Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of toxic effects of deltamethrin on the primary gill cell culture of Lake Van fish [Alburnus tarichi (Güldenstadt 1814)]

Yıl 2021, Cilt: 5 Sayı: 2, 156 - 160, 31.12.2021
https://doi.org/10.31594/commagene.1007389

Öz

Lake Van fish is one of few vertebrate species living in the lake, therefore it plays a very useful role as an indicator in determining lake pollution. Deltamethrin (DLT) is one of the pesticides used extensively in the Lake Van basin. In this study, it was aimed to determine the effects of DLT on the primary gill cell culture. Different concentrations of DLT (0.01, 0.1, 1, and 10 µM) were added to primary gill cell culture and the total antioxidant and oxidant levels, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were determined at the end of 24 and 48 h of administration. While the highest concentration of applied DLT (10 µM) caused a significant increase in the total oxidant level at 48 h, a decrease in the total antioxidant level was detected at 24 and 48 h (P < 0.05). The increase in MDA level, which is the product of lipid peroxidation of unsaturated fatty acids, with DLT concentrations of 1–10 µM at the end of 24 and 48 h was found to be significant (P < 0.05). As a result, it can be said that DLT caused oxidative stress in the primary gill cell culture of Lake Van fish exposed to concentrations of 1 and 10 µM, but no genotoxic effect was observed.

Destekleyen Kurum

the Scientific Research Projects Coordinator of Van Yüzüncü Yıl University

Proje Numarası

FBA-2019-7491

Teşekkür

This study was supported by the Scientific Research Projects Coordinator of Van Yüzüncü Yıl University under project number FBA-2019-7491. I would like to thank Necati ÖZOK and Ahmet R. OĞUZ for their contribution to the laboratory studies herein.

Kaynakça

  • Abdel-Daim, M.M., Abuzead, S.M., & Halawa, S.M. (2013). Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS One 8(9), e72991. https://doi.org/10.1371/journal.pone.0072991
  • Amin, K.A., & Hashem, K.S. (2012). Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC Veterinary Research, 8(1), 45. https://doi.org/10.1186/1746-6148-8-45
  • Bagchi, D., Bagchi, M., & Hassoun, E.A. (1995). In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology, 104(1-3), 129–140. https://doi.org/10.1016/0300-483x(95)03156-a.
  • Benli, A., Selvi, M., & Sarikaya, R. (2009). Acute Toxicity of Deltamethrin on Nile Tilapia (Oreochromis niloticus L. 1758) Larvae and Fry. Gazi University Journal of Science, 22(1), 1-4.
  • Blahova, J., Plhalová, L., & Hostovský, M. (2013). Oxidative stress responses in zebrafish (Danio rerio) after 319 subchronic exposure to atrazine. Food and Chemical Toxicology, 61, 82–85. https://doi.org/10.1016/j.fct.2013.02.041.
  • Bradbury, S.P., & Coats, J.R. (1989). Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environmental Toxicology and Chemistry, 8(5), 373–380. https://doi.org/10.1002/etc.5620080503
  • Cengiz, E.I. (2006). Gill and kidney histopathology in the freshwater fish Cyprinus carpio after acute exposure to deltamethrin. Environmental Toxicology and Pharmacology, 22(2), 200–204. https://doi.org/10.1016/j.etap.2006.03.006
  • Danulat, E., & Selçuk, B. (1992). Life history and environmental conditions of the anadromous Chalcalburnus tarichi (Cyprinidae) in the highly alkaline Lake Van, eastern Anatolia, Turkey. Archiv für Hydrobiologie, 126(1), 105–125.
  • Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4), 277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015.
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
  • Freshney, R.I. (2015). Culture of animal cells: a manual of basic technique and specialized applications. John Wiley & Sons.
  • Freyhof, J. (2014). Alburnus tarichi. The IUCN Red List of Threatened Species. 2014: e.T4375A19222678.
  • Ghelichpour, M.T., Mirghaed, A., & Hoseini, S.M. (2019). Plasma antioxidant and hepatic enzymes activity, thyroid hormones alterations and health status of liver tissue in common carp (Cyprinus carpio) exposed to lufenuron. Aquaculture, 516, 734634. https://doi.org/10.1016/j.aquaculture.2019.734634
  • Glickman, A.H., & Lech, J.J. (1982). Differential toxicity of trans-permethrin in rainbow trout and mice: II. Role of target organ sensitivity. Toxicology and Applied Pharmacology, 66(2), 162–171. https://doi.org/10.1016/0041-008X(82)90280-0
  • Hedayati, A., & Tarkhani, R. (2014). Hematological and gill histopathological changes in iridescent shark, Pangasius hypophthalmus (Sauvage, 1878) exposed to sublethal diazinon and deltamethrin concentrations. Fish Physiology and Biochemistry, 40(3), 715–720. https://doi.org/10.1007/s10695-013-9878-3.
  • John, A.B., & Steven, D.A. (1978). Microsomal lipid peroxidation in methods in enzymology. New York: Academic Press, 302–310 pp.
  • Kiraççakali, A.N., & Oğuz, A.R. (2020). Determination of cytotoxic, genotoxic, and oxidative damage from deltamethrin on primary hepatocyte culture of Lake Van fish, Alburnus tarichi. Chemistry and Ecology, 36(7), 651–662. https://doi.org/10.1080/02757540.2020.1781098
  • Köprücü, K., & Aydın, R. (2004). The toxic effects of pyrethroid deltamethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Pesticide Biochemistry and Physiology, 80(1), 47–53. https://doi.org/10.1016/j.pestbp.2004.05.004
  • Lu, Q., Sun, Y., & Ares, I. (2019). Deltamethrin toxicity: A review of oxidative stress and metabolism. Environmental Research, 170, 260–281. https://doi.org/10.1016/j.envres.2018.12.045.
  • Mirghaed, A.T., Baes, M., & Hoseini, S.M. (2020). Humoral immune responses and gill antioxidant-related gene expression of common carp (Cyprinus carpio) exposed to lufenuron and flonicamide. Fish Physiology and Biochemistry, 46(2), 739–746. https://doi.org/10.1007/s10695-019-00747-x.
  • Monteiro, D.A., De Almeida, J.A., & Rantin, F.T. (2006). Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 143(2), 141–149. https://doi.org/10.1016/j.cbpc.2006.01.004.
  • Nunes, M.E., Müller, T.E., & Murussi, C. (2018). Oxidative effects of the acute exposure to a pesticide mixture of cypermethrin and chlorpyrifos on carp and zebrafish– A comparative study. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 206, 48–53. https://doi.org/10.1016/j.cbpc.2018.03.002
  • Oğuz, A.R., & Yeltekin, A. (2014). Metal levels in the liver, muscle, gill, intestine, and gonad of Lake Van fish (Chalcalburnus tarichi) with abnormal gonad. Biological Trace Element Research, 159(1-3), 219–223. https://doi.org/10.1007/s12011-014-9980-0.
  • Part, P., Norrgren, L., Bergstrom, E., & Sjoberg, P. (1993). Primary cultures of epithelial cells from rainbow trout gills. Journal of Experimental Biology, 175(1), 219-232. https://doi.org/10.1242/jeb.175.1.219
  • Paul, E.A., & Simonin, H.A. (2006). Toxicity of three mosquito insecticides to crayfish. Bulletin of Environmental Contamination and Toxicology, 76(4), 614–621. https://doi.org/10.1007/s00128-006-0964-4.
  • Petrovici, A., Strungaru, S.A., & Nicoara, M. (2020). Toxicity of deltamethrin to zebrafish gonads revealed by cellular biomarkers. Journal of Marine Science and Engineering, 8(2), 73. https://doi.org/10.3390/jmse8020073
  • Pinedo-Gil, J., Martín-Diana, A.B., & Bertotto, D. (2018). Effects of dietary inclusions of red beet and betaine on the acute stress response and muscle lipid peroxidation in rainbow trout. Fish Physiology and Biochemistry, 44(3), 939–948. https://doi.org/10.1007/s10695-018-0483-3.
  • Rao, J.V. (2006). Toxic effects of novel organophosphorus insecticide (RPR-V) on certain biochemical parameters of euryhaline fish, Oreochromis mossambicus. Pesticide Biochemistry and Physiology, 86(2), 78–84. https://doi.org/10.1016/j.pestbp.2006.01.008
  • Sayeed, I., Parvez, S., & Pandey, S. (2003). Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctata Bloch. Ecotoxicology and Environmental Safety, 56, 295–301. https://doi.org/10.1016/S0147-6513(03)00009-5
  • Slaninova, A., Smutna, M., & Modra, H. (2009). A review: oxidative stress in fish induced by pesticides. Neuro Enocrinology Letters, 30, 2–12.
  • Stara, A., Zuskova, E., & Machova, J. (2015). Effects of acute exposure to deltamethrin and recovery time on common carp (Cyprinus carpio L.). Neuro Enocrinology Letters, 36, 133–140.
  • Ünal, G., Türkoğlu, V., & Oğuz, A.R. (2007). Gonadal histology and some biochemical characteristics of Chalcalburnus tarichi (Pallas, 1811) having abnormal gonads. Fish Physiology and Biochemistry, 33(2), 153–165. https://doi.org/10.1007/s10695-006-9126-1
  • Üner, N., Oruç, E.Ö., & Sevgiler, Y. (2006). Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environmental Toxicology and Pharmacology, 21(3), 241–245. https://doi.org/10.1016/j.etap.2005.08.007.
  • Wang, Z.J., Liu, X.H., & Jin, L. (2016). Transcriptome profiling analysis of rare minnow (Gobiocypris rarus) gills after waterborne cadmium exposure. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 19, 120–128. https://doi.org/10.1016/j.cbd.2016.05.003.
  • Wheelock, C.E., Eder, K.J., & Werner, I. (2005). Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. Aquatic Toxicology, 74(2), 172–192. https://doi.org/10.1016/j.aquatox.2005.05.009.
  • Yildirim, M.Z., Benli, A.Ç.K., & Selvi, M. (2006). Acute toxicity, behavioral changes, and histopathological effects of deltamethrin on tissues (gills, liver, brain, spleen, kidney, muscle, skin) of Nile tilapia (Oreochromis niloticus L.) fingerlings. Environmental Toxicology, 21(6), 614–620. https://doi.org/10.1002/tox.20225.
Yıl 2021, Cilt: 5 Sayı: 2, 156 - 160, 31.12.2021
https://doi.org/10.31594/commagene.1007389

Öz

Van Gölü balığı, Van Gölü'nde yaşayan az sayıdaki omurgalı türlerinden biridir bu yüzden gölün kirliliğinin belirlenmesinde çok önemli bir gösterge olarak rol almaktadır. Deltamethrin (DLT), Van Gölü havzasında yaygın olarak kullanılan pestisitlerden biridir. Bu çalışmada, DLT'nin primer solungaç hücre kültürü üzerine etkilerinin belirlenmesi amaçlanmıştır. Primer solungaç hücre kültürüne farklı konsantrasyonlarda (0.01, 0.1, 1 ve 10 µM) eklenen DLT’nin 24 ve 48 saat sonunda toplam antioksidan, oksidan, malondialdehit (MDA) ve 8-hidroksi-2'-deoksiguanozin (8-OHdG) seviyeleri belirlenmiştir. Uygulanan en yüksek DLT konsantrasyonu (10 µM) 48 saatte toplam oksidan seviyesinde önemli bir artışa neden olurken, 24 ve 48 saatte toplam antioksidan seviyesinde bir azalma tespit edildi (P < 0.05). Doymamış yağ asitlerinin lipid peroksidasyonunun ürünü olan MDA seviyesindeki artış, 24 ve 48 saat sonunda 1-10 µM DLT konsantrasyonları ile anlamlı bulunmuştur (P < 0.05). DLT uygulama konsantrasyonlarının hiçbirinde 8-OHdG seviyesinde herhangi bir değişiklik gözlenmedi (P > 0.05). Sonuç olarak, 1 ve 10 µM konsantrasyonlara maruz bırakılan Van Gölü balıklarının primer solungaç hücre kültüründe DLT'nin oksidatif strese neden olduğu ancak herhangi bir genotoksik etkinin gözlenmediği söylenebilir.

Proje Numarası

FBA-2019-7491

Kaynakça

  • Abdel-Daim, M.M., Abuzead, S.M., & Halawa, S.M. (2013). Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS One 8(9), e72991. https://doi.org/10.1371/journal.pone.0072991
  • Amin, K.A., & Hashem, K.S. (2012). Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC Veterinary Research, 8(1), 45. https://doi.org/10.1186/1746-6148-8-45
  • Bagchi, D., Bagchi, M., & Hassoun, E.A. (1995). In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology, 104(1-3), 129–140. https://doi.org/10.1016/0300-483x(95)03156-a.
  • Benli, A., Selvi, M., & Sarikaya, R. (2009). Acute Toxicity of Deltamethrin on Nile Tilapia (Oreochromis niloticus L. 1758) Larvae and Fry. Gazi University Journal of Science, 22(1), 1-4.
  • Blahova, J., Plhalová, L., & Hostovský, M. (2013). Oxidative stress responses in zebrafish (Danio rerio) after 319 subchronic exposure to atrazine. Food and Chemical Toxicology, 61, 82–85. https://doi.org/10.1016/j.fct.2013.02.041.
  • Bradbury, S.P., & Coats, J.R. (1989). Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environmental Toxicology and Chemistry, 8(5), 373–380. https://doi.org/10.1002/etc.5620080503
  • Cengiz, E.I. (2006). Gill and kidney histopathology in the freshwater fish Cyprinus carpio after acute exposure to deltamethrin. Environmental Toxicology and Pharmacology, 22(2), 200–204. https://doi.org/10.1016/j.etap.2006.03.006
  • Danulat, E., & Selçuk, B. (1992). Life history and environmental conditions of the anadromous Chalcalburnus tarichi (Cyprinidae) in the highly alkaline Lake Van, eastern Anatolia, Turkey. Archiv für Hydrobiologie, 126(1), 105–125.
  • Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4), 277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015.
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
  • Freshney, R.I. (2015). Culture of animal cells: a manual of basic technique and specialized applications. John Wiley & Sons.
  • Freyhof, J. (2014). Alburnus tarichi. The IUCN Red List of Threatened Species. 2014: e.T4375A19222678.
  • Ghelichpour, M.T., Mirghaed, A., & Hoseini, S.M. (2019). Plasma antioxidant and hepatic enzymes activity, thyroid hormones alterations and health status of liver tissue in common carp (Cyprinus carpio) exposed to lufenuron. Aquaculture, 516, 734634. https://doi.org/10.1016/j.aquaculture.2019.734634
  • Glickman, A.H., & Lech, J.J. (1982). Differential toxicity of trans-permethrin in rainbow trout and mice: II. Role of target organ sensitivity. Toxicology and Applied Pharmacology, 66(2), 162–171. https://doi.org/10.1016/0041-008X(82)90280-0
  • Hedayati, A., & Tarkhani, R. (2014). Hematological and gill histopathological changes in iridescent shark, Pangasius hypophthalmus (Sauvage, 1878) exposed to sublethal diazinon and deltamethrin concentrations. Fish Physiology and Biochemistry, 40(3), 715–720. https://doi.org/10.1007/s10695-013-9878-3.
  • John, A.B., & Steven, D.A. (1978). Microsomal lipid peroxidation in methods in enzymology. New York: Academic Press, 302–310 pp.
  • Kiraççakali, A.N., & Oğuz, A.R. (2020). Determination of cytotoxic, genotoxic, and oxidative damage from deltamethrin on primary hepatocyte culture of Lake Van fish, Alburnus tarichi. Chemistry and Ecology, 36(7), 651–662. https://doi.org/10.1080/02757540.2020.1781098
  • Köprücü, K., & Aydın, R. (2004). The toxic effects of pyrethroid deltamethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Pesticide Biochemistry and Physiology, 80(1), 47–53. https://doi.org/10.1016/j.pestbp.2004.05.004
  • Lu, Q., Sun, Y., & Ares, I. (2019). Deltamethrin toxicity: A review of oxidative stress and metabolism. Environmental Research, 170, 260–281. https://doi.org/10.1016/j.envres.2018.12.045.
  • Mirghaed, A.T., Baes, M., & Hoseini, S.M. (2020). Humoral immune responses and gill antioxidant-related gene expression of common carp (Cyprinus carpio) exposed to lufenuron and flonicamide. Fish Physiology and Biochemistry, 46(2), 739–746. https://doi.org/10.1007/s10695-019-00747-x.
  • Monteiro, D.A., De Almeida, J.A., & Rantin, F.T. (2006). Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 143(2), 141–149. https://doi.org/10.1016/j.cbpc.2006.01.004.
  • Nunes, M.E., Müller, T.E., & Murussi, C. (2018). Oxidative effects of the acute exposure to a pesticide mixture of cypermethrin and chlorpyrifos on carp and zebrafish– A comparative study. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 206, 48–53. https://doi.org/10.1016/j.cbpc.2018.03.002
  • Oğuz, A.R., & Yeltekin, A. (2014). Metal levels in the liver, muscle, gill, intestine, and gonad of Lake Van fish (Chalcalburnus tarichi) with abnormal gonad. Biological Trace Element Research, 159(1-3), 219–223. https://doi.org/10.1007/s12011-014-9980-0.
  • Part, P., Norrgren, L., Bergstrom, E., & Sjoberg, P. (1993). Primary cultures of epithelial cells from rainbow trout gills. Journal of Experimental Biology, 175(1), 219-232. https://doi.org/10.1242/jeb.175.1.219
  • Paul, E.A., & Simonin, H.A. (2006). Toxicity of three mosquito insecticides to crayfish. Bulletin of Environmental Contamination and Toxicology, 76(4), 614–621. https://doi.org/10.1007/s00128-006-0964-4.
  • Petrovici, A., Strungaru, S.A., & Nicoara, M. (2020). Toxicity of deltamethrin to zebrafish gonads revealed by cellular biomarkers. Journal of Marine Science and Engineering, 8(2), 73. https://doi.org/10.3390/jmse8020073
  • Pinedo-Gil, J., Martín-Diana, A.B., & Bertotto, D. (2018). Effects of dietary inclusions of red beet and betaine on the acute stress response and muscle lipid peroxidation in rainbow trout. Fish Physiology and Biochemistry, 44(3), 939–948. https://doi.org/10.1007/s10695-018-0483-3.
  • Rao, J.V. (2006). Toxic effects of novel organophosphorus insecticide (RPR-V) on certain biochemical parameters of euryhaline fish, Oreochromis mossambicus. Pesticide Biochemistry and Physiology, 86(2), 78–84. https://doi.org/10.1016/j.pestbp.2006.01.008
  • Sayeed, I., Parvez, S., & Pandey, S. (2003). Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctata Bloch. Ecotoxicology and Environmental Safety, 56, 295–301. https://doi.org/10.1016/S0147-6513(03)00009-5
  • Slaninova, A., Smutna, M., & Modra, H. (2009). A review: oxidative stress in fish induced by pesticides. Neuro Enocrinology Letters, 30, 2–12.
  • Stara, A., Zuskova, E., & Machova, J. (2015). Effects of acute exposure to deltamethrin and recovery time on common carp (Cyprinus carpio L.). Neuro Enocrinology Letters, 36, 133–140.
  • Ünal, G., Türkoğlu, V., & Oğuz, A.R. (2007). Gonadal histology and some biochemical characteristics of Chalcalburnus tarichi (Pallas, 1811) having abnormal gonads. Fish Physiology and Biochemistry, 33(2), 153–165. https://doi.org/10.1007/s10695-006-9126-1
  • Üner, N., Oruç, E.Ö., & Sevgiler, Y. (2006). Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environmental Toxicology and Pharmacology, 21(3), 241–245. https://doi.org/10.1016/j.etap.2005.08.007.
  • Wang, Z.J., Liu, X.H., & Jin, L. (2016). Transcriptome profiling analysis of rare minnow (Gobiocypris rarus) gills after waterborne cadmium exposure. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 19, 120–128. https://doi.org/10.1016/j.cbd.2016.05.003.
  • Wheelock, C.E., Eder, K.J., & Werner, I. (2005). Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. Aquatic Toxicology, 74(2), 172–192. https://doi.org/10.1016/j.aquatox.2005.05.009.
  • Yildirim, M.Z., Benli, A.Ç.K., & Selvi, M. (2006). Acute toxicity, behavioral changes, and histopathological effects of deltamethrin on tissues (gills, liver, brain, spleen, kidney, muscle, skin) of Nile tilapia (Oreochromis niloticus L.) fingerlings. Environmental Toxicology, 21(6), 614–620. https://doi.org/10.1002/tox.20225.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Elif Kaval Oğuz 0000-0003-0196-2693

Proje Numarası FBA-2019-7491
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 8 Ekim 2021
Kabul Tarihi 22 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

APA Kaval Oğuz, E. (2021). Determination of toxic effects of deltamethrin on the primary gill cell culture of Lake Van fish [Alburnus tarichi (Güldenstadt 1814)]. Commagene Journal of Biology, 5(2), 156-160. https://doi.org/10.31594/commagene.1007389
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.