Araştırma Makalesi
BibTex RIS Kaynak Göster

Neonikotinoid İnsektisit Thiacloprid'in Büyük Balmumu Güvesi, Galleria mellonella'da Oksidatif Stres, Genotoksik ve İmmünotoksik Biyobelirteçler Üzerindeki Etkisi

Yıl 2024, Cilt: 8 Sayı: 1, 9 - 17, 30.06.2024
https://doi.org/10.31594/commagene.1389700

Öz

Bu çalışmanın amacı, neonikotinoid insektisit Thiacloprid'in Galleria mellonella üzerindeki oksidatif stres, genotoksik ve immünotoksik belirteçler üzerindeki etkisini araştırmaktı. Neonikotinoid insektisit thiaclopridin farklı dozlarda (5, 10, 15, 20, 25 ve 30 µg) ve periyotlarda (24 saat, 48 saat, 72 saat ve 96 saat) büyük balmumu güvesi (Galleria mellonella) larvalarının antioksidan enzim aktiviteleri, malondialdehit (MDA) düzeyleri, hemosit sayısı ve mikronükleus frekansı üzerindeki etkileri araştırıldı. Süperoksit dismutaz (SOD) aktivitesi, test edilen tüm periyotlarda kontrol ve negatif kontrol ile karşılaştırıldığında 5, 10 ve 15 µg thiacloprid dozlarında önemli ölçüde artarken, 25 ve 30 µg dozlarında ise önemli ölçüde azaldı. Katalaz (CAT) aktivitesi, kontrol ve negatif kontrolle karşılaştırıldığında 24 ve 96 saatte 5, 10 ve 15 µg thiacloprid dozlarında önemli artışlar gösterdi. MDA konsantrasyonları kontrol ve negatif kontrole göre tüm dönemlerde önemli artışlar gösterdi. Toplam hemosit sayısı (THC), 24., 48., 72. ve 96. saatlerde 5 µg thiacloprid konsantrasyonu dışındaki tüm dozlarda önemli ölçüde azaldı. Tüm test edilen sürelerde, mikronukleus sayısında özellikle yüksek dozlarda (20, 25 ve 30 µg) thiacloprid kullanımına bağlı olarak kontrol ve negatif kontrolle karşı önemli bir artış görüldü. Ayrıca, MDA ile mikronukleus sayısı arasında pozitif bir korelasyon gözlemlendi, diğer belirteçler ise MN ile negatif bir korelasyon gösterdi. Bu sonuçlar, yüksek doz thiacloprid'in mikronukleus oluşumunda önemli artışlara neden olduğunu ve test edilen organizmada thiacloprid maruziyetine bağlı olarak oksidatif hasar ve genotoksisite ile pozitif bir ilişki olduğunu önermektedir. Genel olarak bulgularımız, ölçülen parametrelerin, thiacloprid maruziyetinden kaynaklanan oksidatif hasarı göstermek için güvenilir biyobelirteçler olarak kabul edilebileceğini göstermektedir.

Kaynakça

  • Aebi, H. (1984). Catalase in vitro. In Methods in enzymology, Academic press. 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  • Akbel, E., Arslan-Acaroz, D., Demirel, H.H., Kucukkurt, I., & Ince, S. (2018). The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol. Toxicology research, 7(3), 503-512. https://doi.org/10.1039/c8tx00030a
  • Arslan, Ö. Ç., Parlak, H., Katalay, S., Boyacioglu, M., Karaaslan, M.A., & Guner, H. (2010). Detecting micronuclei frequency in some aquatic organisms for monitoring pollution of Izmir Bay (Western Turkey). Environmental Monitoring & Assessment, 165. https://doi.org/10.1007/s10661-009-0926-5
  • Arslan, Ö.Ç., Boyacioğlu, M., Parlak, H., Katalay, S., & Karaaslan, M.A. (2015). Assessment of micronuclei induction in peripheral blood and gill cells of some fish species from Aliağa Bay Turkey. Marine pollution bulletin, 94(1-2), 48-54. https://doi.org/10.1016/j.marpolbul.2015.03.018
  • Aslanturk, A., Kalender, S., Uzunhisarcikli, M., & Kalender, Y. (2011). Effects of methidathion on antioxidant enzyme activities and malondialdehyde level in midgut tissues of Lymantria dispar (Lepidoptera) larvae. Journal of the Entomological Research Society, 13(3), 27-38.
  • Bal, R., Türk, G., Tuzcu, M., Yilmaz, O., Kuloglu, T., Gundogdu, R., & Etem, E. (2012). Assessment of imidacloprid toxicity on reproductive organ system of adult male rats. Journal of Environmental Science and Health, Part B, 47(5), 434-444. https://doi.org/10.1080/03601234.2012.663311
  • Baltacıoğlu, E., Akalın, F.A., Topaloğlu, E., Şüküroğlu, E., & Çobanoğlu, Ü. (2007). Ligneous periodontitis and gingival antioxidant status: report of two cases. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology, 104(6), 803-808. https://doi.org/10.1016/j.tripleo.2007.01.018
  • Bar-Or, D., Rael, L.T., Lau, E.P., Rao, N.K., Thomas, G.W., Winkler, J.V., & Curtis, C.G. (2001). An analog of the human albumin N-terminus (Asp-Ala-His-Lys) prevents formation of copper-induced reactive oxygen species. Biochemical and biophysical research communications, 284(3), 856-862. https://doi.org/10.1006/bbrc.2001.5042
  • Barthwal, M.K., Srivastava, N., Shukla, R., Nag, D., Seth, P.K., Srirnal, R.C., & Dikshit, M. (1999). Polymorphonuclear leukocyte nitrite content and antioxidant enzymes in Parkinson's disease patients. Acta neurologica scandinavica, 100(5), 300-304. https://doi.org/10.1111/j.1600-0404.1999.tb00400.x
  • Bass, C., & Field, L.M. (2018). Neonicotinoids. Current Biology, 28(14), R772-R773. http://doi.org/10.1016/j.cub.2018.05.061
  • Bolognesi, C., Perrone, E., Roggieri, P., Pampanin, D.M., & Sciutto, A. (2006). Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquatic toxicology, 78, S93-S98. https://doi.org/10.1016/j.aquatox.2006.02.015
  • Brandt, A., Gorenflo, A., Siede, R., Meixner, M., & Büchler, R. (2016). The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). Journal of insect physiology, 86, 40-47. https://doi.org/10.1016/j.jinsphys.2016.01.001
  • Bronskill, J. (1961). A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). The Journal of the Lepidopterists' Society, 15(2), 102-104.
  • Büyükgüzel, E. (2009). Evidence of oxidative and antioxidative responses by Galleria mellonella larvae to malathion. Journal of economic entomology, 102(1), 152-159. https://doi.org/10.1603/029.102.0122
  • Cheung, C.C.C., Zheng, G.J., Li, A.M.Y., Richardson, B.J., & Lam, P.K.S. (2001). Relationships between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels, Perna viridis. Aquatic toxicology, 52(3-4), 189-203. https://doi.org/10.1016/S0166-445X(00)00145-4
  • Codling, G., Al Naggar, Y., Giesy, J.P, & Robertson A.J. (2016). Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada. Chemosphere, 144, 2321-2328. https://doi.org/10.1016/j.chemosphere.2015.10.135
  • Cook, S.M., & McArthur, J.D. (2013). Developing Galleria mellonella as a model host for human pathogens. Virulence, 4(5), 350-353. https://doi.org/10.4161/viru.25240
  • Cytrynskaa, M., Makb, P., Zdybicka-Barabasa, A., Suderc, P., & Jakubowicz, T. (2007). Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides, 28:533-546. https://doi.org/10.1016/j.peptides.2006.11.010
  • Dalle-Donne, I., Rossi, R., Milzani, A., Di Simplicio, P., & Colombo, R. (2001). The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radical Biology and Medicine, 31(12), 1624-1632. https://doi.org/10.1016/s0891-5849(01)00749-3
  • Dokuyucu, R., Karateke, A., Gokce, H., Kurt, R.K., Ozcan, O., Ozturk, S., ... & Duru, M. (2014). Antioxidant effect of erdosteine and lipoic acid in ovarian ischemia–reperfusion injury. European Journal of Obstetrics & Gynecology and Reproductive Biology, 183, 23-27. https://doi.org/10.1016/j.ejogrb.2014.10.018
  • EFSA Panel on Biological Hazards (BIOHAZ), Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., ... & Herman, L. (2018). Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 8: suitability of taxonomic units notified to EFSA until March 2018. EFSA Journal, 16(7), e05315. https://doi.org/10.2903/j.efsa.2018.5134
  • Ellis, J.D., Graham, J.R., & Mortensen, A. (2013). Standard methods for wax moth research. Journal of Apicultural Research, 52(1), 1-17. https://doi.org/10.3896/IBRA.1.52.1.10
  • Emre, I., Kayis, T., Coskun, M., Dursun, O., & Cogun, H.Y. (2013). Changes in antioxidative enzyme activity, glycogen, lipid, protein, and malondialdehyde content in cadmium-treated Galleria mellonella larvae. Annals of the Entomological Society of America, 106(3), 371-377.
  • Esterbauer, H., & Cheeseman, K.H. (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. In Methods in enzymology, 407-421. Academic Press.
  • Fenech, M. (2000). The in vitro micronucleus technique. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 455(1-2), 81-95. https://doi.org/10.1016/S0027-5107(00)00065-8
  • Fernandes, C.M., Fonseca, F.L., Goldman, G.H., Pereira, M.D., & Kurtenbach, E. (2017). A reliable assay to evaluate the virulence of Aspergillus nidulans using the alternative animal model Galleria mellonella (Lepidoptera). Bio-protocol, 7(11), e2329-e2329. https://doi.org/10.21769/BioProtoc.2329
  • Finney, D.J. (1971). A statistical treatment of the sigmoid response curve. Probit analysis. Cambridge University Press, London, 633.
  • Gillespie, J.P., Kanost, M.R., & Trenczek, T. (1997). Biological mediators of insect immunity. Annual review of entomology, 42(1), 611-643.
  • Grosicka-Maciąg, E. (2011). Biological consequences of oxidative stress induced by pesticides. Advances in Hygiene and Experimental Medicine, 65, 357-366. https://doi.org/10.5604/17322693.948816
  • Guo, J., Shi, R., Cao, Y., Luan, Y., Zhou, Y., Gao, Y., & Tian, Y. (2020). Genotoxic effects of imidacloprid in human lymphoblastoid TK6 cells. Drug and Chemical Toxicology, 43(2), 208-212. https://doi.org/10.1080/01480545.2018.1497048
  • Gupta, A.P. (1986). Hemocytic and Humoral Immunity in Arthropods., Wiley, New York. Heddle, J.A., Cimino, M.C., Hayashi, M., Romagna, F., Shelby, M.D., Tucker, J.D., ... & MacGregor, J. T. (1991). Micronuclei as an index of cytogenetic damage: past, present, and future. Environmental and molecular mutagenesis, 18(4), 277-291.
  • Jones, J.C. (1962). Current concepts concerning insect hemocytes. American Zoologist, 209-246. Karabay, N.U., & Oguz, M.G. (2005). Cytogenetic and genotoxic effects of the insecticides, imidacloprid and methamidophos. Genetics and Molecular Research, 4(4), 653-662.
  • Kataria, A.P., Attri, J.P., Kashyap, R., & Mahajan, L. (2016). Efficacy of dexmedetomidine and fentanyl on pressor response and pneumoperitoneum in laparoscopic cholecystectomy. Anesthesia, essays and researches, 10(3), 446. https://doi.org/10.4103/0259-1162.176407
  • Kayis, T., Altun, M., & Coskun, M. (2019). Thiamethoxam-mediated alteration in multi-biomarkers of a model organism, Galleria mellonella L. (Lepidoptera: Pyralidae). Environmental Science and Pollution Research, 26, 36623-36633. https://doi.org/10.1007/s11356-019-06810-7
  • Kocaman, A.Y., Rencüzoğulları, E., & Topaktaş, M. (2014). In vitro investigation of the genotoxic and cytotoxic effects of thiacloprid in cultured human peripheral blood lymphocytes. Environmental toxicology, 29(6), 631-641. https://doi.org/10.1002/tox.21790
  • Kurt, D., & Kayıs, T. (2015). Effects of the pyrethroid insecticide deltamethrin on the hemocytes of Galleria mellonella. Turkish Journal of Zoology, 39(3), 452-457. https://doi.org/10.3906/zoo-1405-66
  • Lackie, A.M. (1986). Transplantation immunity in Arthropods: is immunorecognition merely wound-healing? In Immunity in Invertebrates: Cells Molecules and Defense Reactions, 125-138.
  • Lonare, M., Kumar, M., Raut, S., Badgujar, P., Doltade, S., & Telang, A. (2014). Evaluation of imidacloprid-induced neurotoxicity in male rats: a protective effect of curcumin. Neurochemistry international, 78, 122-129. https://doi.org/10.1016/j.neuint.2014.09.004
  • Lowry, O., Rosebrough, N., Farr, A. L., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193(1), 265-275.
  • Lushchak, V.I. (2016). Contaminant-induced oxidative stress in fish: a mechanistic approach. Fish physiology and biochemistry, 42, 711-747. https://doi.org/10.1007/s10695-015-0171-5
  • Matsuda, K., Ihara, M., & Sattelle, D.B. (2020). Neonicotinoid insecticides: molecular targets, resistance, and toxicity. Annual review of pharmacology and toxicology, 60, 241-255. https://doi.org/10.1146/annurev-pharmtox-010818-021747
  • Meftaul, I.M., Venkateswarlu, K., Dharmarajan, R., Annamalai, P., & Megharaj, M. (2020). Pesticides in the urban environment: A potential threat that knocks at the door. Science of the Total Environment, 711, 134612. https://doi.org/10.1016/j.scitotenv.2019.134612
  • Mora-Gutiérrez, A., Guevara, J., Rubio, C., Calvillo-Velasco, M., Silva-Adaya, D., Retana-Márquez, S., ... & Rubio-Osornio, M. (2021). Clothianidin and thiacloprid mixture administration induces degenerative damage in the dentate gyrus and alteration in short-term memory in rats. Journal of Toxicology, 2021. https://doi.org/10.1155/2021/9983201
  • Mukherjee, K., Domann, E., & Hain, T. (2011). The greater wax moth Galleria mellonella as an alternative model host for human pathogens. Insect Biotechnology, 3-14. http://doi.org/10.1007/978-90-481-9641-8_19
  • Murawska, A., Migdał, P., & Roman, A. (2021). Effects of plant protection products on biochemical markers in honey bees. Agriculture, 11(7), 648. https://doi.org/10.3390/agriculture11070648
  • Nauen, R., & Bretschneider, T. (2002). New modes of action of insecticides. Pesticide Outlook, 13(6):241-245. https://doi.org/10.1039/b211171n
  • Nishino, R., Fukuyama, T., Tajima, Y., Miyashita, L., Watanabe, Y., Ueda, H., & Kosaka, T. (2013). Prior oral exposure to environmental immunosuppressive chemicals methoxychlor, parathion, or piperonyl butoxide aggravates allergic airway inflammation in NC/Nga mice. Toxicology, 309, 1-8. https://doi.org/10.1016/j.tox.2013.03.018
  • Pandey, J.P., Upadhyay, A.K., & Tiwari, R.K. (2007). Effect of some plant extracts on haemocyte count and moulting of Danais chrysippus larvae. Journal of Advanced Zoology, 28(1), 14.
  • Pamminger, T., Botías, C., Goulson, D., & Hughes, W.O. (2018). A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Functional ecology, 32(8), 1921-1930. https://doi.org/10.1111/1365-2435.13119
  • Pamplona, R., Dalfó, E., Ayala, V., Bellmunt, M.J., Prat, J., Ferrer, I., & Portero-Otín, M. (2005). Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation: effects of Alzheimer disease and identification of lipoxidation targets. Journal of Biological Chemistry, 280(22), 21522-21530. https://doi.org/10.1074/jbc.M502255200
  • Prakash, M. (2008). Insect physiology. In: Encyclopedia of Entomology, 3nd ed. Discovery Pub. House Pvt. Ltd., New Delhi, pp 216–257.
  • Prokai, L., Yan, L.J., Vera‐Serrano, J.L., Stevens Jr, S.M., & Forster, M.J. (2007). Mass spectrometry‐based survey of age‐associated protein carbonylation in rat brain mitochondria. Journal of mass spectrometry, 42(12), 1583-1589. https://doi.org/10.1002/jms.1345
  • Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., ... & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of cleaner production, 283, 124657.
  • Rao, R. S. P., & Møller, I.M. (2011). Pattern of occurrence and occupancy of carbonylation sites in proteins. Proteomics, 11(21), 4166-4173. https://doi.org/10.1002/pmic.201100223
  • Rashwan, M. (2013). Biochemical impacts of rynaxypyr (Coragen) and spinetoram (Radiant) on Spodoptera littoralis (Boisd). Nature and Science, 11(8), 40-47.
  • Ravaiano, S. V., Barbosa, W. F., Tomé, H. V. V., de Oliveira Campos, L. A., & Martins, G. F. (2018). Acute and oral exposure to imidacloprid does not affect the number of circulating hemocytes in the stingless bee Melipona quadrifasciata post immune challenge. Pesticide biochemistry and physiology, 152, 24-28. https://doi.org/10.1016/j.pestbp.2018.08.002
  • Schwarzbacherová, V., Wnuk, M., Deregowska, A., Holečková, B., & Lewinska, A. (2019). In vitro exposure to thiacloprid-based insecticide formulation promotes oxidative stress, apoptosis and genetic instability in bovine lymphocytes. Toxicology in Vitro, 61, 104654. https://doi.org/10.1016/j.tiv.2019.104654
  • Şekeroğlu, V., Şekeroğlu, Z. A., & Kefelioğlu, H. (2013). Cytogenetic effects of commercial formulations of deltamethrin and/or thiacloprid on Wistar rat bone marrow cells. Environmental toxicology, 28(9), 524-531. https://doi.org/10.1002/tox.20746
  • Şekeroğlu, V., Şekeroğlu, Z. A., & Demirhan, E. S. (2014). Effects of commercial formulations of deltamethrin and/or thiacloprid on thyroid hormone levels in rat serum. Toxicology and industrial health, 30(1), 40-46. https://doi.org/10.1177/0748233712448114
  • Sharma, P. R., Sharma, O. P., & Saxena, B. P. (2003). Effect of Neem gold on haemocytes of the tobacco armyworm, Spodoptera litura (Fabricius) (Lepidoptera; Noctuidae). Current Science, 690-695.
  • Sies, H. (1991). Oxidative stress: from basic research to clinical application. The American journal of medicine, 91(3), S31-S38.
  • Sun, Y. I., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical chemistry, 34(3), 497-500.
  • Surajudeen, Y. A., Sheu, R. K., Ayokulehin, K. M., & Olatunbosun, A. G. (2014). Oxidative stress indices in Nigerian pesticide applicators and farmers occupationally exposed to organophosphate pesticides. International journal of applied and basic medical research, 4(Suppl 1), S37. https://doi.org/10.4103/2229-516X.140730
  • Tauber, O. E. & Yeager, J. F. (1936). On the total hemolymph (blood) cell counts of insects II. Neuroptera, Coleoptera, Lepidoptera, and Hymenoptera. Annals of the Entomological Society of America, 29(1), 112–118.
  • Tomizawa, M., & Casida, J. E. (2005). Neonicotinoid insecticide toxicology: mechanisms of selective action. The Annual Review of Pharmacology and Toxicology, 45, 247-268.
  • Toor, H. K., Sangha, G. K., & Khera, K. S. (2013). Imidacloprid induced histological and biochemical alterations in liver of female albino rats. Pesticide biochemistry and physiology, 105(1), 1-4. https://doi.org/10.1016/j.pestbp.2012.10.001
  • Tosi, S., Costa, C., Vesco, U., Quaglia, G., & Guido, G. (2018). A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Science of the total environment, 615, 208-218. https://doi.org/10.1016/j.scitotenv.2017.09.226
  • Tsarpali, V., & Dailianis, S. (2012). Investigation of landfill leachate toxic potency: An integrated approach with the use of stress indices in tissues of mussels. Aquatic toxicology, 124, 58-65. https://doi.org/10.1016/j.aquatox.2012.07.008
  • Venier, P., Maron, S., & Canova, S. (1997). Detection of micronuclei in gill cells and haemocytes of mussels exposed to benzo(a)pyrene. Mutation Research, 390(1–2), 33–44. https://doi.org/10.1016/S0165-1218(96)00162-0
  • Wang, H., Abassi, S., & Ki, J. S. (2019). Origin and roles of a novel copper-zinc superoxide dismutase (CuZnSOD) gene from the harmful dinoflagellate Prorocentrum minimum. Gene, 683, 113-122. https://doi.org/10.1016/j.gene.2018.10.013
  • Weissman, A. M., Shabek, N., & Ciechanover, A. (2011). The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nature reviews Molecular cell biology, 12(9), 605-620.
  • Winterbourn, C. C. (2020). Biological chemistry of superoxide radicals. ChemTexts, 6(1), 7. https://doi.org/10.1007/s40828-019-0101-8 Yan, L. J., & Sohal, R. S. (1998). Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proceedings of the National Academy of Sciences, 95(22), 12896-12901.
  • Yang, J., Cao, J., Sun, X., Feng, Z., Hao, D., Zhao, X., & Sun, C. (2012). Effects of long‐term exposure to low levels of organophosphorous pesticides and their mixture on altered antioxidative defense mechanisms and lipid peroxidation in rat liver. Cell Biochemistry and Function, 30(2), 122-128. https://doi.org/10.1002/cbf.1825
  • Yang, H.Y., & Lee, T.H. (2015). Antioxidant enzymes as redox-based biomarkers: a brief review. BMB reports, 48(4), 200. https://doi.org/10.1002/cbf.182510.5483/bmbrep.2015.48.4.274
  • Yavuz-Türel, G., Toğay, V. A., & Aşcı Çelik, D. (2023). Genotoxicity of thiacloprid in zebrafish liver. Archives of Environmental & Occupational Health, 78(3), 152-157. https://doi.org/10.1080/19338244.2022.2118212
  • Yonar, M. E. (2013). Protective effect of lycopene on oxidative stress and antioxidant status in Cyprinus carpio during cypermethrin exposure. Environmental Toxicology, 28(11), 609-616. https://doi.org/10.1002/tox.20757
  • Yucel, M. S., & Kayis, T. (2019). Imidacloprid induced alterations in oxidative stress, biochemical, genotoxic, and immunotoxic biomarkers in non-mammalian model organism Galleria mellonella L. (Lepidoptera: Pyralidae). Journal of Environmental Science and Health, Part B, 54(1), 27-34. https://doi.org/10.1080/03601234.2018.1530545
  • Zepeda‐Arce, R., Rojas‐García, A. E., Benitez‐Trinidad, A., Herrera‐Moreno, J. F., Medina‐Díaz, I. M., Barrón‐Vivanco, B. S., ... & Bernal‐Hernández, Y. Y. (2017). Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environmental toxicology, 32(6), 1754-1764. https://doi.org/10.1002/tox.22398
  • Zhang, P., Sun, H., Ren, C., Min, L., & Zhang, H. (2018). Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption. Environmental pollution, 234, 812-820. https://doi.org/10.1016/j.envpol.2017.12.013
  • Zhao, Y., Yang, J., Ren, J., Hou, Y., Han, Z., Xiao, J., & Li, Y. (2020). Exposure level of neonicotinoid insecticides in the food chain and the evaluation of their human health impact and environmental risk: An overview. Sustainability, 12(18), 7523. https://doi.org/10.3390/su12187523
  • Zhu, Q., Yuan, H.Y., Yao, J., Liu, Y., Tao, L., & Huang, Q. (2012). Effects of sublethal concentrations of the chitin synthesis inhibitor, hexaflumuron, on the development and hemolymph physiology of the cutworm, Spodoptera litura. Journal of Insect Science, 12, 1–13. https://doi.org/10.1673/031.012.2701

Effect of the Neonicotinoid Insecticide Thiacloprid on Oxidative Stress, Genotoxic, and Immunotoxic Biomarkers in Greater Wax Moth, Galleria mellonella

Yıl 2024, Cilt: 8 Sayı: 1, 9 - 17, 30.06.2024
https://doi.org/10.31594/commagene.1389700

Öz

The aim of this study was to investigate the effect of the neonicotinoid insecticide Thiacloprid on oxidative stress, genotoxic, and immunotoxic biomarkers in Galleria mellonella. The effects of neonicotinoid insecticide thiacloprid on antioxidant enzyme activities, malondialdehyde (MDA) levels, hemocyte number, micronucleus frequency of greater wax moth (Galleria mellonella) larvae at different doses (5, 10, 15, 20, 25, and 30 µg) and periods (24, 48, 72, and 96 hrs) were explored. Superoxide dismutase (SOD) activity increased significantly at 5, 10, and 15 µg thiacloprid doses compared to the control and negative control in all periods tested, while significantly decreased at 20, 25, and 30 µg doses. Catalase (CAT) activity showed significant increases at 5, 10 and 15 µg thiacloprid doses at 24 and 96h compared to the control and negative control. MDA concentrations showed significant increases in all periods compared to the control and negative control. At 24th, 48th, 72nd and 96th, total hemocyte count (THC) decreased significantly at all doses except 5 µg thiacloprid concentration. During all the tested periods, there was a significant increase in the number of micronuclei, particularly at high doses of thiacloprid (20, 25, and 30 µg) compared to both the control and negative control. Additionally, a positive correlation was observed between MDA and the number of micronuclei, while other markers showed a negative correlation with micronucleus (MN). These results suggest that high doses of thiacloprid induce significant increases in micronuclei formation and are positively correlated with MDA levels, indicating oxidative damage and genotoxicity caused by thiacloprid exposure in the tested organism. Overall, our findings suggest that the measured parameters can be considered reliable biomarkers to demonstrate oxidative damage from thiacloprid exposure.

Etik Beyan

Ethics committee approval: Ethics committee approval is not required for this study.

Kaynakça

  • Aebi, H. (1984). Catalase in vitro. In Methods in enzymology, Academic press. 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  • Akbel, E., Arslan-Acaroz, D., Demirel, H.H., Kucukkurt, I., & Ince, S. (2018). The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol. Toxicology research, 7(3), 503-512. https://doi.org/10.1039/c8tx00030a
  • Arslan, Ö. Ç., Parlak, H., Katalay, S., Boyacioglu, M., Karaaslan, M.A., & Guner, H. (2010). Detecting micronuclei frequency in some aquatic organisms for monitoring pollution of Izmir Bay (Western Turkey). Environmental Monitoring & Assessment, 165. https://doi.org/10.1007/s10661-009-0926-5
  • Arslan, Ö.Ç., Boyacioğlu, M., Parlak, H., Katalay, S., & Karaaslan, M.A. (2015). Assessment of micronuclei induction in peripheral blood and gill cells of some fish species from Aliağa Bay Turkey. Marine pollution bulletin, 94(1-2), 48-54. https://doi.org/10.1016/j.marpolbul.2015.03.018
  • Aslanturk, A., Kalender, S., Uzunhisarcikli, M., & Kalender, Y. (2011). Effects of methidathion on antioxidant enzyme activities and malondialdehyde level in midgut tissues of Lymantria dispar (Lepidoptera) larvae. Journal of the Entomological Research Society, 13(3), 27-38.
  • Bal, R., Türk, G., Tuzcu, M., Yilmaz, O., Kuloglu, T., Gundogdu, R., & Etem, E. (2012). Assessment of imidacloprid toxicity on reproductive organ system of adult male rats. Journal of Environmental Science and Health, Part B, 47(5), 434-444. https://doi.org/10.1080/03601234.2012.663311
  • Baltacıoğlu, E., Akalın, F.A., Topaloğlu, E., Şüküroğlu, E., & Çobanoğlu, Ü. (2007). Ligneous periodontitis and gingival antioxidant status: report of two cases. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology, 104(6), 803-808. https://doi.org/10.1016/j.tripleo.2007.01.018
  • Bar-Or, D., Rael, L.T., Lau, E.P., Rao, N.K., Thomas, G.W., Winkler, J.V., & Curtis, C.G. (2001). An analog of the human albumin N-terminus (Asp-Ala-His-Lys) prevents formation of copper-induced reactive oxygen species. Biochemical and biophysical research communications, 284(3), 856-862. https://doi.org/10.1006/bbrc.2001.5042
  • Barthwal, M.K., Srivastava, N., Shukla, R., Nag, D., Seth, P.K., Srirnal, R.C., & Dikshit, M. (1999). Polymorphonuclear leukocyte nitrite content and antioxidant enzymes in Parkinson's disease patients. Acta neurologica scandinavica, 100(5), 300-304. https://doi.org/10.1111/j.1600-0404.1999.tb00400.x
  • Bass, C., & Field, L.M. (2018). Neonicotinoids. Current Biology, 28(14), R772-R773. http://doi.org/10.1016/j.cub.2018.05.061
  • Bolognesi, C., Perrone, E., Roggieri, P., Pampanin, D.M., & Sciutto, A. (2006). Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquatic toxicology, 78, S93-S98. https://doi.org/10.1016/j.aquatox.2006.02.015
  • Brandt, A., Gorenflo, A., Siede, R., Meixner, M., & Büchler, R. (2016). The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). Journal of insect physiology, 86, 40-47. https://doi.org/10.1016/j.jinsphys.2016.01.001
  • Bronskill, J. (1961). A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). The Journal of the Lepidopterists' Society, 15(2), 102-104.
  • Büyükgüzel, E. (2009). Evidence of oxidative and antioxidative responses by Galleria mellonella larvae to malathion. Journal of economic entomology, 102(1), 152-159. https://doi.org/10.1603/029.102.0122
  • Cheung, C.C.C., Zheng, G.J., Li, A.M.Y., Richardson, B.J., & Lam, P.K.S. (2001). Relationships between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels, Perna viridis. Aquatic toxicology, 52(3-4), 189-203. https://doi.org/10.1016/S0166-445X(00)00145-4
  • Codling, G., Al Naggar, Y., Giesy, J.P, & Robertson A.J. (2016). Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada. Chemosphere, 144, 2321-2328. https://doi.org/10.1016/j.chemosphere.2015.10.135
  • Cook, S.M., & McArthur, J.D. (2013). Developing Galleria mellonella as a model host for human pathogens. Virulence, 4(5), 350-353. https://doi.org/10.4161/viru.25240
  • Cytrynskaa, M., Makb, P., Zdybicka-Barabasa, A., Suderc, P., & Jakubowicz, T. (2007). Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides, 28:533-546. https://doi.org/10.1016/j.peptides.2006.11.010
  • Dalle-Donne, I., Rossi, R., Milzani, A., Di Simplicio, P., & Colombo, R. (2001). The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radical Biology and Medicine, 31(12), 1624-1632. https://doi.org/10.1016/s0891-5849(01)00749-3
  • Dokuyucu, R., Karateke, A., Gokce, H., Kurt, R.K., Ozcan, O., Ozturk, S., ... & Duru, M. (2014). Antioxidant effect of erdosteine and lipoic acid in ovarian ischemia–reperfusion injury. European Journal of Obstetrics & Gynecology and Reproductive Biology, 183, 23-27. https://doi.org/10.1016/j.ejogrb.2014.10.018
  • EFSA Panel on Biological Hazards (BIOHAZ), Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., ... & Herman, L. (2018). Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 8: suitability of taxonomic units notified to EFSA until March 2018. EFSA Journal, 16(7), e05315. https://doi.org/10.2903/j.efsa.2018.5134
  • Ellis, J.D., Graham, J.R., & Mortensen, A. (2013). Standard methods for wax moth research. Journal of Apicultural Research, 52(1), 1-17. https://doi.org/10.3896/IBRA.1.52.1.10
  • Emre, I., Kayis, T., Coskun, M., Dursun, O., & Cogun, H.Y. (2013). Changes in antioxidative enzyme activity, glycogen, lipid, protein, and malondialdehyde content in cadmium-treated Galleria mellonella larvae. Annals of the Entomological Society of America, 106(3), 371-377.
  • Esterbauer, H., & Cheeseman, K.H. (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. In Methods in enzymology, 407-421. Academic Press.
  • Fenech, M. (2000). The in vitro micronucleus technique. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 455(1-2), 81-95. https://doi.org/10.1016/S0027-5107(00)00065-8
  • Fernandes, C.M., Fonseca, F.L., Goldman, G.H., Pereira, M.D., & Kurtenbach, E. (2017). A reliable assay to evaluate the virulence of Aspergillus nidulans using the alternative animal model Galleria mellonella (Lepidoptera). Bio-protocol, 7(11), e2329-e2329. https://doi.org/10.21769/BioProtoc.2329
  • Finney, D.J. (1971). A statistical treatment of the sigmoid response curve. Probit analysis. Cambridge University Press, London, 633.
  • Gillespie, J.P., Kanost, M.R., & Trenczek, T. (1997). Biological mediators of insect immunity. Annual review of entomology, 42(1), 611-643.
  • Grosicka-Maciąg, E. (2011). Biological consequences of oxidative stress induced by pesticides. Advances in Hygiene and Experimental Medicine, 65, 357-366. https://doi.org/10.5604/17322693.948816
  • Guo, J., Shi, R., Cao, Y., Luan, Y., Zhou, Y., Gao, Y., & Tian, Y. (2020). Genotoxic effects of imidacloprid in human lymphoblastoid TK6 cells. Drug and Chemical Toxicology, 43(2), 208-212. https://doi.org/10.1080/01480545.2018.1497048
  • Gupta, A.P. (1986). Hemocytic and Humoral Immunity in Arthropods., Wiley, New York. Heddle, J.A., Cimino, M.C., Hayashi, M., Romagna, F., Shelby, M.D., Tucker, J.D., ... & MacGregor, J. T. (1991). Micronuclei as an index of cytogenetic damage: past, present, and future. Environmental and molecular mutagenesis, 18(4), 277-291.
  • Jones, J.C. (1962). Current concepts concerning insect hemocytes. American Zoologist, 209-246. Karabay, N.U., & Oguz, M.G. (2005). Cytogenetic and genotoxic effects of the insecticides, imidacloprid and methamidophos. Genetics and Molecular Research, 4(4), 653-662.
  • Kataria, A.P., Attri, J.P., Kashyap, R., & Mahajan, L. (2016). Efficacy of dexmedetomidine and fentanyl on pressor response and pneumoperitoneum in laparoscopic cholecystectomy. Anesthesia, essays and researches, 10(3), 446. https://doi.org/10.4103/0259-1162.176407
  • Kayis, T., Altun, M., & Coskun, M. (2019). Thiamethoxam-mediated alteration in multi-biomarkers of a model organism, Galleria mellonella L. (Lepidoptera: Pyralidae). Environmental Science and Pollution Research, 26, 36623-36633. https://doi.org/10.1007/s11356-019-06810-7
  • Kocaman, A.Y., Rencüzoğulları, E., & Topaktaş, M. (2014). In vitro investigation of the genotoxic and cytotoxic effects of thiacloprid in cultured human peripheral blood lymphocytes. Environmental toxicology, 29(6), 631-641. https://doi.org/10.1002/tox.21790
  • Kurt, D., & Kayıs, T. (2015). Effects of the pyrethroid insecticide deltamethrin on the hemocytes of Galleria mellonella. Turkish Journal of Zoology, 39(3), 452-457. https://doi.org/10.3906/zoo-1405-66
  • Lackie, A.M. (1986). Transplantation immunity in Arthropods: is immunorecognition merely wound-healing? In Immunity in Invertebrates: Cells Molecules and Defense Reactions, 125-138.
  • Lonare, M., Kumar, M., Raut, S., Badgujar, P., Doltade, S., & Telang, A. (2014). Evaluation of imidacloprid-induced neurotoxicity in male rats: a protective effect of curcumin. Neurochemistry international, 78, 122-129. https://doi.org/10.1016/j.neuint.2014.09.004
  • Lowry, O., Rosebrough, N., Farr, A. L., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193(1), 265-275.
  • Lushchak, V.I. (2016). Contaminant-induced oxidative stress in fish: a mechanistic approach. Fish physiology and biochemistry, 42, 711-747. https://doi.org/10.1007/s10695-015-0171-5
  • Matsuda, K., Ihara, M., & Sattelle, D.B. (2020). Neonicotinoid insecticides: molecular targets, resistance, and toxicity. Annual review of pharmacology and toxicology, 60, 241-255. https://doi.org/10.1146/annurev-pharmtox-010818-021747
  • Meftaul, I.M., Venkateswarlu, K., Dharmarajan, R., Annamalai, P., & Megharaj, M. (2020). Pesticides in the urban environment: A potential threat that knocks at the door. Science of the Total Environment, 711, 134612. https://doi.org/10.1016/j.scitotenv.2019.134612
  • Mora-Gutiérrez, A., Guevara, J., Rubio, C., Calvillo-Velasco, M., Silva-Adaya, D., Retana-Márquez, S., ... & Rubio-Osornio, M. (2021). Clothianidin and thiacloprid mixture administration induces degenerative damage in the dentate gyrus and alteration in short-term memory in rats. Journal of Toxicology, 2021. https://doi.org/10.1155/2021/9983201
  • Mukherjee, K., Domann, E., & Hain, T. (2011). The greater wax moth Galleria mellonella as an alternative model host for human pathogens. Insect Biotechnology, 3-14. http://doi.org/10.1007/978-90-481-9641-8_19
  • Murawska, A., Migdał, P., & Roman, A. (2021). Effects of plant protection products on biochemical markers in honey bees. Agriculture, 11(7), 648. https://doi.org/10.3390/agriculture11070648
  • Nauen, R., & Bretschneider, T. (2002). New modes of action of insecticides. Pesticide Outlook, 13(6):241-245. https://doi.org/10.1039/b211171n
  • Nishino, R., Fukuyama, T., Tajima, Y., Miyashita, L., Watanabe, Y., Ueda, H., & Kosaka, T. (2013). Prior oral exposure to environmental immunosuppressive chemicals methoxychlor, parathion, or piperonyl butoxide aggravates allergic airway inflammation in NC/Nga mice. Toxicology, 309, 1-8. https://doi.org/10.1016/j.tox.2013.03.018
  • Pandey, J.P., Upadhyay, A.K., & Tiwari, R.K. (2007). Effect of some plant extracts on haemocyte count and moulting of Danais chrysippus larvae. Journal of Advanced Zoology, 28(1), 14.
  • Pamminger, T., Botías, C., Goulson, D., & Hughes, W.O. (2018). A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Functional ecology, 32(8), 1921-1930. https://doi.org/10.1111/1365-2435.13119
  • Pamplona, R., Dalfó, E., Ayala, V., Bellmunt, M.J., Prat, J., Ferrer, I., & Portero-Otín, M. (2005). Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation: effects of Alzheimer disease and identification of lipoxidation targets. Journal of Biological Chemistry, 280(22), 21522-21530. https://doi.org/10.1074/jbc.M502255200
  • Prakash, M. (2008). Insect physiology. In: Encyclopedia of Entomology, 3nd ed. Discovery Pub. House Pvt. Ltd., New Delhi, pp 216–257.
  • Prokai, L., Yan, L.J., Vera‐Serrano, J.L., Stevens Jr, S.M., & Forster, M.J. (2007). Mass spectrometry‐based survey of age‐associated protein carbonylation in rat brain mitochondria. Journal of mass spectrometry, 42(12), 1583-1589. https://doi.org/10.1002/jms.1345
  • Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., ... & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of cleaner production, 283, 124657.
  • Rao, R. S. P., & Møller, I.M. (2011). Pattern of occurrence and occupancy of carbonylation sites in proteins. Proteomics, 11(21), 4166-4173. https://doi.org/10.1002/pmic.201100223
  • Rashwan, M. (2013). Biochemical impacts of rynaxypyr (Coragen) and spinetoram (Radiant) on Spodoptera littoralis (Boisd). Nature and Science, 11(8), 40-47.
  • Ravaiano, S. V., Barbosa, W. F., Tomé, H. V. V., de Oliveira Campos, L. A., & Martins, G. F. (2018). Acute and oral exposure to imidacloprid does not affect the number of circulating hemocytes in the stingless bee Melipona quadrifasciata post immune challenge. Pesticide biochemistry and physiology, 152, 24-28. https://doi.org/10.1016/j.pestbp.2018.08.002
  • Schwarzbacherová, V., Wnuk, M., Deregowska, A., Holečková, B., & Lewinska, A. (2019). In vitro exposure to thiacloprid-based insecticide formulation promotes oxidative stress, apoptosis and genetic instability in bovine lymphocytes. Toxicology in Vitro, 61, 104654. https://doi.org/10.1016/j.tiv.2019.104654
  • Şekeroğlu, V., Şekeroğlu, Z. A., & Kefelioğlu, H. (2013). Cytogenetic effects of commercial formulations of deltamethrin and/or thiacloprid on Wistar rat bone marrow cells. Environmental toxicology, 28(9), 524-531. https://doi.org/10.1002/tox.20746
  • Şekeroğlu, V., Şekeroğlu, Z. A., & Demirhan, E. S. (2014). Effects of commercial formulations of deltamethrin and/or thiacloprid on thyroid hormone levels in rat serum. Toxicology and industrial health, 30(1), 40-46. https://doi.org/10.1177/0748233712448114
  • Sharma, P. R., Sharma, O. P., & Saxena, B. P. (2003). Effect of Neem gold on haemocytes of the tobacco armyworm, Spodoptera litura (Fabricius) (Lepidoptera; Noctuidae). Current Science, 690-695.
  • Sies, H. (1991). Oxidative stress: from basic research to clinical application. The American journal of medicine, 91(3), S31-S38.
  • Sun, Y. I., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical chemistry, 34(3), 497-500.
  • Surajudeen, Y. A., Sheu, R. K., Ayokulehin, K. M., & Olatunbosun, A. G. (2014). Oxidative stress indices in Nigerian pesticide applicators and farmers occupationally exposed to organophosphate pesticides. International journal of applied and basic medical research, 4(Suppl 1), S37. https://doi.org/10.4103/2229-516X.140730
  • Tauber, O. E. & Yeager, J. F. (1936). On the total hemolymph (blood) cell counts of insects II. Neuroptera, Coleoptera, Lepidoptera, and Hymenoptera. Annals of the Entomological Society of America, 29(1), 112–118.
  • Tomizawa, M., & Casida, J. E. (2005). Neonicotinoid insecticide toxicology: mechanisms of selective action. The Annual Review of Pharmacology and Toxicology, 45, 247-268.
  • Toor, H. K., Sangha, G. K., & Khera, K. S. (2013). Imidacloprid induced histological and biochemical alterations in liver of female albino rats. Pesticide biochemistry and physiology, 105(1), 1-4. https://doi.org/10.1016/j.pestbp.2012.10.001
  • Tosi, S., Costa, C., Vesco, U., Quaglia, G., & Guido, G. (2018). A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Science of the total environment, 615, 208-218. https://doi.org/10.1016/j.scitotenv.2017.09.226
  • Tsarpali, V., & Dailianis, S. (2012). Investigation of landfill leachate toxic potency: An integrated approach with the use of stress indices in tissues of mussels. Aquatic toxicology, 124, 58-65. https://doi.org/10.1016/j.aquatox.2012.07.008
  • Venier, P., Maron, S., & Canova, S. (1997). Detection of micronuclei in gill cells and haemocytes of mussels exposed to benzo(a)pyrene. Mutation Research, 390(1–2), 33–44. https://doi.org/10.1016/S0165-1218(96)00162-0
  • Wang, H., Abassi, S., & Ki, J. S. (2019). Origin and roles of a novel copper-zinc superoxide dismutase (CuZnSOD) gene from the harmful dinoflagellate Prorocentrum minimum. Gene, 683, 113-122. https://doi.org/10.1016/j.gene.2018.10.013
  • Weissman, A. M., Shabek, N., & Ciechanover, A. (2011). The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nature reviews Molecular cell biology, 12(9), 605-620.
  • Winterbourn, C. C. (2020). Biological chemistry of superoxide radicals. ChemTexts, 6(1), 7. https://doi.org/10.1007/s40828-019-0101-8 Yan, L. J., & Sohal, R. S. (1998). Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proceedings of the National Academy of Sciences, 95(22), 12896-12901.
  • Yang, J., Cao, J., Sun, X., Feng, Z., Hao, D., Zhao, X., & Sun, C. (2012). Effects of long‐term exposure to low levels of organophosphorous pesticides and their mixture on altered antioxidative defense mechanisms and lipid peroxidation in rat liver. Cell Biochemistry and Function, 30(2), 122-128. https://doi.org/10.1002/cbf.1825
  • Yang, H.Y., & Lee, T.H. (2015). Antioxidant enzymes as redox-based biomarkers: a brief review. BMB reports, 48(4), 200. https://doi.org/10.1002/cbf.182510.5483/bmbrep.2015.48.4.274
  • Yavuz-Türel, G., Toğay, V. A., & Aşcı Çelik, D. (2023). Genotoxicity of thiacloprid in zebrafish liver. Archives of Environmental & Occupational Health, 78(3), 152-157. https://doi.org/10.1080/19338244.2022.2118212
  • Yonar, M. E. (2013). Protective effect of lycopene on oxidative stress and antioxidant status in Cyprinus carpio during cypermethrin exposure. Environmental Toxicology, 28(11), 609-616. https://doi.org/10.1002/tox.20757
  • Yucel, M. S., & Kayis, T. (2019). Imidacloprid induced alterations in oxidative stress, biochemical, genotoxic, and immunotoxic biomarkers in non-mammalian model organism Galleria mellonella L. (Lepidoptera: Pyralidae). Journal of Environmental Science and Health, Part B, 54(1), 27-34. https://doi.org/10.1080/03601234.2018.1530545
  • Zepeda‐Arce, R., Rojas‐García, A. E., Benitez‐Trinidad, A., Herrera‐Moreno, J. F., Medina‐Díaz, I. M., Barrón‐Vivanco, B. S., ... & Bernal‐Hernández, Y. Y. (2017). Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environmental toxicology, 32(6), 1754-1764. https://doi.org/10.1002/tox.22398
  • Zhang, P., Sun, H., Ren, C., Min, L., & Zhang, H. (2018). Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption. Environmental pollution, 234, 812-820. https://doi.org/10.1016/j.envpol.2017.12.013
  • Zhao, Y., Yang, J., Ren, J., Hou, Y., Han, Z., Xiao, J., & Li, Y. (2020). Exposure level of neonicotinoid insecticides in the food chain and the evaluation of their human health impact and environmental risk: An overview. Sustainability, 12(18), 7523. https://doi.org/10.3390/su12187523
  • Zhu, Q., Yuan, H.Y., Yao, J., Liu, Y., Tao, L., & Huang, Q. (2012). Effects of sublethal concentrations of the chitin synthesis inhibitor, hexaflumuron, on the development and hemolymph physiology of the cutworm, Spodoptera litura. Journal of Insect Science, 12, 1–13. https://doi.org/10.1673/031.012.2701
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ekolojik Fizyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Halil Uğur Aytekin 0000-0002-3811-4295

Tamer Kayış 0000-0002-1769-2133

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 12 Kasım 2023
Kabul Tarihi 26 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 1

Kaynak Göster

APA Aytekin, H. U., & Kayış, T. (2024). Effect of the Neonicotinoid Insecticide Thiacloprid on Oxidative Stress, Genotoxic, and Immunotoxic Biomarkers in Greater Wax Moth, Galleria mellonella. Commagene Journal of Biology, 8(1), 9-17. https://doi.org/10.31594/commagene.1389700
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.