fischer, U. (2018). The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors. Physiologia Plantarum, 165(4), 673 689. https://doi:10.1111/ppl.12766
  • Khanam, R., Sarker, R.H., Hoque, M.I., & Haque, M.M. (1995). In vitro root morphogenesis in lentil (Lens culinaris Medik.). Plant Tissue Culture, 5, 35–41.
  • Khawar, K.M., Sancak, C., Uranbey, C., & Ozcan, S. (2004). Effect of Thidiazuron on shoot regeneration from different explants of lentil (Lens culinaris Medik.) via organogenesis. Turkish Journal of Botany, 28, 421-426.
  • Khawar, K.M., & Ozcan, S. (2002). Effect of indole-3-butyric acid on in vitro root development in lentil (Lens culinaris Medik.). Turkish Journal of Botany, 26(2), 109-111.
  • Little, C.H.A., & Pharis, R.P. (1995). Hormonal control of radial and longitudinal growth in the tree stem. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, 281–319.
  • Matsumoto-Kitano, M., Kusumoto, T., Tarkowski, P., Kinoshita-Tsujimura, K., Václavíková, K., Miyawaki, K., & Kakimoto, T. (2008). Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences, 105(50), 20027-20031. https://doi: 10.1073/pnas.0805619105
  • Milhinhos, A., & Miguel, C.M. (2013). Hormone interactions in xylem development: a matter of signals. Plant Cell Report, 32, 867–883. https://doi:10.1007/s00299-013-1420-7
  • Monder, M.J., Kozakiewicz, P., & Jankowskab, A. (2019). Anatomical structure changes in stem cuttings of rambler roses induced with plant origin preparations. Scientia Horticulturae, 255, 242-254. https://doi:10.1016/j.scienta.2019.05.034
  • Müller, D., & Leyser, O. (2011). Auxin, cytokinin and the control of shoot branching. Annals of Botany, 107, 1203–1212. https://doi.org/10.1093/aob/mcr069
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
  • Ozdemir, F.A., Turker, M., & Khawar, K.M. (2015). Effects of plant growth regulators on lentil (Lens culinaris Medik.) cultivars. Bangladesh Journal of Botany, 44(1), 79-84. https://doi: 10.3329/bjb.v44i1.22727
  • Polanco, M.C., Pelaez, M.I., & Ruiz, M.L. (1988). Factor affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik. Plant Cell Tissue Organ Culture, 15, 175–182.
  • Polanco, M.C., & Ruiz, M.L. (1997). Effect of benzylaminopurine on in vitro and in vivo root development in lentil. Plant Cell Reports, 44(17), 22-26. https://doi:10.1007/s002990050345
  • Sarker, R.H., Mustafa, B.M., Biswas, A., Mahbub, S., Nahar, M., Hashem, R., & Hoque, M.I. (2003). In vitro regeneration in lentil (Lens culinaris Medik.). Plant Tissue Culture, 13, 155–163.
  • Savidge, R.A. (1996). Xylogenesis, genetic and environmental regulation. International Association of Wood Anatomists Journal, 17(3), 269-310. https://doi:10.1163/22941932-90001580
  • Saxena, P.K., & King, J. (1987). Morphogenesis in lentil: plant regeneration from callus cultures of Lens culinaris Medik. via somatic embryogenesis. Plant Science, 52, 223–227.
  • Scott, P.C., & Norris, L.A. (1970). Separation of auxin and ethylene in pea roots. Nature, 227, 1366-1367.
  • Sevimay, C.S., Khawar, K.M., & Yuzbasioglu, E. (2005). Adventitious shoot regeneration from different explants of wild lentil (Lens culinaris subsp. orientalis). Biotechnology & Biotechnological Equipment, 19(2), 46-49.
  • Solh, M., & Erskine, W. (1984). Genetic Resources of Lentils, Genetic Resources and Their Exploitation-Chickpeas, Faba Beans and Lentils. In J.R. Witcombe, W. Erskine(Eds), Martinus Nijhoff/Dr. W. Junk Publishers, Advances in Agricultural Biotechnology, 6, 205-221. https://doi.org/10.1007/978-94-009-6131-9_17
  • Su, Y.H., Liu, Y.B., & Zhang, X.S. (2011). Auxin-cytokinin interaction regulates meristem development. Molecular Plant, 4(4), 616–625. https://doi.org/10.1093/mp/ssr007
  • Yuan, H., Zhao, L., Guo, W., Yu, Y., Tao, L, Zhang, L., Song, X., Huang, W., Cheng, L., Chen, J., Guan, F., Wu, G., & Li, H. (2019). Exogenous Application of Plant growth regulators Promotes Growth and Regulates Expression of Wood Formation-Related Genes in Populus simonii × P. nigra. International Journal of Molecular Sciences, 20(3), 792. https://doi: 10.3390/ijms20030792
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Haydar Küplemez 0000-0003-4094-1318

Mehmet Uğur Yıldırım 0000-0002-7419-0682

Yayımlanma Tarihi 29 Haziran 2020
Gönderilme Tarihi 16 Mart 2020
Kabul Tarihi 19 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 1

Kaynak Göster

APA Küplemez, H., & Yıldırım, M. U. (2020). Effects of Cytokinin and Auxin on Plant Development and Vascular Tissues in Lens culinaris. Commagene Journal of Biology, 4(1), 16-21. https://doi.org/10.31594/commagene.704271
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.