Mısır (Zea mays L. ) ve Mercimek (Lens culinaris Medik) Gelişimi Üzerine Microcystis viridis ve Aphanizomenon gracile Karışımının Etkisi
Yıl 2023,
Cilt: 7 Sayı: 2, 141 - 146, 31.12.2023
Göksal Sezen
,
Çiğdem Küçük
Öz
Bu çalışmada Mısır (Zea mays L.) ve mercimek (Lens culinaris Medik) gelişimi üzerine etkilerini belirlemek amacıyla, Bazı Şanlıurfa baraj göllerinde yoğun olarak bulunan Microcystis viridis ve Aphanizomenon gracile ’in karışık kültürünün farklı dozlarının etkisi araştırılmıştır. Siyanobakteri karışımından hazırlanan dozlar, topraklara püskürtülerek uygulanmıştır. Kök uzunluğu bakımından mercimekte % 2’lik doz ve mısırda % 1 uygulama dozu sırasıyla %92 ve %60 daha etkili bulunmuştur. Siyanobakteri karışımının % 2’lik uygulama dozu bitki boyu artışında kontrole göre % 70 ve %42 daha etkili görülmüştür. Yeşil aksam ağırlıkları bakımından, % 2’lik doz uygulanan mısır ve mercimek, kontrole göre %164 ve %30 daha etkili bulunmuştur. Kök kuru ağırlığında ise % 2’lik uygulama dozu her iki bitkinin kontrole göre % 680 ve % 139 daha etkili okluğu tespit edilmiştir.
Proje Numarası
Harran Üniversitesi Bilimsel Araştırma Koordinatörlüğü (HÜBAP-19002) tarafından desteklenmiştir
Kaynakça
- Begum, Z.N.T., Mandal, R., & Islam, S. (2011). Effect of cyanobacterial biofertilizer on the growth and yield components of two HYV of rice. Journal of Algal Biomass Utilizzation, 2(1), 1-9.
- Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M.C., & Rouphael, Y. (2018). Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Frontiers in plant science, 9, 1782. https://doi.org/10.3389/fpls.2018.01782
- Cirés, S., & Ballot, A. (2016). A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae, 54, 21-43. https://doi.org/10.1016/j.hal.2015.09.007
- Dineshkumar, R., Subramanian, J., Gopalsamy, J., Jayasingam, P., Arumugam, A., Kannadasan, S., & Sampathkumar, P. (2019). The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste and Biomass Valorization, 10(5), 1101-1110. https://doi.org/10.1007/s12649-017-0123-7
- Elarroussia, H., Elmernissia, N., Benhimaa, R., El Kadmiria, I.M., Bendaou, N., Smouni, A. & Wahbya, I. (2016). Microalgae polysaccharides a promising plant growth biostimulant. Journal of Algal Biomass Utilization, 7, 55–63
- Gayathri, M., Kumar, P.S., Prabha, A.M.L., & Muralitharan, G., (2015). In vitro regeneration of Arachis hypogaea L. and Moringa oleifera Lam. using extracellular phytohormones from Aphanothece sp. MBDU 515. Algal Research,. 7, 100–105 https://doi.org/10.1016/j.algal.2014.12.009
- Haggag, W., Hoballah, M.M.E, Ali, R.R. (2018). Applications of nano biotechnological microalgae product for improve wheat productiv-ity in semai aird areas. International Jornal of Agricultural Technology, 14(5), 675–692.
- Haroun S.A., & Hussein, M.H. (2003). The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus termis plants grown in siliceous soil. Asian Jornal of Plant Sciences, 2, 944-951. https://doi.org/10.3923/ajps.2003.944.951
- Hussain, A., Hamayun, M., & Shah, S.T. (2013). Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12. Current Microbiology, 67, 624–630. https://doi.org/10.1007/s00284-013-0408-4
- Karthikeyan, N., Prasanna, R., Nain, L. & Kaushik, B.D. (2007). Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. European Journal of Soil Biology, 43(1), 23–30. https://doi.org/10.1016/j.ejsobi.2006.11.001
- Kholssi, R., Lougraimzi, H., Grina, F., Lorentz, J.F., Silva, I., Castaño-Sánchez, O., & Marks, E. A. (2022). Green agriculture: a review of the application of micro-and macroalgae and their impact on crop production on soil quality. Journal of Soil Science and Plant Nutrition, 22(4), 4627-4641. https://doi.org/10.1007/s42729-022-00944-3
- Kociński, M., Mankiewicz-Boczek, J., Jurczak, T., Spoof, L., Meriluoto, J., Rejmonczyk, E., & Soininen, J. (2013). Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environmental Science and Pollution Research, 20(8), 5243-5264. https://doi.org/10.1007/s11356-012-1426-7
- Komárek, J. (2013). Cyanoprokaryota, 3.Teil: Heterocytousgenera. In Büdel, B., G. Gartner, L. Krienitz & M. Schlager(eds), Süsswasserflora von Mitteleuropa 19(3). Springer, Berlin.
- Komárek, J., & Anagnostidis, K.C. (2008). Teil 1/Part 1: Chroococcales. Süßwasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds, Spektrum Akademischer Verlag: Heidelberg, Germany, 19(1), 1–556.
- Komárek, J., & Komárková, J. (2006). Diversity of Aphanizomenon-like cyanobacteria. Czech Phycology, 6, 1–32.
- Küzeci, U., Dağdemir, V., & Kahraman, T. (2019). Türkiye’de mercimek piyasasının ekonomik analizi ve pazarlama marjları. Anadolu Tarım Bilimleri Dergisi, 34(3), 279-288. https://doi.org/10.7161/omuanajas.522390
- Mahmud, A.A., Upadhyay, S.K., Srivastava, A.K., & Bhojiya, A.A. (2021). Biofertilizers: A Nexus between soil fertility and crop productivity under abiotic stress. Current Research in Environmental Sustainability, 3, 100063.https://doi.org/10.1016/j.crsust.2021.100063
- Mohiuddin, M., Das, A.K., Ghosh, D.C. (2000). Growth and productivity of wheat as influenced by integrated use of chemical fertilizer, biofertilizer and growth regulator. Indian Journal of Plant Physiology, 5, 334-338
- Obreht, Z., Kerby, N.W., Gantar, M., & Rowell, P. (1993). Effects of root-associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings, Biology Fertility of Soils, 15, 68e72. https://doi.org/10.1007/BF00336292
- Omar, H.H., Abdullatif, B.M., Al-Kazan, M.M., & El-Gendy, A.M. (2014). Various Applications of Seaweed Improves Growth and Biochemical Constituents of Zea mays L. and Helianthus Annuus L. Journal of Plant Nutrition, 38, 28–40. https://doi.org/10.1080/01904167.2014.911893
- Onay, M. (2023). Scope of the microalgae market: a demand and supply perspective. Microalgae-Based Systems: Process Integration and Process Intensification Approaches, 19. https://doi.org/10.1515/9783110781267-002
- Osman, M.E.H., El-Sheekh, M.M., El-Naggar, A.H. & Gheda, S.F. (2010). Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biology and Fertility of Soils, 46, 861–875. https://doi.org/10.1007/s00374-010-0491-7
- Pathak, J., Rajneesh., Maurya, P.K., Singh, S.P., Häder, D.P., & Sinha, R.P. (2018). Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives. Frontiers Environmental Science, 6, 7–19. https://doi.org/10.3389/fenvs.2018.00007
- Pereira, I., Ortega, R., Barrientos, L., Moya, M., Reyes, G., & Kramm, V. (2009). Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. Journal of applied phycology, 21(1), 135-144. https://doi.org/10.1007/s10811-008-9342-4
- Prasanna, R., Joshi M., Rana, A., & Nain, L. (2010). Modulation of IAA production in cyanobacteria by tryptophan and light. Polish Journal of Microbiology, 59(2), 99-105. https://doi.org/10.33073/pjm-2010-015
- Prasanna, R., Kanchan, A., Kaur, S., Ramakrishnan, B., Ranjan, K., Singh, M.C., …& Shivay, Y.S., (2016). Chrysanthemum sp. growth gains from beneficial mi- crobial interactions and fertility improvements in soil under protected cultivation. Horticultural Plant Journal, 2 (4), 229–239.https://doi.org/10.1016/j.hpj.2016.08.008
- Puglisi, I., Barone, V., Fragala, F., Stevanato, P., Baglieri, A., & Vitale, A. (2020). Effect of Microalgal Extracts from Chlorella vulgaris and Scenedesmus quadricauda on Germination of Beta vulgaris Seeds. Plants, 9, 675. https://doi.org/10.3390/plants9060675
- Ramya, S.S., Vijayanand, N., & Rathinavel, S. (2015). Foliar application of liquid biofertilizer of brown alga Stoechospermum marginatum on growth, biochemical and yield of Solanum melongena. International Journal Recycling Organic Waste Agriculture, 4, 167–173. https://doi.org/10.1007/s40093-015-0096-0
- Renuka, N., Prasanna, R., Sood, A., Bansal, R., Bidyarani, N., Singh, R., …& Ahluwalia, A.S. (2017). Wastewater grown microalgal biomass as inoculants for improving micronutrient availability in wheat. Rhizosphere, 3, 150–159. https://doi.org/10.1016/j.rhisph.2017.04.005
- Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy, 9, 192. https://doi.org/10.3390/agronomy9040192
- Saadatnia, H., & Riahi, H. (2009). Cyanobacteria from paddy fields in Iran as biofertilizer in rice plants. Plant Soil Environ., 55(5), 207-212 https://doi.org/10.17221/384-PSE
- Sezen, G., & Küçük, Ç. (2021). Microcystis viridis ve Aphanizomenon gracile Karışık Kültürün Fiğ, Nohut ve Arpa Gelişimine Etkileri. Commagene Journal of Biology, 5(2), 182-186. https://doi.org/10.31594/commagene.1031232
- Shaaban, M.M., & Mobarak, Z.M. (2000). Effect of some green plant material as soil additives on soil nutrient availability, growth, yield and yield components of faba bean plants. Journal of Agriculture Science Mansoura University, 25, 2005-2016. https://doi.org/10.21608/jpp.2000.258779
- Singh, J.S., Kumar, A., Rai, A.N., & Singh, D.P. (2016). Cyanobacteria: A precious bioresource in agriculture, ecosystem and environmental sustainability. Frontiers in Microbiology, 7,1-19. https://doi.org/10.3389/fmicb.2016.00529
- Singh, S. (2014). A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic and abiotic stress. Journal of Applied Microbiology, 117, 1221-1244. https://doi.org/10.1111/jam.12612
- Thilagar, G., Bagyaraja, D.J., Rao, M.S., (2016). Selected microbial consortia developed for chilly reduces application of chemical fertilizers by 50% under field conditions. Scientia Horticulturae, 198, 27–35. https://doi.org/10.1016/j.scienta.2015.11.021
- TAŞ, T. (2021). Effect of Skipping Irrigation in Different Phenological Periods on Yield and Some Physiological Parameters of Corn (Zea mays L.). Türkiye Tarımsal Araştırmalar Dergisi, 8(1), 93-99. https://doi.org/10.19159/tutad.831330
- TMO (2021a). 2020 Yılı Dünya Hububat ve Bakliyat Sektör Raporu. https://www.tmo.gov.tr/Upload/Document/hubbaklidurumu.pdf (Erişim Tarihi: 15/11/2023).
- TMO (2021b). 2020 Yılı Hububat Sektör Raporu. https://www.tmo.gov.tr/Upload/Document/sektorraporlari/hububat2020.pdf (Erişim Tarihi: 15/11/2023).
- TMO (2022) Türkiye Nohut ve Mercimek Ekiliş-Üretim-Verim ve TMO Alımları. TMO, Ankara. https://www.tmo.gov.tr/Upload/Document/istatistikler/tablolar/8mercimekeuva.pdf (Erişim Tarihi: 15/11/2023).
- Transparency Market Research, Algae Market, (2023), www.transparencymarketresearch.com/algae-market.html doi:TMRGL14804, (Erişim Tarihi: 15/11/2023).
Effect of Microcystis viridis and Aphanizomenon gracile Mixture on Maize (Zea mays L.) and Lentil (Lens culinaris Medik) Growth
Yıl 2023,
Cilt: 7 Sayı: 2, 141 - 146, 31.12.2023
Göksal Sezen
,
Çiğdem Küçük
Öz
In this study, the effects of different doses of the mixed culture of Microcystis viridis and Aphanizomenon gracile, which are found intensively in some Şanlıurfa reservoirs, on maize (Zea mays L.) and lentil (Lens culinaris Medik) growth were investigated. The doses prepared from the cyanobacteria mixture were applied to the soils by spraying. In terms of root length, 2% dose in lentil and 1% dose in maize were 92% and 60% more effective respectively. The 2% application dose of the cyanobacteria mixture was 70% and 42% more effective respectively than the control in terms of plant height of both plants. In terms of green parts weights, 2% dose was found to be 164% and 30% more effective than the control in both maize and lentil. In root dry weight of maize and lentil, 2% dose was 680% and 139% more effective than the control in both plants.
Proje Numarası
Harran Üniversitesi Bilimsel Araştırma Koordinatörlüğü (HÜBAP-19002) tarafından desteklenmiştir
Kaynakça
- Begum, Z.N.T., Mandal, R., & Islam, S. (2011). Effect of cyanobacterial biofertilizer on the growth and yield components of two HYV of rice. Journal of Algal Biomass Utilizzation, 2(1), 1-9.
- Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M.C., & Rouphael, Y. (2018). Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Frontiers in plant science, 9, 1782. https://doi.org/10.3389/fpls.2018.01782
- Cirés, S., & Ballot, A. (2016). A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae, 54, 21-43. https://doi.org/10.1016/j.hal.2015.09.007
- Dineshkumar, R., Subramanian, J., Gopalsamy, J., Jayasingam, P., Arumugam, A., Kannadasan, S., & Sampathkumar, P. (2019). The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste and Biomass Valorization, 10(5), 1101-1110. https://doi.org/10.1007/s12649-017-0123-7
- Elarroussia, H., Elmernissia, N., Benhimaa, R., El Kadmiria, I.M., Bendaou, N., Smouni, A. & Wahbya, I. (2016). Microalgae polysaccharides a promising plant growth biostimulant. Journal of Algal Biomass Utilization, 7, 55–63
- Gayathri, M., Kumar, P.S., Prabha, A.M.L., & Muralitharan, G., (2015). In vitro regeneration of Arachis hypogaea L. and Moringa oleifera Lam. using extracellular phytohormones from Aphanothece sp. MBDU 515. Algal Research,. 7, 100–105 https://doi.org/10.1016/j.algal.2014.12.009
- Haggag, W., Hoballah, M.M.E, Ali, R.R. (2018). Applications of nano biotechnological microalgae product for improve wheat productiv-ity in semai aird areas. International Jornal of Agricultural Technology, 14(5), 675–692.
- Haroun S.A., & Hussein, M.H. (2003). The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus termis plants grown in siliceous soil. Asian Jornal of Plant Sciences, 2, 944-951. https://doi.org/10.3923/ajps.2003.944.951
- Hussain, A., Hamayun, M., & Shah, S.T. (2013). Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12. Current Microbiology, 67, 624–630. https://doi.org/10.1007/s00284-013-0408-4
- Karthikeyan, N., Prasanna, R., Nain, L. & Kaushik, B.D. (2007). Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. European Journal of Soil Biology, 43(1), 23–30. https://doi.org/10.1016/j.ejsobi.2006.11.001
- Kholssi, R., Lougraimzi, H., Grina, F., Lorentz, J.F., Silva, I., Castaño-Sánchez, O., & Marks, E. A. (2022). Green agriculture: a review of the application of micro-and macroalgae and their impact on crop production on soil quality. Journal of Soil Science and Plant Nutrition, 22(4), 4627-4641. https://doi.org/10.1007/s42729-022-00944-3
- Kociński, M., Mankiewicz-Boczek, J., Jurczak, T., Spoof, L., Meriluoto, J., Rejmonczyk, E., & Soininen, J. (2013). Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environmental Science and Pollution Research, 20(8), 5243-5264. https://doi.org/10.1007/s11356-012-1426-7
- Komárek, J. (2013). Cyanoprokaryota, 3.Teil: Heterocytousgenera. In Büdel, B., G. Gartner, L. Krienitz & M. Schlager(eds), Süsswasserflora von Mitteleuropa 19(3). Springer, Berlin.
- Komárek, J., & Anagnostidis, K.C. (2008). Teil 1/Part 1: Chroococcales. Süßwasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds, Spektrum Akademischer Verlag: Heidelberg, Germany, 19(1), 1–556.
- Komárek, J., & Komárková, J. (2006). Diversity of Aphanizomenon-like cyanobacteria. Czech Phycology, 6, 1–32.
- Küzeci, U., Dağdemir, V., & Kahraman, T. (2019). Türkiye’de mercimek piyasasının ekonomik analizi ve pazarlama marjları. Anadolu Tarım Bilimleri Dergisi, 34(3), 279-288. https://doi.org/10.7161/omuanajas.522390
- Mahmud, A.A., Upadhyay, S.K., Srivastava, A.K., & Bhojiya, A.A. (2021). Biofertilizers: A Nexus between soil fertility and crop productivity under abiotic stress. Current Research in Environmental Sustainability, 3, 100063.https://doi.org/10.1016/j.crsust.2021.100063
- Mohiuddin, M., Das, A.K., Ghosh, D.C. (2000). Growth and productivity of wheat as influenced by integrated use of chemical fertilizer, biofertilizer and growth regulator. Indian Journal of Plant Physiology, 5, 334-338
- Obreht, Z., Kerby, N.W., Gantar, M., & Rowell, P. (1993). Effects of root-associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings, Biology Fertility of Soils, 15, 68e72. https://doi.org/10.1007/BF00336292
- Omar, H.H., Abdullatif, B.M., Al-Kazan, M.M., & El-Gendy, A.M. (2014). Various Applications of Seaweed Improves Growth and Biochemical Constituents of Zea mays L. and Helianthus Annuus L. Journal of Plant Nutrition, 38, 28–40. https://doi.org/10.1080/01904167.2014.911893
- Onay, M. (2023). Scope of the microalgae market: a demand and supply perspective. Microalgae-Based Systems: Process Integration and Process Intensification Approaches, 19. https://doi.org/10.1515/9783110781267-002
- Osman, M.E.H., El-Sheekh, M.M., El-Naggar, A.H. & Gheda, S.F. (2010). Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biology and Fertility of Soils, 46, 861–875. https://doi.org/10.1007/s00374-010-0491-7
- Pathak, J., Rajneesh., Maurya, P.K., Singh, S.P., Häder, D.P., & Sinha, R.P. (2018). Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives. Frontiers Environmental Science, 6, 7–19. https://doi.org/10.3389/fenvs.2018.00007
- Pereira, I., Ortega, R., Barrientos, L., Moya, M., Reyes, G., & Kramm, V. (2009). Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. Journal of applied phycology, 21(1), 135-144. https://doi.org/10.1007/s10811-008-9342-4
- Prasanna, R., Joshi M., Rana, A., & Nain, L. (2010). Modulation of IAA production in cyanobacteria by tryptophan and light. Polish Journal of Microbiology, 59(2), 99-105. https://doi.org/10.33073/pjm-2010-015
- Prasanna, R., Kanchan, A., Kaur, S., Ramakrishnan, B., Ranjan, K., Singh, M.C., …& Shivay, Y.S., (2016). Chrysanthemum sp. growth gains from beneficial mi- crobial interactions and fertility improvements in soil under protected cultivation. Horticultural Plant Journal, 2 (4), 229–239.https://doi.org/10.1016/j.hpj.2016.08.008
- Puglisi, I., Barone, V., Fragala, F., Stevanato, P., Baglieri, A., & Vitale, A. (2020). Effect of Microalgal Extracts from Chlorella vulgaris and Scenedesmus quadricauda on Germination of Beta vulgaris Seeds. Plants, 9, 675. https://doi.org/10.3390/plants9060675
- Ramya, S.S., Vijayanand, N., & Rathinavel, S. (2015). Foliar application of liquid biofertilizer of brown alga Stoechospermum marginatum on growth, biochemical and yield of Solanum melongena. International Journal Recycling Organic Waste Agriculture, 4, 167–173. https://doi.org/10.1007/s40093-015-0096-0
- Renuka, N., Prasanna, R., Sood, A., Bansal, R., Bidyarani, N., Singh, R., …& Ahluwalia, A.S. (2017). Wastewater grown microalgal biomass as inoculants for improving micronutrient availability in wheat. Rhizosphere, 3, 150–159. https://doi.org/10.1016/j.rhisph.2017.04.005
- Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy, 9, 192. https://doi.org/10.3390/agronomy9040192
- Saadatnia, H., & Riahi, H. (2009). Cyanobacteria from paddy fields in Iran as biofertilizer in rice plants. Plant Soil Environ., 55(5), 207-212 https://doi.org/10.17221/384-PSE
- Sezen, G., & Küçük, Ç. (2021). Microcystis viridis ve Aphanizomenon gracile Karışık Kültürün Fiğ, Nohut ve Arpa Gelişimine Etkileri. Commagene Journal of Biology, 5(2), 182-186. https://doi.org/10.31594/commagene.1031232
- Shaaban, M.M., & Mobarak, Z.M. (2000). Effect of some green plant material as soil additives on soil nutrient availability, growth, yield and yield components of faba bean plants. Journal of Agriculture Science Mansoura University, 25, 2005-2016. https://doi.org/10.21608/jpp.2000.258779
- Singh, J.S., Kumar, A., Rai, A.N., & Singh, D.P. (2016). Cyanobacteria: A precious bioresource in agriculture, ecosystem and environmental sustainability. Frontiers in Microbiology, 7,1-19. https://doi.org/10.3389/fmicb.2016.00529
- Singh, S. (2014). A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic and abiotic stress. Journal of Applied Microbiology, 117, 1221-1244. https://doi.org/10.1111/jam.12612
- Thilagar, G., Bagyaraja, D.J., Rao, M.S., (2016). Selected microbial consortia developed for chilly reduces application of chemical fertilizers by 50% under field conditions. Scientia Horticulturae, 198, 27–35. https://doi.org/10.1016/j.scienta.2015.11.021
- TAŞ, T. (2021). Effect of Skipping Irrigation in Different Phenological Periods on Yield and Some Physiological Parameters of Corn (Zea mays L.). Türkiye Tarımsal Araştırmalar Dergisi, 8(1), 93-99. https://doi.org/10.19159/tutad.831330
- TMO (2021a). 2020 Yılı Dünya Hububat ve Bakliyat Sektör Raporu. https://www.tmo.gov.tr/Upload/Document/hubbaklidurumu.pdf (Erişim Tarihi: 15/11/2023).
- TMO (2021b). 2020 Yılı Hububat Sektör Raporu. https://www.tmo.gov.tr/Upload/Document/sektorraporlari/hububat2020.pdf (Erişim Tarihi: 15/11/2023).
- TMO (2022) Türkiye Nohut ve Mercimek Ekiliş-Üretim-Verim ve TMO Alımları. TMO, Ankara. https://www.tmo.gov.tr/Upload/Document/istatistikler/tablolar/8mercimekeuva.pdf (Erişim Tarihi: 15/11/2023).
- Transparency Market Research, Algae Market, (2023), www.transparencymarketresearch.com/algae-market.html doi:TMRGL14804, (Erişim Tarihi: 15/11/2023).