Lissotriton schmidtleri (Raxworthy, 1988) Deri Salgısının İnsan Meme Kanseri (MCF7) Hücre Hattı Üzerindeki in vitro Antiproliferatif Aktivitesi
Yıl 2025,
Cilt: 9 Sayı: 1, 12 - 16
Mert Karış
Öz
Bu çalışmada, Lissotriton schmidtleri deri salgısının östrojen duyarlı insan meme kanseri (MCF7) hücreleri üzerindeki in vitro antiproliferatif aktivitesi ilk kez rapor edilmiştir. MCF7 hücre hattına, L. schmidtleri deri salgısının 0.5, 5 ve 50 μg/mL konsantrasyonları uygulanarak 48 saat inkübasyon sonundaki etkileri MTT testi ile belirlenmiştir. MTT testi sonucunda, L. schmidtleri deri salgısı, MCF7 hücre canlılığını 50 μg/mL konsantrasyonda yaklaşık %64 oranında inhibe etmiş ve IC50 değeri 20.81 ± 0.87 μg/mL olarak hesaplanmıştır. Elde edilen veriler ışığında, L. schmidtleri deri salgısının meme kanserine karşı potansiyel bir antikanser ajan olabileceği değerlendirilmiştir.
Etik Beyan
Bu çalışma hayvan deneyleri etik standartlarına uygun olarak gerçekleştirildi. Çalışma için yasal araştırma etiği kurulu onay izinleri Ege Üniversitesi Hayvan Deneyleri Yerel Etik Kurulu'ndan (No: 2014-002) alındı.
Destekleyen Kurum
Ege Üniversitesi
Teşekkür
Çalışma sırasında laboratuvar olanakları için AREL'e (Ege Üniversitesi Tıp Fakültesi Araştırma ve Eğitim Laboratuvarı) teşekkürlerimi sunmak istiyorum. Ayrıca değerli önerileri ve hücre hattını sağladığı için Ayşe NALBANTSOY'a (Ege Üniversitesi) çok teşekkür ederim.
Kaynakça
- Barros, A.L., Hamed, A., Marani, M., Moreira, D.C., Eaton, P., Plácido, A., ... & Leite, J.R.S. (2022). The arsenal of bioactive molecules in the skin secretion of urodele amphibians. Frontiers in Pharmacology, 12, 810821. https://doi.org/10.3389/fphar.2021.810821
- Bartels, E.J.H., Dekker, D., & Amiche, M. (2019). Dermaseptins, multifunctional antimicrobial peptides: A review of their pharmacology, effectivity, mechanism of action, and possible future directions. Frontiers in Pharmacology, 10, 1421. https://doi.org/10.3389/fphar.2019.01421
- Bradshaw, M.J., Saviola, A.J., Fesler, E., & Mackessy, S.P. (2016). Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines. Cytotechnology, 68, 687-700. https://doi.org/10.1007/s10616-014-9820-2
- Clarke, B.T. (1997). The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biological Reviews, 72(3), 365-379. https://doi.org/10.1017/S0006323197005045
- Gao, L., Yu, S., Wu, Y., & Shan, B. (2007). Effect of spider venom on cell apoptosis and necrosis rates in MCF-7 cells. DNA and Cell Biology, 26(7), 485-489. https://doi.org/10.1089/dna.2007.0579
- Holliday, D.L., & Speirs, V. (2011). Choosing the right cell line for breast cancer research. Breast Cancer Research, 13, 1-7. https://doi.org/10.1186/bcr2889
- Hoskin, D.W., & Ramamoorthy, A. (2008). Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1778(2), 357-375. https://doi.org/10.1016/j.bbamem.2007.11.008
- Indriani, S., Karnjanapratum, S., Nirmal, N.P., & Nalinanon, S. (2023). Amphibian skin and skin secretion: An exotic source of bioactive peptides and its application. Foods, 12(6), 1282. https://doi.org/10.3390/foods12061282
- Kamran, M.R., Zargan, J., Alikhani, H.K., & Hajinoormohamadi, A. (2020). The Comparative cytotoxic effects of apis mellifera crude venom on MCF-7 Breast Cancer cell line in 2D and 3D cell cultures. International Journal of Peptide Research and Therapeutics, 26, 1819-1828. https://doi.org/10.1007/s10989-019-09979-0
- Karış, M., Şener, D., Yalçın, H.T., Nalbantsoy, A., & Göçmen, B. (2018). Major biological activities and protein profiles of skin secretions of Lissotriton vulgaris and Triturus ivanbureschi. Turkish Journal of Biochemistry, 43(6), 605-612. https://doi.org/10.1515/tjb-2017-0306
- Kröner, L., Lötters, S., & Hopp, M.T. (2024). Insights into caudate amphibian skin secretions with a focus on the chemistry and bioactivity of derived peptides. Biological Chemistry, 405(9-10), 641-660. https://doi.org/10.1515/hsz-2024-0035
- Kreuger, M.R.O., Grootjans, S., Biavatti, M.W., Vandenabeele, P., & D’Herde, K. (2012). Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anti-cancer Drugs, 23(9), 883-896. https://doi.org/10.1097/CAD.0b013e328356cad9
- Li, M., Xi, X., Ma, C., Chen, X., Zhou, M., Burrows, J.F., ... & Wang, L. (2019). A novel dermaseptin isolated from the skin secretion of Phyllomedusa tarsius and its cationicity-enhanced analogue exhibiting effective antimicrobial and anti-proliferative activities. Biomolecules, 9(10), 628. https://doi.org/10.3390/biom9100628
- Liu, Y., Liu, H., Zhang, J., & Zhang, Y. (2024). Temporin-GHaK Exhibits Antineoplastic Activity against Human Lung Adenocarcinoma by Inhibiting the Wnt Signaling Pathway through miRNA-4516. Molecules, 29(12), 2797. https://doi.org/10.3390/molecules29122797
- Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L., Fevr, T., ... & Gray, J.W. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 10(6), 515-527. https://doi.org/10.1016/j.ccr.2006.10.008
- Oelkrug, C., Hartke, M., & Schubert, A. (2015). Mode of action of anticancer peptides (ACPs) from amphibian origin. Anticancer Research, 35(2), 635-643.
- Perou, C.M., & Børresen-Dale, A.L. (2011). Systems biology and genomics of breast cancer. Cold Spring Harbor Perspectives in Biology, 3(2), a003293. https://doi.org/10.1101/cshperspect.a003293
- Santana, C.J.C., Magalhães, A.C.M., dos Santos Júnior, A.C., Ricart, C.A.O., Lima, B.D., Álvares, A.D.C.M., ... & Castro, M.S. (2020). Figainin 1, a novel amphibian skin peptide with antimicrobial and antiproliferative properties. Antibiotics, 9(9), 625. https://doi.org/10.3390/antibiotics9090625
- Sciani, J.M., de-Sá-Júnior, P.L., Ferreira, A.K., Pereira, A., Antoniazzi, M.M., Jared, C., & Pimenta, D.C. (2013). Cytotoxic and antiproliferative effects of crude amphibian skin secretions on breast tumor cells. Biomedicine & Preventive Nutrition, 3(1), 10-18. https://doi.org/10.1016/j.bionut.2012.11.001
- Smith, R.A., Cokkinides, V., & Eyre, H.J. (2007). Cancer screening in the United States, 2007: a review of current guidelines, practices, and prospects. CA: A Cancer Journal for Clinicians, 57(2), 90-104. https://doi.org/10.3322/canjclin.57.2.90
- Tyler, M.J., Stone, D.J., & Bowie, J.H. (1992). A novel method for the release and collection of dermal, glandular secretions from the skin of frogs. Journal of Pharmacological and Toxicological Methods, 28(4), 199-200. https://doi.org/10.1016/1056-8719(92)90004-k
- Wang, C., Li, H.B., Li, S., Tian, L.L., & Shang, D.J. (2012). Antitumor effects and cell selectivity of temporin-1CEa, an antimicrobial peptide from the skin secretions of the Chinese brown frog (Rana chensinensis). Biochimie, 94(2), 434-441. https://doi.org/10.1016/j.biochi.2011.08.011
- Wang, L., Dong, C., Li, X., Han, W., & Su, X. (2017). Anticancer potential of bioactive peptides from animal sources. Oncology Reports, 38(2), 637-651. https://doi.org/10.3892/or.2017.5778
- Wang, X., Tang, P., Gong, Y., Yao, H., Liang, M., Qu, H., ... & Jiang, Q. (2024). Bombinin-BO1 induces hepatocellular carcinoma cell-cycle arrest and apoptosis via the HSP90A-Cdc37-CDK1 axis. iScience, 27(8), 110382. https://doi.org/10.1016/j.isci.2024.110382
- Wanninger, M., Schwaha, T., & Heiss, E. (2018). Form and Function of the skin glands in the Himalayan newt Tylototriton verrucosus. Zoological Letters, 4, 1-10. https://doi.org/10.1186/s40851-018-0095-x
- Wielstra, B., Bozkurt, E., & Olgun, K. (2015). The distribution and taxonomy of Lissotriton newts in Turkey (Amphibia, Salamandridae). ZooKeys, 484, 11-23. https://doi.org/10.3897/zookeys.484.8869
- Wild, C. (2014). World cancer report 2014 (pp. 482-494). C. P. Wild, & B. W. Stewart (Eds.). Geneva, Switzerland: World Health Organization.
- Xu, X., & Lai, R. (2015). The chemistry and biological activities of peptides from amphibian skin secretions. Chemical Reviews, 115(4), 1760-1846. https://doi.org/10.1021/cr4006704
- Zargan, J., Umar, S., Sajad, M., Naime, M., Ali, S., & Khan, H.A. (2011). Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicology in vitro, 25(8), 1748-1756. https://doi.org/10.1016/j.tiv.2011.09.002
In vitro Antiproliferative Activity of Lissotriton schmidtleri (Raxworthy, 1988) Skin Secretion on Human Breast Cancer (MCF7) Cell Line
Yıl 2025,
Cilt: 9 Sayı: 1, 12 - 16
Mert Karış
Öz
: In this study, the in vitro antiproliferative activity of Lissotriton schmidtleri skin secretion on estrogen-sensitive human breast cancer (MCF7) cells was reported for the first time. The effects of L. schmidtleri skin secretion at concentrations of 0.5, 5, and 50 μg/mL on the MCF7 cell line were evaluated using the MTT assay after 48 hours of incubation. According to the MTT assay results, L. schmidtleri skin secretion inhibited MCF7 cell viability by approximately 64% at a concentration of 50 μg/mL, with an IC50 value calculated as 20.81 ± 0.87 μg/mL. Based on these findings, it is suggested that L. schmidtleri skin secretion may serve as a potential anticancer agent against breast cancer.
Etik Beyan
This study was performed in accordance with ethical standards of animal experiments. Legal research ethics committee approval permissions for the study were obtained from the Ege University, Animal Experiments Local Ethics Committee (No: 2014-002).
Destekleyen Kurum
Ege University
Teşekkür
I would like to extend my thanks to AREL (Research and Education Laboratory, Ege University School of Medicine) for their laboratory facilities during the study. Also, many thanks to Ayşe NALBANTSOY (Ege University) for her vauable suggestions and providing the cell line.
Kaynakça
- Barros, A.L., Hamed, A., Marani, M., Moreira, D.C., Eaton, P., Plácido, A., ... & Leite, J.R.S. (2022). The arsenal of bioactive molecules in the skin secretion of urodele amphibians. Frontiers in Pharmacology, 12, 810821. https://doi.org/10.3389/fphar.2021.810821
- Bartels, E.J.H., Dekker, D., & Amiche, M. (2019). Dermaseptins, multifunctional antimicrobial peptides: A review of their pharmacology, effectivity, mechanism of action, and possible future directions. Frontiers in Pharmacology, 10, 1421. https://doi.org/10.3389/fphar.2019.01421
- Bradshaw, M.J., Saviola, A.J., Fesler, E., & Mackessy, S.P. (2016). Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines. Cytotechnology, 68, 687-700. https://doi.org/10.1007/s10616-014-9820-2
- Clarke, B.T. (1997). The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biological Reviews, 72(3), 365-379. https://doi.org/10.1017/S0006323197005045
- Gao, L., Yu, S., Wu, Y., & Shan, B. (2007). Effect of spider venom on cell apoptosis and necrosis rates in MCF-7 cells. DNA and Cell Biology, 26(7), 485-489. https://doi.org/10.1089/dna.2007.0579
- Holliday, D.L., & Speirs, V. (2011). Choosing the right cell line for breast cancer research. Breast Cancer Research, 13, 1-7. https://doi.org/10.1186/bcr2889
- Hoskin, D.W., & Ramamoorthy, A. (2008). Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1778(2), 357-375. https://doi.org/10.1016/j.bbamem.2007.11.008
- Indriani, S., Karnjanapratum, S., Nirmal, N.P., & Nalinanon, S. (2023). Amphibian skin and skin secretion: An exotic source of bioactive peptides and its application. Foods, 12(6), 1282. https://doi.org/10.3390/foods12061282
- Kamran, M.R., Zargan, J., Alikhani, H.K., & Hajinoormohamadi, A. (2020). The Comparative cytotoxic effects of apis mellifera crude venom on MCF-7 Breast Cancer cell line in 2D and 3D cell cultures. International Journal of Peptide Research and Therapeutics, 26, 1819-1828. https://doi.org/10.1007/s10989-019-09979-0
- Karış, M., Şener, D., Yalçın, H.T., Nalbantsoy, A., & Göçmen, B. (2018). Major biological activities and protein profiles of skin secretions of Lissotriton vulgaris and Triturus ivanbureschi. Turkish Journal of Biochemistry, 43(6), 605-612. https://doi.org/10.1515/tjb-2017-0306
- Kröner, L., Lötters, S., & Hopp, M.T. (2024). Insights into caudate amphibian skin secretions with a focus on the chemistry and bioactivity of derived peptides. Biological Chemistry, 405(9-10), 641-660. https://doi.org/10.1515/hsz-2024-0035
- Kreuger, M.R.O., Grootjans, S., Biavatti, M.W., Vandenabeele, P., & D’Herde, K. (2012). Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anti-cancer Drugs, 23(9), 883-896. https://doi.org/10.1097/CAD.0b013e328356cad9
- Li, M., Xi, X., Ma, C., Chen, X., Zhou, M., Burrows, J.F., ... & Wang, L. (2019). A novel dermaseptin isolated from the skin secretion of Phyllomedusa tarsius and its cationicity-enhanced analogue exhibiting effective antimicrobial and anti-proliferative activities. Biomolecules, 9(10), 628. https://doi.org/10.3390/biom9100628
- Liu, Y., Liu, H., Zhang, J., & Zhang, Y. (2024). Temporin-GHaK Exhibits Antineoplastic Activity against Human Lung Adenocarcinoma by Inhibiting the Wnt Signaling Pathway through miRNA-4516. Molecules, 29(12), 2797. https://doi.org/10.3390/molecules29122797
- Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L., Fevr, T., ... & Gray, J.W. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 10(6), 515-527. https://doi.org/10.1016/j.ccr.2006.10.008
- Oelkrug, C., Hartke, M., & Schubert, A. (2015). Mode of action of anticancer peptides (ACPs) from amphibian origin. Anticancer Research, 35(2), 635-643.
- Perou, C.M., & Børresen-Dale, A.L. (2011). Systems biology and genomics of breast cancer. Cold Spring Harbor Perspectives in Biology, 3(2), a003293. https://doi.org/10.1101/cshperspect.a003293
- Santana, C.J.C., Magalhães, A.C.M., dos Santos Júnior, A.C., Ricart, C.A.O., Lima, B.D., Álvares, A.D.C.M., ... & Castro, M.S. (2020). Figainin 1, a novel amphibian skin peptide with antimicrobial and antiproliferative properties. Antibiotics, 9(9), 625. https://doi.org/10.3390/antibiotics9090625
- Sciani, J.M., de-Sá-Júnior, P.L., Ferreira, A.K., Pereira, A., Antoniazzi, M.M., Jared, C., & Pimenta, D.C. (2013). Cytotoxic and antiproliferative effects of crude amphibian skin secretions on breast tumor cells. Biomedicine & Preventive Nutrition, 3(1), 10-18. https://doi.org/10.1016/j.bionut.2012.11.001
- Smith, R.A., Cokkinides, V., & Eyre, H.J. (2007). Cancer screening in the United States, 2007: a review of current guidelines, practices, and prospects. CA: A Cancer Journal for Clinicians, 57(2), 90-104. https://doi.org/10.3322/canjclin.57.2.90
- Tyler, M.J., Stone, D.J., & Bowie, J.H. (1992). A novel method for the release and collection of dermal, glandular secretions from the skin of frogs. Journal of Pharmacological and Toxicological Methods, 28(4), 199-200. https://doi.org/10.1016/1056-8719(92)90004-k
- Wang, C., Li, H.B., Li, S., Tian, L.L., & Shang, D.J. (2012). Antitumor effects and cell selectivity of temporin-1CEa, an antimicrobial peptide from the skin secretions of the Chinese brown frog (Rana chensinensis). Biochimie, 94(2), 434-441. https://doi.org/10.1016/j.biochi.2011.08.011
- Wang, L., Dong, C., Li, X., Han, W., & Su, X. (2017). Anticancer potential of bioactive peptides from animal sources. Oncology Reports, 38(2), 637-651. https://doi.org/10.3892/or.2017.5778
- Wang, X., Tang, P., Gong, Y., Yao, H., Liang, M., Qu, H., ... & Jiang, Q. (2024). Bombinin-BO1 induces hepatocellular carcinoma cell-cycle arrest and apoptosis via the HSP90A-Cdc37-CDK1 axis. iScience, 27(8), 110382. https://doi.org/10.1016/j.isci.2024.110382
- Wanninger, M., Schwaha, T., & Heiss, E. (2018). Form and Function of the skin glands in the Himalayan newt Tylototriton verrucosus. Zoological Letters, 4, 1-10. https://doi.org/10.1186/s40851-018-0095-x
- Wielstra, B., Bozkurt, E., & Olgun, K. (2015). The distribution and taxonomy of Lissotriton newts in Turkey (Amphibia, Salamandridae). ZooKeys, 484, 11-23. https://doi.org/10.3897/zookeys.484.8869
- Wild, C. (2014). World cancer report 2014 (pp. 482-494). C. P. Wild, & B. W. Stewart (Eds.). Geneva, Switzerland: World Health Organization.
- Xu, X., & Lai, R. (2015). The chemistry and biological activities of peptides from amphibian skin secretions. Chemical Reviews, 115(4), 1760-1846. https://doi.org/10.1021/cr4006704
- Zargan, J., Umar, S., Sajad, M., Naime, M., Ali, S., & Khan, H.A. (2011). Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicology in vitro, 25(8), 1748-1756. https://doi.org/10.1016/j.tiv.2011.09.002