Derleme
BibTex RIS Kaynak Göster

Gümüş Nanopartiküllerinin Biyosentezi ve Biyosensör Materyali Olarak Kullanımı

Yıl 2021, Cilt: 5 Sayı: 2, 214 - 221, 31.12.2021
https://doi.org/10.31594/commagene.941022

Öz

Nanopartiküllerin kullanılabileceği bilim alanlarını arttırmak amacıyla son zamanlarda çeşitli sentezleme metotları geliştirilmeye çalışılmaktadır. Bu metotlardan biri nanopartiküllerin bitkiler aracılığıyla sentezlenmesidir. Günümüzde biyosentez yönteminin kullanılması, fiziksel ve kimyasal yöntemler gibi geleneksel sentez yöntemlerinin sınırlamalarını ortadan kaldırmış, alternatif bir sentez yolu olarak geliştirilmiştir. Bitkisel nanofabrikalar olarak adlandırılan yeşil sentez ile bitkilerde bulunan primer ve sekonder metabolitler nanopartiküllerin indirgenmesi ve kapatıcılığını mümkün kılmaktadır. Bitkilerde bulunan alkaloidler, fenolikler, terpenoidler, ketonlar, polisakkaritler, proteinler, vitaminler, amino asitlerin fonksiyonel grupları iyon halindeki gümüş metalleri ile tepkimeye girerek “+” değerlikli metalleri “0” değerlikli nanometal yapılara indirgemektedir. Aynı zamanda sekonder metabolitlerin fonksiyonel grupları “0” değerlikli gümüş nanopartiküller ile bağlar oluşturarak gümüş nanopartiküllerin yüzeyini kaplar, böylece gümüş nanopartiküllerinin stabilizasyonu sağlanmış olur. Biyolojik yöntemler ile sentez hızlıdır, yüksek verim sağlar ve gümüş nanopartikülü üretimi maliyeti düşer. Aynı zamanda, biyosentez yoluyla nanopartikül üretimi canlı içinde gerçekleştiğinden çevre dostu bir tekniktir. Son teknoloji ile gümüş nanopartiküller, biyosensör ve fotogörüntüleme alanlarında öne çıkmıştır. Gümüş nanopartiküller ile bazı belirteçlerin spesifik olarak tespiti çeşitli çalışmalarla kanıtlanmıştır. Bu derlemede gümüş nanopartiküllerinin kullanım alanları, biyosentezi, stabilizasyonu, karakterizasyonu, antibakteriyel mekanizması ve biyosensör olarak kullanımına değinilecektir.

Kaynakça

  • Abbasi, B.H., Anjum, S., & Hano, C. (2017). Differential effects of in vitro cultures of Linum usitatissimum L. (Flax) on biosynthesis, stability, antibacterial and antileishmanial activities of zinc oxide nanoparticles: a mechanistic approach. Royal Society of Chemistry Advances, 7, 15931-15943. https://doi.org/10.1039/C7RA02070H
  • Abdalla, S.S.I., Katas, H., Chan, J.Y., Ganasan, P., Azmi, F., & Busra, M.F. (2020). Antimicrobial activity of multifaceted lactoferrin or graphene oxide functionalized silver nanocomposites biosynthesized using mushroom waste and chitosan. RSC Advances, 10, 4969-4983. https://doi.org/10.1039/C9RA08680C
  • Ahmed, S.A., Ahmad, M., Swami, B.L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7 (1), 17-28. https://doi.org/10.1016/j.jare.2015.02.007
  • Alqadi, M.K., Abo Noqtah, O.A., Alzoubi, F.Y., Alzouby, J., & Aljarrah, K. (2014). pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Materials Science-Poland, 32, 107-111. https://doi.org/10.2478/s13536-013-0166-9
  • Anjum, S., & Abbasi, B.H. (2016). Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L.. International Journal of Nanomedicine, 11, 715-728. https://doi.org/10.2147/IJN.S102359
  • Aref, M.S., & Salem, S.S. (2020). Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology, 27, 101689. https://doi.org/10.1016/j.bcab.2020.101689
  • Bao, D., Oh, Z.G., & Chen, Z. (2016). Characterization of Silver Nanoparticles Internalized by Arabidopsis Plants Using Single Particle ICP-MS Analysis. Frontiers in Plant Science, 7, 32. https://doi.org/10.3389/fpls.2016.00032
  • Baudot, C., Tan, C.M., & Kong, J.C. (2010). FTIR spectroscopy as a tool for nano-material characterization. Infrared Physics and Technology, 53, 434-438. https://doi.org/10.1016/j.infrared.2010.09.002
  • Calderón-Jiménez, B., Johnson, M.E., Montoro Bustos, A.R., Murphy, K.E., Winchester, M.R., & Vega Baudrit, J.R. (2017). Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Frontiers in Chemistry, 5(6). https://doi.org/10.3389/fchem.2017.00006
  • Chen, L., Xie, H., & Li, J. (2012). Electrochemical glucose biosensor based on silver nanoparticles/multiwalled carbon nanotubes modified electrode. Journal of Solid State Electrochemistry, 16, 3323-3329. https://doi.org/10.1007/s10008-012-1773-9
  • Chen, S., Quan, Y., Yu, Y.L., & Wang, J.H. (2017). Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomaterials Science and Engineering, 3, 313-321. https://doi.org/10.1021/acsbiomaterials.6b00644
  • Cheng, G.F., Huang, C.H., Zhao, J., Tan, X.L., Hep, G., & Fang, Y.Z. (2009). A Novel Electrochemical Biosensor for Deoxyribonucleic Acid Detection Based on Magnetite Nanoparticles. Chinese Journal of Analytical Chemistry, 37(2), 169-173. https://doi.org/10.1016/S1872-2040(08)60083-3
  • Choi, O., Yu, C.P., Esteban Fernández, G., & Hu, Z. (2010). Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Research, 44, 6095-6103. https://doi.org/10.1016/j.watres.2010.06.069
  • Fernando, I., & Zhou, Y. (2019) Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere, 216, 297-305. https://doi.org/10.1016/j.chemosphere.2018.10.122
  • Gholamreza, A., Varshosaz, J., & Shahbazi, N. (2014). Synthesis of silver nanoparticle using Portulaca oleracea L. extracts. Nanomedicine Journal, 1(2), 94-99.
  • Gonzalez, D.A.C, Leo, B.F., Ruenraroengsak, P., Chen, S., Goode, A.E., Theodorou, İ. G., ………… & Porter, A.E. (2017). Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Scientific Reports, 7, 42871. https://doi.org/10.1038/srep42871
  • Gorham, J.M., MacCuspie, R.I., Klein, K.L., Fairbrother, D.H., & Holbrook, D. (2012). UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions. Journal of Nanoparticle Research, 14. https://doi.org/10.1007/s11051-012-1139-3
  • Gudikandula, K., & Maringanti, S.C. (2016). Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience, 11(9). https://doi.org/10.1080/17458080.2016.1139196
  • Hegazy, H.G., Rabie, G.H., Shabaan, L.D., & Raie, D.S. (2014). Extracellular Synthesis of Silver Nanoparticles by Callus of Medicago sativa. Life Science Journal, 11(10), 1211-1214.
  • Hegazy, H.G., Shabaan, L.D., Rabie, G.H., & Raie, D.S. (2015). Biosynthesis of Silver Nanoparticles Using Cell Free Callus Exudates of Medicago sativa L. Pakistan Journal of Botany, 47(5), 1825-1829.
  • Howe, P.D., & Dobson, S. (2002). Silver and Silver Compounds: Environmental Aspects, World Health Organization & International Programme on Chemical Safety, Geneva.
  • Iravani, S., Korbekandi, H., Mirmohammadi, S.V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385-406.
  • Javed, R., Zia, M., Naz, S, Aisida, S.O., Ain, N., & Ao, Q. (2020). Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology, 18, 172. https://doi.org/10.1186/s12951-020-00704-4
  • Khatami, M., Nejad, M.S., Salari, S., & Almani, P.G.N. (2015). Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET Nanobiotechnology, 10, 4, 237-243. https://doi.org/10.1049/iet-nbt.2015.0078
  • Kim, J.Y., & Lee, J.S. 2012. Multiplexed DNA Detection with DNA-Functionalized Silver and Silver/Gold Nanoparticle Superstructure Probes. Bulletin of the Korean Chemical Society, 33(1), 221. http://dx.doi.org/10.5012/bkcs.2012.33.1.221
  • Kumar, K.S., & Kathireswari, P. (2016). Biological synthesis of Silver nanoparticles (Ag-NPS) by Lawsonia inermis (Henna) plant aqueous extract and its antimicrobial activity against human pathogens. International Journal of Current Microbiology and Applied Sciences, 5(3), 926-937. http://dx.doi.org/10.20546/ijcmas.2016.503.107
  • Kvitek, L., Panáček, A., Soukupová, J., Kolář, M., Večeřová, R., Prucek, R., Holecová, M., & Zbořil, R. (2008). Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). The Journal of Physical Chemistry C, 112(15), 5825-5834. https://doi.org/10.1021/jp711616v
  • Liu, X., Knauer, M., Ivleva, N.P., Niessner, R., & Haisch, C. (2010). Synthesis of Core−Shell Surface-Enhanced Raman Tags for Bioimaging. Analytical Chemistry, 82(1), 441-446. https://doi.org/10.1021/ac902573p
  • Loiseau, A., Asila, V., Boitel-Aullen, G., Lam, M., Salmain, M., & Boujday, S. (2019). Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors, 9(2), 78. https://doi.org/10.3390/bios9020078
  • Lukman, A.I., Gong, B., Marjo, C.E., Roessner, U., & Harris, U.T. (2011). Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. Journal of Colloid and Interface Science, 353, 433-444. https://doi.org/10.1016/j.jcis.2010.09.088
  • Mandeh, M., Omidi, M., & Rahaie, M. (2012). In Vitro Influences of TiO2 Nanoparticles on Barley (Hordeum vulgare L.). Tissue Culture, Biological Trace Element Research, 150, 376-380. https://doi.org/10.1007/s12011-012-9480-z
  • Moldovan, B., David, L., Achim, M., Clichici, S., & Filip, G.A. (2016). A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. Journal of Molecular Liquids, 221, 271-278. https://doi.org/10.1016/j.molliq.2016.06.003
  • Mude, N., Ingle, A., Gade, A., & Rai, M. (2009). Synthesis of Silver Nanoparticles Using Callus Extract of Carica papaya – A First Report. Journal of Plant Biochemistry and Biotechnology, 18(1), 83-86. https://doi.org/10.1007/BF03263300
  • Mukherjee, S., Chowdhury D., Kotcherlakota R., Patra S., Vinothkumar B., Bhadra M.P., …… & Patra, C.R. (2014). Potential theranostics application of bio-synthesised silver nanoparticles (4-in-1 system). Theranostics, 4, 316-335. https://doi.org/10.7150/thno.7819
  • Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N.M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L.. Colloids and Surfaces B: Biointerfaces, 79, 488-493. https://doi.org/10.1016/j.colsurfb.2010.05.018
  • Naja, G., Bouvrette, P., Hrapovic, S., & Luong, J.H.T. (2007). Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst, 132(7), 679-86. https://doi.org/10.1039/B701160A
  • Netala, V.R., Kotakadi, V.S., Nagam, V., Bobbu, P., Ghosh, S.B., & Tartte, V. (2015). First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Applied Nanoscience, 5, 801-807. https://doi.org/10.1007/s13204-014-0374-6
  • Oliveira, P. F. M., Michalchuk, A. A. L., Marquardt, J., Feiler, T., Prinz, C., Torresi, R. M., & Emmerling, F. (2020). Investigating the Role of Reducing Agents on Mechanosynthesis of Au Nanoparticles. CrystEngComm, 22, 6261-6267. https://doi.org/10.1039/D0CE00826E
  • Pal, S., Nisi, R., Stoppa, M., & Licciulli, A. (2017). Silver-Functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega, 2, 3632-3639. https://doi.org/10.1021/acsomega.7b00442
  • Parvathiraja, C., Shailajha, S., Shanavas, S., & Gurung J. (2021). Biosynthesis of silver nanoparticles by Cyperus pangorei and its potential in structural, optical and catalytic dye degradation. Applied Nanoscience, 11, 477-491. https://doi.org/10.1007/s13204-020-01585-7
  • Patra, J.K., Kwon, Y., & Baek, K.H. (2016). Green biosynthesis of gold nanoparticles by onion peel extract: Synthesis, characterization and biological activities. Advanced Powder Technology, 27, 2204-2213. https://doi.org/10.1016/j.apt.2016.08.005
  • Ramanathan, S., Gopinath, S.C.B., Anbu, P., Lakshmipriya, T., Kasim, F.H., & Lee, C.G. (2018). Eco-friendly synthesis of Solanum trilobatum extract-capped silver nanoparticles is compatible with good antimicrobial activities. Journal of Molecular Structure, 1160, 80-91. https://doi.org/10.1016/j.molstruc.2018.01.056
  • Rasheed, T., Bilal, M., Iqbal, H.M.N., & Li, C. (2017). Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids and Surfaces B: Biointerfaces, 158, 408-15. https://doi.org/10.1016/j.colsurfb.2017.07.020
  • Rashid, S., Azeem, M., Khan, S.A., Shah, M.M., & Ahmad, R. (2019). Characterization and synergistic antibacterial potential of green synthesized silver nanoparticles using aqueous root extracts of important medicinal plants of Pakistan. Colloids and Surfaces B: Biointerfaces, 179, 317-25. https://doi.org/10.1016/j.colsurfb.2019.04.016
  • Rashmi, V., Prabhushankar, H.B., & Sanjay, K.R. (2021). Centella asiatica L. callus mediated biosynthesis of silver nanoparticles, optimization using central composite design, and study on their antioxidant activity. Plant Cell Tissue Organ Culture, 146, 515-529. https://doi.org/10.1007/s11240-021-02086-3
  • Sallah, A., Naomi, R., Utami, N.D., Mohammad, A.W., Mahmoudi, E., Mustafa, N., & Fauzi, B. (2020). The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials, 10(8), 1566. https://doi.org/10.3390/nano10081566
  • Satyavani, K., Ramanathan, Y., & Gurudeeban, S. (2011). Green Synthesis of Silver Nanoparticles by Using Stem Derived Callus Extract of Bitter Apple (Citrullus Colocynthis). Digest Journal of Nanomaterials and Biostructures, 6(3), 1019-1024. https://doi.org/10.1007/1019_Satyavani.pdf
  • Sharifi-Rad, M., Pohl, P., Epifano, F., & Álvarez-Suarez, J.M. (2020). Green Synthesis of Silver Nanoparticles Using Astragalus tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and Anti-Inflammatory Activities, Nanomaterials, 10, 2383. https://doi.org/10.3390/nano10122383
  • Siddiqi, K.S., & Husen, A. (2017). Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. Journal of Trace Elements in Medicine and Biology, 40, 10-23. https://doi.org/10.1016/j.jtemb.2016.11.012
  • Singh, P., Kim, Y.J., Zhang, D., & Yang, D.C. (2016). Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends in Biotechnology, 34, 7. https://doi.org/10.1016/j.tibtech.2016.02.006
  • Song, J., Wu, F., Wan, Y., & Ma, L. (2015). Colorimetric detection of melamine in pretreated milk using silver nanoparticles functionalized with sulfanilic acid. Food Control, 50, 356-361. https://doi.org/10.1016/j.foodcont.2014.08.049
  • Sotiriou, G.A., & Pratsinis, S.E. (2011). Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Current Opinion in Chemical Engineering, 1(1), 3-10. https://doi.org/10.1016/j.coche.2011.07.001
  • Szymanski, M.S., & Porter, R.A. (2013). Preparation and quality control of silver nanoparticle–antibody conjugate for use in electrochemical immunoassays. Journal of Immunological Methods, 387(1-2), 262-269. https://doi.org/10.1016/j.jim.2012.11.003
  • Tan, P., Li, H.S., Wang, J., & Gopinath, S.C.B. (2020). Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnology and Applied Biochemistry, https://doi.org/10.1002/bab.2045
  • Tian, X., Jiang, X., Welch, C., Croley, T.R., Wong, T.Y., Chen, C., ……. & Yin, J.J. (2018). Bactericidal Effects of Silver Nanoparticles on Lactobacilli and the Underlying Mechanism. ACS Applied Materials & Interfaces, 10, 8443-8450. https://doi.org/10.1021/acsami.7b17274
  • Toh, S., Jurkschat, K., & Compton, R.G. (2015). The Influence of the Capping Agent on the Oxidation of Silver Nanoparticles: Nano-impacts versus Stripping Voltammetry. Chemistry-A European Journal, 21, 2998-3004. https://doi.org/10.1002/chem.201406278
  • Vanaja, M., & Annadurai, G. (2013). Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied Nanoscience, 3, 217-223. https://doi.org/10.1007/s13204-012-0121-9
  • Vennila, K., Chitra, L., Balagurunathan, R., & Palvannan, T. (2018). Comparison of biological activities of selenium and silver nanoparticles attached with bioactive phytoconstituents: green synthesized using Spermacoce hispida extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 5-15. https://doi.org/10.1088/2043-6254/aa9f4d
  • Wakshlak, R.B.K., Pedahzur, R., & Avnir, D. (2015). Antibacterial activity of silver-killed bacteria: The “zombies” effect. Scientific Reports, 5, 1-5. https://doi.org/10.1038/srep09555
  • Xia, Q.H., Ma, Y.J., & Wang, J.W. (2016). Biosynthesis of Silver Nanoparticles Using Taxus yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells. Nanomaterials, 6, 160. https://doi.org/10.3390/nano6090160
  • Xuan, Z., Li, M., Rong, P., Wang, W., Li, Y., & Liu, D. (2016). Plasmonic ELISA based on the controlled growth of silver nanoparticles. Nanoscale, 39. https://doi.org/10.1039/C6NR06079J
  • Zhang, H., & Zhang, C. (2014). Transport of silver nanoparticles capped with different stabilizers in water saturated porous media. Journal of Materials and Environmental Science, 5:231-236.
  • Zhao, L., Yu, R.J., Ma, W., Han, H.X., Tian, H., Qian, R.C., & Long, Y.T. (2017). Sensitive detection of protein biomarkers using silver nanoparticles enhanced immunofluorescence assay. Theranostics, 7(4), 876-883. https://www.thno.org/v07p0876.htm
  • Zook, J.M., Long, S.E., Cleveland, D., Geronimo, C.L.A., & MacCuspie, R.I. (2011). Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV–visible absorbance. Analytical and Bioanalytical Chemistry, 401, 1993. https://doi.org/10.1007/s00216-011-5266-y

The Biosynthesis of Silver Nanoparticles and their Use as a Biosensor Material

Yıl 2021, Cilt: 5 Sayı: 2, 214 - 221, 31.12.2021
https://doi.org/10.31594/commagene.941022

Öz

Various synthesis methods are being developed in order to increase the number of scientific fields where nanoparticles can be used. Recently, the biosynthesis methods have eliminated the limitations of the traditional synthesis methods such as physical and chemical ones. They have been also developed as an alternative synthesis method. With green synthesis called herbal nanofactories, primary and secondary metabolites in plants enable the reduction and capping of nanoparticles. The functional groups of alkaloids, phenolics, terpenoids, ketones, polysaccharides, proteins, vitamins, and amino acids in plants react with silver metals in ionic form and reduce “+” valued metals to “0” valued nanostructures. At the same time, functional groups of secondary metabolites form bonds with “0” valued silver nanometals and cover the surface of silver nanometals; thus, stabilization is achieved. Synthesis by biological methods provides high efficiency and rapid synthesis and the production cost of silver nanoparticle decreases. Moreover, biosynthesis is an environment-friendly technique as it takes place inside a living being. With the latest technology, silver nanoparticles stand out in the fields of biosensor and photoimaging. In this review, in which areas silver nanoparticles are used and their biosynthesis, stabilization, characterization, antibacterial mechanism, and use as a biosensor will be discussed.

Kaynakça

  • Abbasi, B.H., Anjum, S., & Hano, C. (2017). Differential effects of in vitro cultures of Linum usitatissimum L. (Flax) on biosynthesis, stability, antibacterial and antileishmanial activities of zinc oxide nanoparticles: a mechanistic approach. Royal Society of Chemistry Advances, 7, 15931-15943. https://doi.org/10.1039/C7RA02070H
  • Abdalla, S.S.I., Katas, H., Chan, J.Y., Ganasan, P., Azmi, F., & Busra, M.F. (2020). Antimicrobial activity of multifaceted lactoferrin or graphene oxide functionalized silver nanocomposites biosynthesized using mushroom waste and chitosan. RSC Advances, 10, 4969-4983. https://doi.org/10.1039/C9RA08680C
  • Ahmed, S.A., Ahmad, M., Swami, B.L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7 (1), 17-28. https://doi.org/10.1016/j.jare.2015.02.007
  • Alqadi, M.K., Abo Noqtah, O.A., Alzoubi, F.Y., Alzouby, J., & Aljarrah, K. (2014). pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Materials Science-Poland, 32, 107-111. https://doi.org/10.2478/s13536-013-0166-9
  • Anjum, S., & Abbasi, B.H. (2016). Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L.. International Journal of Nanomedicine, 11, 715-728. https://doi.org/10.2147/IJN.S102359
  • Aref, M.S., & Salem, S.S. (2020). Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology, 27, 101689. https://doi.org/10.1016/j.bcab.2020.101689
  • Bao, D., Oh, Z.G., & Chen, Z. (2016). Characterization of Silver Nanoparticles Internalized by Arabidopsis Plants Using Single Particle ICP-MS Analysis. Frontiers in Plant Science, 7, 32. https://doi.org/10.3389/fpls.2016.00032
  • Baudot, C., Tan, C.M., & Kong, J.C. (2010). FTIR spectroscopy as a tool for nano-material characterization. Infrared Physics and Technology, 53, 434-438. https://doi.org/10.1016/j.infrared.2010.09.002
  • Calderón-Jiménez, B., Johnson, M.E., Montoro Bustos, A.R., Murphy, K.E., Winchester, M.R., & Vega Baudrit, J.R. (2017). Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Frontiers in Chemistry, 5(6). https://doi.org/10.3389/fchem.2017.00006
  • Chen, L., Xie, H., & Li, J. (2012). Electrochemical glucose biosensor based on silver nanoparticles/multiwalled carbon nanotubes modified electrode. Journal of Solid State Electrochemistry, 16, 3323-3329. https://doi.org/10.1007/s10008-012-1773-9
  • Chen, S., Quan, Y., Yu, Y.L., & Wang, J.H. (2017). Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomaterials Science and Engineering, 3, 313-321. https://doi.org/10.1021/acsbiomaterials.6b00644
  • Cheng, G.F., Huang, C.H., Zhao, J., Tan, X.L., Hep, G., & Fang, Y.Z. (2009). A Novel Electrochemical Biosensor for Deoxyribonucleic Acid Detection Based on Magnetite Nanoparticles. Chinese Journal of Analytical Chemistry, 37(2), 169-173. https://doi.org/10.1016/S1872-2040(08)60083-3
  • Choi, O., Yu, C.P., Esteban Fernández, G., & Hu, Z. (2010). Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Research, 44, 6095-6103. https://doi.org/10.1016/j.watres.2010.06.069
  • Fernando, I., & Zhou, Y. (2019) Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere, 216, 297-305. https://doi.org/10.1016/j.chemosphere.2018.10.122
  • Gholamreza, A., Varshosaz, J., & Shahbazi, N. (2014). Synthesis of silver nanoparticle using Portulaca oleracea L. extracts. Nanomedicine Journal, 1(2), 94-99.
  • Gonzalez, D.A.C, Leo, B.F., Ruenraroengsak, P., Chen, S., Goode, A.E., Theodorou, İ. G., ………… & Porter, A.E. (2017). Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Scientific Reports, 7, 42871. https://doi.org/10.1038/srep42871
  • Gorham, J.M., MacCuspie, R.I., Klein, K.L., Fairbrother, D.H., & Holbrook, D. (2012). UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions. Journal of Nanoparticle Research, 14. https://doi.org/10.1007/s11051-012-1139-3
  • Gudikandula, K., & Maringanti, S.C. (2016). Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience, 11(9). https://doi.org/10.1080/17458080.2016.1139196
  • Hegazy, H.G., Rabie, G.H., Shabaan, L.D., & Raie, D.S. (2014). Extracellular Synthesis of Silver Nanoparticles by Callus of Medicago sativa. Life Science Journal, 11(10), 1211-1214.
  • Hegazy, H.G., Shabaan, L.D., Rabie, G.H., & Raie, D.S. (2015). Biosynthesis of Silver Nanoparticles Using Cell Free Callus Exudates of Medicago sativa L. Pakistan Journal of Botany, 47(5), 1825-1829.
  • Howe, P.D., & Dobson, S. (2002). Silver and Silver Compounds: Environmental Aspects, World Health Organization & International Programme on Chemical Safety, Geneva.
  • Iravani, S., Korbekandi, H., Mirmohammadi, S.V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385-406.
  • Javed, R., Zia, M., Naz, S, Aisida, S.O., Ain, N., & Ao, Q. (2020). Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology, 18, 172. https://doi.org/10.1186/s12951-020-00704-4
  • Khatami, M., Nejad, M.S., Salari, S., & Almani, P.G.N. (2015). Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET Nanobiotechnology, 10, 4, 237-243. https://doi.org/10.1049/iet-nbt.2015.0078
  • Kim, J.Y., & Lee, J.S. 2012. Multiplexed DNA Detection with DNA-Functionalized Silver and Silver/Gold Nanoparticle Superstructure Probes. Bulletin of the Korean Chemical Society, 33(1), 221. http://dx.doi.org/10.5012/bkcs.2012.33.1.221
  • Kumar, K.S., & Kathireswari, P. (2016). Biological synthesis of Silver nanoparticles (Ag-NPS) by Lawsonia inermis (Henna) plant aqueous extract and its antimicrobial activity against human pathogens. International Journal of Current Microbiology and Applied Sciences, 5(3), 926-937. http://dx.doi.org/10.20546/ijcmas.2016.503.107
  • Kvitek, L., Panáček, A., Soukupová, J., Kolář, M., Večeřová, R., Prucek, R., Holecová, M., & Zbořil, R. (2008). Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). The Journal of Physical Chemistry C, 112(15), 5825-5834. https://doi.org/10.1021/jp711616v
  • Liu, X., Knauer, M., Ivleva, N.P., Niessner, R., & Haisch, C. (2010). Synthesis of Core−Shell Surface-Enhanced Raman Tags for Bioimaging. Analytical Chemistry, 82(1), 441-446. https://doi.org/10.1021/ac902573p
  • Loiseau, A., Asila, V., Boitel-Aullen, G., Lam, M., Salmain, M., & Boujday, S. (2019). Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors, 9(2), 78. https://doi.org/10.3390/bios9020078
  • Lukman, A.I., Gong, B., Marjo, C.E., Roessner, U., & Harris, U.T. (2011). Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. Journal of Colloid and Interface Science, 353, 433-444. https://doi.org/10.1016/j.jcis.2010.09.088
  • Mandeh, M., Omidi, M., & Rahaie, M. (2012). In Vitro Influences of TiO2 Nanoparticles on Barley (Hordeum vulgare L.). Tissue Culture, Biological Trace Element Research, 150, 376-380. https://doi.org/10.1007/s12011-012-9480-z
  • Moldovan, B., David, L., Achim, M., Clichici, S., & Filip, G.A. (2016). A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. Journal of Molecular Liquids, 221, 271-278. https://doi.org/10.1016/j.molliq.2016.06.003
  • Mude, N., Ingle, A., Gade, A., & Rai, M. (2009). Synthesis of Silver Nanoparticles Using Callus Extract of Carica papaya – A First Report. Journal of Plant Biochemistry and Biotechnology, 18(1), 83-86. https://doi.org/10.1007/BF03263300
  • Mukherjee, S., Chowdhury D., Kotcherlakota R., Patra S., Vinothkumar B., Bhadra M.P., …… & Patra, C.R. (2014). Potential theranostics application of bio-synthesised silver nanoparticles (4-in-1 system). Theranostics, 4, 316-335. https://doi.org/10.7150/thno.7819
  • Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N.M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L.. Colloids and Surfaces B: Biointerfaces, 79, 488-493. https://doi.org/10.1016/j.colsurfb.2010.05.018
  • Naja, G., Bouvrette, P., Hrapovic, S., & Luong, J.H.T. (2007). Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst, 132(7), 679-86. https://doi.org/10.1039/B701160A
  • Netala, V.R., Kotakadi, V.S., Nagam, V., Bobbu, P., Ghosh, S.B., & Tartte, V. (2015). First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Applied Nanoscience, 5, 801-807. https://doi.org/10.1007/s13204-014-0374-6
  • Oliveira, P. F. M., Michalchuk, A. A. L., Marquardt, J., Feiler, T., Prinz, C., Torresi, R. M., & Emmerling, F. (2020). Investigating the Role of Reducing Agents on Mechanosynthesis of Au Nanoparticles. CrystEngComm, 22, 6261-6267. https://doi.org/10.1039/D0CE00826E
  • Pal, S., Nisi, R., Stoppa, M., & Licciulli, A. (2017). Silver-Functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega, 2, 3632-3639. https://doi.org/10.1021/acsomega.7b00442
  • Parvathiraja, C., Shailajha, S., Shanavas, S., & Gurung J. (2021). Biosynthesis of silver nanoparticles by Cyperus pangorei and its potential in structural, optical and catalytic dye degradation. Applied Nanoscience, 11, 477-491. https://doi.org/10.1007/s13204-020-01585-7
  • Patra, J.K., Kwon, Y., & Baek, K.H. (2016). Green biosynthesis of gold nanoparticles by onion peel extract: Synthesis, characterization and biological activities. Advanced Powder Technology, 27, 2204-2213. https://doi.org/10.1016/j.apt.2016.08.005
  • Ramanathan, S., Gopinath, S.C.B., Anbu, P., Lakshmipriya, T., Kasim, F.H., & Lee, C.G. (2018). Eco-friendly synthesis of Solanum trilobatum extract-capped silver nanoparticles is compatible with good antimicrobial activities. Journal of Molecular Structure, 1160, 80-91. https://doi.org/10.1016/j.molstruc.2018.01.056
  • Rasheed, T., Bilal, M., Iqbal, H.M.N., & Li, C. (2017). Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids and Surfaces B: Biointerfaces, 158, 408-15. https://doi.org/10.1016/j.colsurfb.2017.07.020
  • Rashid, S., Azeem, M., Khan, S.A., Shah, M.M., & Ahmad, R. (2019). Characterization and synergistic antibacterial potential of green synthesized silver nanoparticles using aqueous root extracts of important medicinal plants of Pakistan. Colloids and Surfaces B: Biointerfaces, 179, 317-25. https://doi.org/10.1016/j.colsurfb.2019.04.016
  • Rashmi, V., Prabhushankar, H.B., & Sanjay, K.R. (2021). Centella asiatica L. callus mediated biosynthesis of silver nanoparticles, optimization using central composite design, and study on their antioxidant activity. Plant Cell Tissue Organ Culture, 146, 515-529. https://doi.org/10.1007/s11240-021-02086-3
  • Sallah, A., Naomi, R., Utami, N.D., Mohammad, A.W., Mahmoudi, E., Mustafa, N., & Fauzi, B. (2020). The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials, 10(8), 1566. https://doi.org/10.3390/nano10081566
  • Satyavani, K., Ramanathan, Y., & Gurudeeban, S. (2011). Green Synthesis of Silver Nanoparticles by Using Stem Derived Callus Extract of Bitter Apple (Citrullus Colocynthis). Digest Journal of Nanomaterials and Biostructures, 6(3), 1019-1024. https://doi.org/10.1007/1019_Satyavani.pdf
  • Sharifi-Rad, M., Pohl, P., Epifano, F., & Álvarez-Suarez, J.M. (2020). Green Synthesis of Silver Nanoparticles Using Astragalus tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and Anti-Inflammatory Activities, Nanomaterials, 10, 2383. https://doi.org/10.3390/nano10122383
  • Siddiqi, K.S., & Husen, A. (2017). Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. Journal of Trace Elements in Medicine and Biology, 40, 10-23. https://doi.org/10.1016/j.jtemb.2016.11.012
  • Singh, P., Kim, Y.J., Zhang, D., & Yang, D.C. (2016). Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends in Biotechnology, 34, 7. https://doi.org/10.1016/j.tibtech.2016.02.006
  • Song, J., Wu, F., Wan, Y., & Ma, L. (2015). Colorimetric detection of melamine in pretreated milk using silver nanoparticles functionalized with sulfanilic acid. Food Control, 50, 356-361. https://doi.org/10.1016/j.foodcont.2014.08.049
  • Sotiriou, G.A., & Pratsinis, S.E. (2011). Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Current Opinion in Chemical Engineering, 1(1), 3-10. https://doi.org/10.1016/j.coche.2011.07.001
  • Szymanski, M.S., & Porter, R.A. (2013). Preparation and quality control of silver nanoparticle–antibody conjugate for use in electrochemical immunoassays. Journal of Immunological Methods, 387(1-2), 262-269. https://doi.org/10.1016/j.jim.2012.11.003
  • Tan, P., Li, H.S., Wang, J., & Gopinath, S.C.B. (2020). Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnology and Applied Biochemistry, https://doi.org/10.1002/bab.2045
  • Tian, X., Jiang, X., Welch, C., Croley, T.R., Wong, T.Y., Chen, C., ……. & Yin, J.J. (2018). Bactericidal Effects of Silver Nanoparticles on Lactobacilli and the Underlying Mechanism. ACS Applied Materials & Interfaces, 10, 8443-8450. https://doi.org/10.1021/acsami.7b17274
  • Toh, S., Jurkschat, K., & Compton, R.G. (2015). The Influence of the Capping Agent on the Oxidation of Silver Nanoparticles: Nano-impacts versus Stripping Voltammetry. Chemistry-A European Journal, 21, 2998-3004. https://doi.org/10.1002/chem.201406278
  • Vanaja, M., & Annadurai, G. (2013). Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied Nanoscience, 3, 217-223. https://doi.org/10.1007/s13204-012-0121-9
  • Vennila, K., Chitra, L., Balagurunathan, R., & Palvannan, T. (2018). Comparison of biological activities of selenium and silver nanoparticles attached with bioactive phytoconstituents: green synthesized using Spermacoce hispida extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 5-15. https://doi.org/10.1088/2043-6254/aa9f4d
  • Wakshlak, R.B.K., Pedahzur, R., & Avnir, D. (2015). Antibacterial activity of silver-killed bacteria: The “zombies” effect. Scientific Reports, 5, 1-5. https://doi.org/10.1038/srep09555
  • Xia, Q.H., Ma, Y.J., & Wang, J.W. (2016). Biosynthesis of Silver Nanoparticles Using Taxus yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells. Nanomaterials, 6, 160. https://doi.org/10.3390/nano6090160
  • Xuan, Z., Li, M., Rong, P., Wang, W., Li, Y., & Liu, D. (2016). Plasmonic ELISA based on the controlled growth of silver nanoparticles. Nanoscale, 39. https://doi.org/10.1039/C6NR06079J
  • Zhang, H., & Zhang, C. (2014). Transport of silver nanoparticles capped with different stabilizers in water saturated porous media. Journal of Materials and Environmental Science, 5:231-236.
  • Zhao, L., Yu, R.J., Ma, W., Han, H.X., Tian, H., Qian, R.C., & Long, Y.T. (2017). Sensitive detection of protein biomarkers using silver nanoparticles enhanced immunofluorescence assay. Theranostics, 7(4), 876-883. https://www.thno.org/v07p0876.htm
  • Zook, J.M., Long, S.E., Cleveland, D., Geronimo, C.L.A., & MacCuspie, R.I. (2011). Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV–visible absorbance. Analytical and Bioanalytical Chemistry, 401, 1993. https://doi.org/10.1007/s00216-011-5266-y
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Derleme Makaleler
Yazarlar

Havva Atar Bu kişi benim 0000-0003-0518-6265

Hatice Çölgeçen 0000-0001-8246-4279

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 22 Mayıs 2021
Kabul Tarihi 10 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

APA Atar, H., & Çölgeçen, H. (2021). Gümüş Nanopartiküllerinin Biyosentezi ve Biyosensör Materyali Olarak Kullanımı. Commagene Journal of Biology, 5(2), 214-221. https://doi.org/10.31594/commagene.941022
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.