Araştırma Makalesi
BibTex RIS Kaynak Göster

Çanakkale Boğazı Çevresindeki Sulak Alanlardaki Kuş Popülasyonlarının Analizi

Yıl 2025, Cilt: 9 Sayı: 1, 17 - 27

Öz

Günümüzde sulak alan ekosistemlerinde yaşanan hızlı yok oluş göz önüne alındığında, yaşanan değişimlere hızlı tepki verebilen kuş türlerinin ve popülasyonlarının izlenmesi sulak alan ekosistemlerinin takibi açısından önem arz etmektedir. Aynı zamanda, sulak alan ekosistemleri de kuş türlerinin yaşam döngüsü ve göç hareketlilikleri açısından kritik öneme sahiptir. Çalışmanın amacı, çok sayıda kuş türünün göç stratejilerinde önemli rol oynayan Akdeniz havzasının kuzeydoğu kesiminde yer alan Çanakkale Boğazı çevresindeki sulak alanlardaki (Kavak Deltası, Çardak Lagünü, Kumkale Deltası, Suvla Tuz Gölü, Umurbey Deltası) kuş türü çeşitliliğindeki aylık değişimleri incelemektir. Ayrıca, bu sulak alanların habitat tipleri ve alanları ile çeşitlilik endeksleri arasındaki korelasyonlar analiz edilmiş ve incelenen sulak alanlar için güncellenmiş tür listeleri derlenmiştir. Saha çalışmaları, nokta ve transekt gözlem metodları kullanılarak 2023 yılında aylık olarak yürütülmüştür. Çeşitlilik endeksleri, her alan için aylık olarak kaydedilen tür ve birey sayıları kullanılarak hesaplanmıştır. Sulak alan alanlarındaki habitat tipleri ve kapsadıkları alanlar ile çeşitlilik indeksleri arasındaki ilişki, Spearman korelasyon analizi ile sınanmıştır. Tüm alanlarda 22 takım ve 61 familyayı kapsayan 279 kuş türüne ait toplam 184.068 birey sayılmıştır. Sulak alanlarda tür zenginliği (Margalef indeksi- M) 15.417 ile 22.718 arasında, tür çeşitliliği (Shannon-Wiener İndeksi- H') ise 1.819 ile 2.416 arasında değişmiştir. Araştırma alanlarının önemli bir göç yolu üzerinde yer alması, göç dönemlerinde tür çeşitliliğini ve zenginliğini artırmaktadır. Sığ yüzey sularının baskın olduğu deltalarda, mevsimsel su seviyelerindeki değişiklikler nedeniyle çeşitlilik indekslerinde daha belirgin farklılıklar gözlenmiştir. Tür zenginliği ile sulak alanların, özellikle tuzcul bataklıklar ve sürekli sulanan tarım alanlarının büyüklüğü arasında güçlü pozitif korelasyon bulunmuş olup, bu da biyolojik çeşitliliği desteklemede habitat büyüklüğünün kritik rolüne işaret etmektedir. Mevsimsel su seviyesi dalgalanmaları da delta bölgelerindeki çeşitliliği önemli ölçüde etkilemiştir. Sulak alanların küresel çapta kaybı göz önüne alındığında, bu hayatî ekosistemleri anlamak ve korumak için standart yöntemlerle uzun vadeli araştırmalar yapılması büyük önem taşıyor.

Etik Beyan

Ethics committee approval is not required for this study.

Kaynakça

  • Amezaga, J.M., Santamaría, L., & Green, A.J. (2002). Biotic wetland connectivity—supporting a new approach for wetland policy. Acta oecologica, 23(3), 213-222. https://doi.org/10.1016/S1146-609X(02)01152-9.
  • Arslan, D., Ernoul, L., Béchet, A., Döndüren, Ö., Siki, M., & Galewski, T. (2023). Using literature and expert knowledge to determine changes in the bird community over a century in a Turkish wetland. Marine and Freshwater Research, 74(3), 220–233. https://doi.org/10.1071/MF21332.
  • Azizoglu, E., Kara, R., & Celik, E. (2023). A statistical approach on distribution and seasonal habitat use of waterfowl and shorebirds in Çıldır Lake (Ardahan, Türkiye). Environmental Science and Pollution Research, 30(31), 77371-77384.
  • Bateman, B.L., Taylor, L., Wilsey, C., Wu, J., LeBaron, G.S., & Langham, G. (2020). Risk to North American birds from climate change‐related threats. Conservation Science and Practice, 2(8), e243.
  • Bird, D.M. & Bildstein, K.L. (2007). Raptor Research and Management Techniques. Hancock House Publisher. Surrey, Canada.
  • Buckton, S. (2007). Managing wetlands for sustainable livelihoods at Koshi Tappu. Danphe, 16(1), 12-13.
  • Chen, J., & Zhou, L. (2011). Guild structure of wintering waterbird assemblages in shallow lakes along Yangtze River in Anhui Province, China. Shengtai Xuebao/Acta Ecologica Sinica, 31(18), 5323-5331.
  • Çelik, M. A., & Çelik, E. (2024). Are Urbanisation and Biodiversity Antithetical? A Bibliometric Analysis. Coğrafya Dergisi, (48), 121-135.
  • Dahl, T.E., Johnson, C.E. & Frayer, W.E. (1991). Wetlands, status and trends in the conterminous United States mid-1970's to mid-1980's. US Fish and Wildlife Service.
  • Dauda, T.O., Baksh, M.H., & Shahrul, A.M.S. (2017). Birds' species diversity measurement of Uchali Wetland (Ramsar site) Pakistan. Journal of Asia-Pacific Biodiversity, 10(2), 167-174. https://doi.org/10.1016/j.japb.2016.06.011
  • Davidson, N.C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10), 934-941. https://doi.org/10.1071/MF14173
  • Evans, S.R., & Sheldon, B.C. (2008). Interspecific patterns of genetic diversity in birds: correlations with extinction risk. Conservation Biology, 22(4), 1016-1025.
  • Ghermandi, A., Van Den Bergh, J.C., Brander, L.M., De Groot, H.L., & Nunes, P.A. (2010). Values of natural and human‐made wetlands: A meta‐analysis. Water Resources Research, 46(12). https://doi.org/10.1029/2010WR009071
  • González, A.L., & Fariña, J.M. (2013). Changes in the abundance and distribution of black-necked swans (Cygnus melancoryphus) in the Carlos Anwandter Nature Sanctuary and Adjacent Wetlands, Valdivia, Chile. WATERBIRDS: The International Journal of Waterbird Biology, 36(04), 507-514. http://www.bioone.org/doi/full/10.1675/063.036.0408
  • Goudarzian, P., & Erfanifard, S.Y. (2017). The efficiency of indices of richness, evenness and biodiversity in the investigation of species diversity changes (case study: migratory water birds of Parishan international wetland, Fars province, Iran). Biodiversity International Journal, 1(2), 41-45. https://doi.org/10.15406/bij.2017.01.00007
  • Gray, M.J., Hagy, H.M., Nyman, J.A., & Stafford, J.D. (2013). Management of wetlands for wildlife. In: Anderson MG, Davis CA (eds) Wetland techniques: Volume 3: Applications and management. Springer, Dordrecht, 121–180.
  • Guo, Y., Gong, P., & Amundson, R. (2003). Pedodiversity in the United States of America. Geoderma, 117(1-2), 99-115. https://doi.org/10.1016/S0016-7061(03)00137-X.
  • Harris, L.D. (1988). The nature of cumulative impacts on biotic diversity of wetland vertebrates. Environmental Management, 12, 675-693. https://doi.org/10.1007/BF01867545.
  • Hickling, R., Roy, D.B., Hill, J.K., Fox, R., & Thomas, C.D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global change biology, 12(3), 450-455. https://doi.org/10.1111/j.1365-2486.2006.01116.x.
  • International Union for Conservation of Nature (2023). The IUCN Red List of Threatened Species. Version 2023-2. Retrieved from https://www.iucnredlist.org.
  • Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Soci´et´e Vaudoise des Sciences Naturelles, 37(1), 547–579.
  • Kiziroğlu, İ. (2015). Türkiye Kuşları Cep Kitabı (The pocket book for birds of Turkey). İnkılap Kitabevi. Ankara, Türkiye.
  • Maclean, I.M., Wilson, R.J., & Hassall, M. (2011). Predicting changes in the abundance of African wetland birds by incorporating abundance–occupancy relationships into habitat association models. Diversity and Distributions, 17(3), 480-490. https://doi.org/10.1111/j.1472-4642.2011.00756.x.
  • Michel, N.L., Whelan, C.J., & Verutes, G.M. (2020). Ecosystem services provided by Neotropical birds. The Condor, 122(3).
  • Mitsch, W.J. & Gosselink, J.G. (2007). Wetland ecosystems Wilet J. & Sons Ed., New York, 4th ed, pp. 256.
  • Murillo‐Pacheco, J., López‐Iborra, G.M., Escobar, F., Bonilla‐Rojas, W.F., & Verdú, J.R. (2018). The value of small, natural and man‐made wetlands for bird diversity in the east Colombian Piedmont. Aquatic Conservation, Marine and Freshwater Ecosystems, 28(1), 87-97. https://doi.org/10.1002/aqc.2835.
  • Nagy, S., Breiner F.T., Anand, M., F. T. Breıner, S. H. M. Butchart, E. Fluet-Chouınard, M. Flörke, A. Guısan, L. Hılarıdes, et al. 2022. Climate change exposure of waterbird species in the African-Eurasian flyways. Bird Conservation International. 2022, 32(1), 1-26. doi: https://doi.org/10.1017/S0959270921000150
  • Newbold, T., Adams, G.L., Robles, G.A., Boakes, E.H., Ferreira, G.B., Chapman, A.S., Outhwaite, C.L. (2019). Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerging Topics in Life Sciences, 3, 207–219.
  • Odum, E.P. & Barrett, G.W. (1971). Fundamentals of ecology. Saunders Philadelphia.
  • Oliveira, J.D., Almeida, S.M., Florencio, F.P., Pinho, J.B., Oliveira, D.M., Ligeiro, R., & Rodrigues, D.J. (2019). Environmental structure affects taxonomic diversity but not functional structure of understory birds in the southwestern Brazilian Amazon. Acta Amazonica, 49, 232-241.
  • Özcan, H., Akbulak, C., Kelkit, A., Tosunoğlu, M., & İsmet, U. (2009). Ecotourism potential and management of kavak delta (northwest turkey). Journal of Coastal Research, 25(3), 781-787. https://doi.org/10.2112/08-1068.1.
  • Pearce‐Higgins, J.W., Eglington, S.M., Martay, B., & Chamberlain, D.E. (2015). Drivers of climate change impacts on bird communities. Journal of Animal Ecology, 84(4), 943-954. https://doi.org/10.1111/1365-2656.12364.
  • Pielou, E.C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
  • Rastandeh, A., & Pedersen, Z.M. (2018). A spatial analysis of land cover patterns and its implications for urban avifauna persistence under climate change. Landscape Ecology, 33, 455–474.
  • Reif, J., & Flousek, J. (2012). The role of species’ ecological traits in climatically driven altitudinal range shifts of central European birds. Oikos, 121(7), 1053-1060. https://doi.org/10.1111/j.1600-0706.2011.20008.x.
  • Richardson, C.J. (1994). Ecological functions and human values in wetlands: a framework for assessing forestry impacts. Wetlands, 14, 1-9. https://doi.org/10.1007/BF03160616.
  • Russell, I.A., Randall, R.M., & Hanekom, N. (2014). Spatial and temporal patterns of waterbird assemblages in the Wilderness Lakes Complex, South Africa. WATERBIRDS: The International Journal of Waterbird Biology, 1-18. https://doi.org/10.1675/063.037.0104.
  • Samsa, Ş. (2012). Çardak (Çanakkale/Türkiye) Lagünü Avifaunası (309626). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Shannon, C.E. & Weaver, W. (1963). The Mathematical Theory of Communication, Urbana, University of Illinois Press, Urbana, USA, pp. 117.
  • Sharma, K.K., & Saini, M. (2012). Impact of anthropogenic pressure on habitat utilization by the waterbirds in Gharana Wetland (reserve), Jammu (J&K, India). International Journal of Environmental Sciences, 2(4), 2050-2062.
  • Sinav, L. (2019). Türkiye'deki Kuş Türü Zenginliğinin Coğrafi Varyasyon Deseni (589924). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Skórka, P., Martyka, R., & Wójcik, J.D. (2006). Species richness of breeding birds at a landscape scale: which habitat type is the most important? Acta Ornithologica, 41(1), 49-54. https://doi.org/10.3161/068.041.0111.
  • Sulaiman, I.M., Abubakar, M.M., Ringim, A.S., Apeverga, P.T., & Dikwa, M.A. (2015). Effects of wetlands type and size on bird diversity and abundance at the Hadejia-Nguru wetlands, Nigeria. International Journal of Research Studies in Zoology, 1(1), 15-21.
  • Margalef, R. (1958). Information theory in ecology. General Systems, 3, 36-71.
  • Northrup, J.M., Rivers, J.W., Yang, Z., & Betts, M.G. (2019). Synergistic effects of climate and land-use change influence broad-scale avian population declines. Global Change Biology, 25, 1561–1575.
  • Sekercioglu, C. H., Schneider, S. H., Fay, J. P., & Loarie, S. R. (2008). Climate change, elevational range shifts, and bird extinctions. Conservation Biology, 22, 140–150.
  • Şengül, E. (2012). Kumkale Deltası’ nın Avifaunası (326628). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Uyman, M., & Tosunoğlu, M. (2019). Diversity of Bird Species in Umurbey Delta (Çanakkale/Turkey). 1st International Symposium on Biodiversity Research, Çanakkale, Turkey, 2–4 May 2019. pp. 342-355.
  • Uysal, İ., & Uysal, İ. (2021). Suvla Tuz Gölü (Çanakkale/Türkiye)'nün Ornithofaunası ve Su Kuşları Çeşitlilik Göstergeleri’nin Aylık Değişimi. Environmental Toxicology and Ecology, 1(1), 14-26.
  • Uysal, İ., & Uysal, İ. (2022). Evaluation of different wetland preferences of wintering waterbird species in Çanakkale, Turkey. Turkish Journal of Biodiversity, 5(1), 17-29. https://doi.org/10.38059/biodiversity.1034415
  • Zhao, Q., Silverman, E., Fleming, K., & Boomer, G. S. (2016). Forecasting waterfowl population dynamics under climate change - Does the spatial variation of density dependence and environmental effects matter? Biological Conservation, 194, 80–88.
  • Zedler, J.B., & Kercher, S. (2005). Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30(1), 39-74. https://doi.org/10.1146/annurev.energy.30.050504.144248

Analysis of Bird Populations in the Wetland Areas Surrounding the Çanakkale/Dardanelles Strait

Yıl 2025, Cilt: 9 Sayı: 1, 17 - 27

Öz

Given the rapid loss of wetland ecosystems today, monitoring bird species and populations that can respond quickly to environmental changes is crucial for the effective tracking of wetland ecosystems. Additionally, wetland ecosystems are of critical importance for the life cycles and migratory movements of bird species. The aim of the study is to examine the monthly variations in bird species diversity in the wetland areas (Kavak Delta, Çardak Lagoon, Kumkale Delta, Suvla Salt Lake, and Umurbey Delta) surrounding the Çanakkale/Dardanelles Strait, located in the northeastern part of the Mediterranean basin, which plays a significant role in migration strategies for numerous bird species. Additionally, correlations between the habitat types and areas of these wetlands and their diversity indices were analyzed and updated species lists for the studied wetlands were compiled. The field studies were conducted monthly in 2023 using point and transect observation methods to assess species and population counts. Diversity indices were calculated using the number of species and individuals recorded monthly for each area. The relationship between the habitat types and the areas they cover in wetlands and the diversity indices was tested using Spearman’s rho correlation analysis. A total of 184.068 birds belonging to 279 species, encompassing 22 orders and 61 families, were counted across all areas. In the wetland areas, species richness (Margalef index - M) ranged from 15.417 to 22.718 and species diversity (Shannon-Wiener Index - H') ranged from 1.819 to 2.416. The fact that the research areas lie along a significant migration route enhances species diversity and richness during migration periods. In Deltas where shallow surface waters predominate, more pronounced differences in diversity indices have been observed due to variations in seasonal water levels. A strong positive correlation was found between species richness and the size of wetlands, particularly Salt Marshes and Permanently Irrigated Lands, indicating the critical role of habitat size in supporting biodiversity. Seasonal water level fluctuations also significantly impacted diversity in delta regions. Given the global loss of wetlands, long-term research with standardized methods is crucial for understanding and protecting these vital ecosystems.

Etik Beyan

Bu çalışma için etik kurul iznine gerek yoktur.

Destekleyen Kurum

-

Teşekkür

-

Kaynakça

  • Amezaga, J.M., Santamaría, L., & Green, A.J. (2002). Biotic wetland connectivity—supporting a new approach for wetland policy. Acta oecologica, 23(3), 213-222. https://doi.org/10.1016/S1146-609X(02)01152-9.
  • Arslan, D., Ernoul, L., Béchet, A., Döndüren, Ö., Siki, M., & Galewski, T. (2023). Using literature and expert knowledge to determine changes in the bird community over a century in a Turkish wetland. Marine and Freshwater Research, 74(3), 220–233. https://doi.org/10.1071/MF21332.
  • Azizoglu, E., Kara, R., & Celik, E. (2023). A statistical approach on distribution and seasonal habitat use of waterfowl and shorebirds in Çıldır Lake (Ardahan, Türkiye). Environmental Science and Pollution Research, 30(31), 77371-77384.
  • Bateman, B.L., Taylor, L., Wilsey, C., Wu, J., LeBaron, G.S., & Langham, G. (2020). Risk to North American birds from climate change‐related threats. Conservation Science and Practice, 2(8), e243.
  • Bird, D.M. & Bildstein, K.L. (2007). Raptor Research and Management Techniques. Hancock House Publisher. Surrey, Canada.
  • Buckton, S. (2007). Managing wetlands for sustainable livelihoods at Koshi Tappu. Danphe, 16(1), 12-13.
  • Chen, J., & Zhou, L. (2011). Guild structure of wintering waterbird assemblages in shallow lakes along Yangtze River in Anhui Province, China. Shengtai Xuebao/Acta Ecologica Sinica, 31(18), 5323-5331.
  • Çelik, M. A., & Çelik, E. (2024). Are Urbanisation and Biodiversity Antithetical? A Bibliometric Analysis. Coğrafya Dergisi, (48), 121-135.
  • Dahl, T.E., Johnson, C.E. & Frayer, W.E. (1991). Wetlands, status and trends in the conterminous United States mid-1970's to mid-1980's. US Fish and Wildlife Service.
  • Dauda, T.O., Baksh, M.H., & Shahrul, A.M.S. (2017). Birds' species diversity measurement of Uchali Wetland (Ramsar site) Pakistan. Journal of Asia-Pacific Biodiversity, 10(2), 167-174. https://doi.org/10.1016/j.japb.2016.06.011
  • Davidson, N.C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10), 934-941. https://doi.org/10.1071/MF14173
  • Evans, S.R., & Sheldon, B.C. (2008). Interspecific patterns of genetic diversity in birds: correlations with extinction risk. Conservation Biology, 22(4), 1016-1025.
  • Ghermandi, A., Van Den Bergh, J.C., Brander, L.M., De Groot, H.L., & Nunes, P.A. (2010). Values of natural and human‐made wetlands: A meta‐analysis. Water Resources Research, 46(12). https://doi.org/10.1029/2010WR009071
  • González, A.L., & Fariña, J.M. (2013). Changes in the abundance and distribution of black-necked swans (Cygnus melancoryphus) in the Carlos Anwandter Nature Sanctuary and Adjacent Wetlands, Valdivia, Chile. WATERBIRDS: The International Journal of Waterbird Biology, 36(04), 507-514. http://www.bioone.org/doi/full/10.1675/063.036.0408
  • Goudarzian, P., & Erfanifard, S.Y. (2017). The efficiency of indices of richness, evenness and biodiversity in the investigation of species diversity changes (case study: migratory water birds of Parishan international wetland, Fars province, Iran). Biodiversity International Journal, 1(2), 41-45. https://doi.org/10.15406/bij.2017.01.00007
  • Gray, M.J., Hagy, H.M., Nyman, J.A., & Stafford, J.D. (2013). Management of wetlands for wildlife. In: Anderson MG, Davis CA (eds) Wetland techniques: Volume 3: Applications and management. Springer, Dordrecht, 121–180.
  • Guo, Y., Gong, P., & Amundson, R. (2003). Pedodiversity in the United States of America. Geoderma, 117(1-2), 99-115. https://doi.org/10.1016/S0016-7061(03)00137-X.
  • Harris, L.D. (1988). The nature of cumulative impacts on biotic diversity of wetland vertebrates. Environmental Management, 12, 675-693. https://doi.org/10.1007/BF01867545.
  • Hickling, R., Roy, D.B., Hill, J.K., Fox, R., & Thomas, C.D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global change biology, 12(3), 450-455. https://doi.org/10.1111/j.1365-2486.2006.01116.x.
  • International Union for Conservation of Nature (2023). The IUCN Red List of Threatened Species. Version 2023-2. Retrieved from https://www.iucnredlist.org.
  • Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Soci´et´e Vaudoise des Sciences Naturelles, 37(1), 547–579.
  • Kiziroğlu, İ. (2015). Türkiye Kuşları Cep Kitabı (The pocket book for birds of Turkey). İnkılap Kitabevi. Ankara, Türkiye.
  • Maclean, I.M., Wilson, R.J., & Hassall, M. (2011). Predicting changes in the abundance of African wetland birds by incorporating abundance–occupancy relationships into habitat association models. Diversity and Distributions, 17(3), 480-490. https://doi.org/10.1111/j.1472-4642.2011.00756.x.
  • Michel, N.L., Whelan, C.J., & Verutes, G.M. (2020). Ecosystem services provided by Neotropical birds. The Condor, 122(3).
  • Mitsch, W.J. & Gosselink, J.G. (2007). Wetland ecosystems Wilet J. & Sons Ed., New York, 4th ed, pp. 256.
  • Murillo‐Pacheco, J., López‐Iborra, G.M., Escobar, F., Bonilla‐Rojas, W.F., & Verdú, J.R. (2018). The value of small, natural and man‐made wetlands for bird diversity in the east Colombian Piedmont. Aquatic Conservation, Marine and Freshwater Ecosystems, 28(1), 87-97. https://doi.org/10.1002/aqc.2835.
  • Nagy, S., Breiner F.T., Anand, M., F. T. Breıner, S. H. M. Butchart, E. Fluet-Chouınard, M. Flörke, A. Guısan, L. Hılarıdes, et al. 2022. Climate change exposure of waterbird species in the African-Eurasian flyways. Bird Conservation International. 2022, 32(1), 1-26. doi: https://doi.org/10.1017/S0959270921000150
  • Newbold, T., Adams, G.L., Robles, G.A., Boakes, E.H., Ferreira, G.B., Chapman, A.S., Outhwaite, C.L. (2019). Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerging Topics in Life Sciences, 3, 207–219.
  • Odum, E.P. & Barrett, G.W. (1971). Fundamentals of ecology. Saunders Philadelphia.
  • Oliveira, J.D., Almeida, S.M., Florencio, F.P., Pinho, J.B., Oliveira, D.M., Ligeiro, R., & Rodrigues, D.J. (2019). Environmental structure affects taxonomic diversity but not functional structure of understory birds in the southwestern Brazilian Amazon. Acta Amazonica, 49, 232-241.
  • Özcan, H., Akbulak, C., Kelkit, A., Tosunoğlu, M., & İsmet, U. (2009). Ecotourism potential and management of kavak delta (northwest turkey). Journal of Coastal Research, 25(3), 781-787. https://doi.org/10.2112/08-1068.1.
  • Pearce‐Higgins, J.W., Eglington, S.M., Martay, B., & Chamberlain, D.E. (2015). Drivers of climate change impacts on bird communities. Journal of Animal Ecology, 84(4), 943-954. https://doi.org/10.1111/1365-2656.12364.
  • Pielou, E.C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
  • Rastandeh, A., & Pedersen, Z.M. (2018). A spatial analysis of land cover patterns and its implications for urban avifauna persistence under climate change. Landscape Ecology, 33, 455–474.
  • Reif, J., & Flousek, J. (2012). The role of species’ ecological traits in climatically driven altitudinal range shifts of central European birds. Oikos, 121(7), 1053-1060. https://doi.org/10.1111/j.1600-0706.2011.20008.x.
  • Richardson, C.J. (1994). Ecological functions and human values in wetlands: a framework for assessing forestry impacts. Wetlands, 14, 1-9. https://doi.org/10.1007/BF03160616.
  • Russell, I.A., Randall, R.M., & Hanekom, N. (2014). Spatial and temporal patterns of waterbird assemblages in the Wilderness Lakes Complex, South Africa. WATERBIRDS: The International Journal of Waterbird Biology, 1-18. https://doi.org/10.1675/063.037.0104.
  • Samsa, Ş. (2012). Çardak (Çanakkale/Türkiye) Lagünü Avifaunası (309626). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Shannon, C.E. & Weaver, W. (1963). The Mathematical Theory of Communication, Urbana, University of Illinois Press, Urbana, USA, pp. 117.
  • Sharma, K.K., & Saini, M. (2012). Impact of anthropogenic pressure on habitat utilization by the waterbirds in Gharana Wetland (reserve), Jammu (J&K, India). International Journal of Environmental Sciences, 2(4), 2050-2062.
  • Sinav, L. (2019). Türkiye'deki Kuş Türü Zenginliğinin Coğrafi Varyasyon Deseni (589924). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Skórka, P., Martyka, R., & Wójcik, J.D. (2006). Species richness of breeding birds at a landscape scale: which habitat type is the most important? Acta Ornithologica, 41(1), 49-54. https://doi.org/10.3161/068.041.0111.
  • Sulaiman, I.M., Abubakar, M.M., Ringim, A.S., Apeverga, P.T., & Dikwa, M.A. (2015). Effects of wetlands type and size on bird diversity and abundance at the Hadejia-Nguru wetlands, Nigeria. International Journal of Research Studies in Zoology, 1(1), 15-21.
  • Margalef, R. (1958). Information theory in ecology. General Systems, 3, 36-71.
  • Northrup, J.M., Rivers, J.W., Yang, Z., & Betts, M.G. (2019). Synergistic effects of climate and land-use change influence broad-scale avian population declines. Global Change Biology, 25, 1561–1575.
  • Sekercioglu, C. H., Schneider, S. H., Fay, J. P., & Loarie, S. R. (2008). Climate change, elevational range shifts, and bird extinctions. Conservation Biology, 22, 140–150.
  • Şengül, E. (2012). Kumkale Deltası’ nın Avifaunası (326628). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Uyman, M., & Tosunoğlu, M. (2019). Diversity of Bird Species in Umurbey Delta (Çanakkale/Turkey). 1st International Symposium on Biodiversity Research, Çanakkale, Turkey, 2–4 May 2019. pp. 342-355.
  • Uysal, İ., & Uysal, İ. (2021). Suvla Tuz Gölü (Çanakkale/Türkiye)'nün Ornithofaunası ve Su Kuşları Çeşitlilik Göstergeleri’nin Aylık Değişimi. Environmental Toxicology and Ecology, 1(1), 14-26.
  • Uysal, İ., & Uysal, İ. (2022). Evaluation of different wetland preferences of wintering waterbird species in Çanakkale, Turkey. Turkish Journal of Biodiversity, 5(1), 17-29. https://doi.org/10.38059/biodiversity.1034415
  • Zhao, Q., Silverman, E., Fleming, K., & Boomer, G. S. (2016). Forecasting waterfowl population dynamics under climate change - Does the spatial variation of density dependence and environmental effects matter? Biological Conservation, 194, 80–88.
  • Zedler, J.B., & Kercher, S. (2005). Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30(1), 39-74. https://doi.org/10.1146/annurev.energy.30.050504.144248
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kuş Bilimi
Bölüm Araştırma Makaleleri
Yazarlar

İbrahim Uysal 0000-0002-7507-3322

Didem Kurtul 0000-0003-0778-5966

Ceren Nur Özgül 0000-0002-1597-4321

Murat Tosunoğlu 0000-0002-9764-2477

Erken Görünüm Tarihi 3 Şubat 2025
Yayımlanma Tarihi
Gönderilme Tarihi 20 Eylül 2024
Kabul Tarihi 3 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Uysal, İ., Kurtul, D., Özgül, C. N., Tosunoğlu, M. (2025). Analysis of Bird Populations in the Wetland Areas Surrounding the Çanakkale/Dardanelles Strait. Commagene Journal of Biology, 9(1), 17-27. https://doi.org/10.31594/commagene.1553393
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.