Araştırma Makalesi
BibTex RIS Kaynak Göster

Çim Peleti Üretiminde Kalıp Delik Çapı ve Nem İçeriğinin Üretim Parametreleri ve Pelet Fiziksel Özelliklerine Etkisi

Yıl 2021, , 47 - 56, 28.06.2021
https://doi.org/10.33202/comuagri.865091

Öz

Bu çalışmada peyzaj alanlarında ortaya çıkan çim biçme artıklarının pelet hammaddesi olarak kullanım olanakları araştırılmıştır. Peletleme işleminde temel değişkenler içerisinde yer alan peletleme nemi ve pelet çapının, pelet üretim koşulları ve pelet fiziksel özelliklerine etkisi belirlenmiş ve ilgili standartlara uygunluğu incelenmiştir. Bu amaçla, denemelerde %14 ve %17 olmak üzere iki farklı peletleme neminde ve 6 mm ve 8 mm olmak üzerinde iki farklı kalıp delik çapında peletler (P6-14; P6-17; P8-14; P8-17) üretilmiştir. Peletlere ait fiziksel özellikler kapsamında; nem içeriği, yığın yoğunluğu, parça yoğunluğu, dayanıklılık direnci ve darbe direnci değerleri belirlenmiştir. İşletme değerleri açısından önemli olan üretim sırasındaki enerji tüketimi değerleri ölçülmüş ve üretim kapasitesi değerleri hesaplanmıştır. Araştırma bulgularına göre peletleme nem ve pelet çapının artışı üretim kapasitesini artırmakta, enerji tüketimini düşürmekle birlikte pelet fiziksel özelliklerini olumsuz yönde etkilemektedir. Pelet parça yoğunluğu ve yığın yoğunluğu değerleri, pelet çapının ve peletleme neminin artmasıyla azalmıştır. En yüksek parça ve yığın yoğunluğu değerleri P6-14 peletlerinde 1024.11 kg/m3 ve 624.07 kg/m3, en düşük parça ve yığın yoğunluğu değerleri P8-17 peletlerinde 787.06 kg/m3 ve 479.29 kg/m3 olarak hesaplanmıştır. En yüksek pelet dayanıklılık direnci değerine sahip olan P6-14 peletlerinin dayanıklılık direnci değeri %95.97 ile standart değerin (≥%97.5) altındadır. Çalışma sonunda, çim biçme artıklarının düşük nem içeriğinde peletlenmesi veya karışım materyali olarak peletlenmesi güç olan biyokütle kaynaklarıyla kullanılabileceği sonucuna varılmıştır.

Kaynakça

  • Adapa, P., Tabil, L., & Schoenau, G. (2009). Compaction characteristics of barley, canola, oat and wheat straw. Biosystems Engineering, 104(3), 335–344. https://doi.org/10.1016/j.biosystemseng.2009.06.022
  • Agar, D. A., Rudolfsson, M., Kalén, G., Campargue, M., Da Silva Perez, D., & Larsson, S. H. (2018). A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Processing Technology, 180(August), 47–55. https://doi.org/10.1016/j.fuproc.2018.08.006
  • Aghayev, E. (2019). Investigation Of Pretreatment Methods To Improve Biogas Yield Of Agricultural Wastes. Hacettepe Üniversitesi,Fen Biilimleri Enstitüsü,Doktora Tezi,Ankara, 186.
  • Amiri, H., Kianmehr, M. H., & Arabhosseini, A. (2019). Effect of particle size, die rotary speed and amount of urea on physical properties of the produced pellet. International Journal of Environmental Science and Technology, 16(4), 2059–2068. https://doi.org/10.1007/s13762-017-1627-1
  • Anonim. (n.d.-a). Anonim a. Retrieved January 5, 2021, from http://www.milagri.it/index.php?option=com_content&view=article&id=70&Itemid=537&lang=en
  • Anonim. (n.d.-b). Anonim b. Retrieved January 5, 2021, from https://www.heatit.ee/en/premium-pellets
  • Anonim. (n.d.-c). Anonim c. Retrieved January 5, 2021, from https://www.lanordica-extraflame.com/en/products/pellet-stoves
  • Anonim. (n.d.-d). Anonim d. Retrieved January 5, 2021, from http://termodinamik.com.ua/files/PELLET STOVE HYBRID.PDF
  • Anonim. (n.d.-e). Anonim e. Retrieved January 5, 2021, from http://www.uniclass.it/wp-content/uploads/2019/01/Manual-AUDAX-LASIAN-STOVE-83119L-01_EN_Sept16.pdf
  • Anonim. (n.d.-f). Anonim f. Retrieved January 5, 2021, from http://www.red365.it/en/p280-erica.html
  • ASAE. (2001). S269.4: In Cubes, Pellets, and Crumbles—Definitions and Methods for Determining Density, Durability, and Moisture Content.
  • ASAE S319.3. (2003). Methods for determining and expressing fineness of feed materials by sieving. 2008, S319.2.
  • ASTM E871-82. (2019). Standard Test Method for Moisture Analysis of Particulate Wood Fuels. In Annual Book of ASTM Standards (Vol. 82, Issue Reapproved 2013). https://doi.org/10.1520/E0871-82R13.2
  • Azócar, L., Hermosilla, N., Gay, A., Rocha, S., Díaz, J., & Jara, P. (2019). Brown pellet production using wheat straw from southern cities in Chile. Fuel, 237(October 2018), 823–832. https://doi.org/10.1016/j.fuel.2018.09.039
  • Biswas, A. K., Yang, W., & Blasiak, W. (2011). Steam pretreatment of Salix to upgrade biomass fuel for wood pellet production. Fuel Processing Technology, 92(9), 1711–1717. https://doi.org/10.1016/j.fuproc.2011.04.017
  • Carroll, J. P., & Finnan, J. (2012). Physical and chemical properties of pellets from energy crops and cereal straws. Biosystems Engineering, 112(2), 151–159. https://doi.org/10.1016/j.biosystemseng.2012.03.012
  • Chandrasekaran, S. R., Hopke, P. K., Hurlbut, A., & Newtown, M. (2013). Characterization of emissions from grass pellet combustion. Energy and Fuels, 27(9), 5298–5306. https://doi.org/10.1021/ef4010169
  • Diken, B. (2017). Çim Peletinin Gazlaştırma Performansının Sapatnması Üzerine Bir ARaştırma. Namık Kemal Üniversitesi.
  • Emami, S., Tabil, L. G., Adapa, P., George, E., Tilay, A., Dalai, A., Drisdelle, M., & Ketabi, L. (2014). Effect of fuel additives on agricultural straw pellet quality. International Journal of Agricultural and Biological Engineering, 7(2), 92–100. https://doi.org/10.3965/j.ijabe.20140702.011
  • EN 15103. (2009). Solid biofuels – Determination of bulk density.
  • EN 15210-1. (2009). Solid biofuels - Determination of mechanical durability of pellets and briquettes - Part 1: Pellets.
  • ENplus. (2015). Pellet Quality Requirements. In ENplus Handbook (Issue August). https://www.enplus-pellets.eu/en-in/resources-en-in/technical-documentation-en-in.html#handbook
  • Filbakk, T., Jirjis, R., Nurmi, J., & Høibø, O. (2011). The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass and Bioenergy, 35(8), 3342–3349. https://doi.org/10.1016/j.biombioe.2010.09.011
  • Garcia-Maraver, A., Rodriguez, M. L., Serrano-Bernardo, F., Diaz, L. F., & Zamorano, M. (2015). Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Processing Technology, 129, 1–7. https://doi.org/10.1016/j.fuproc.2014.08.018
  • Harun, N. Y., & Afzal, M. T. (2015). Chemical and mechanical properties of pellets made from agricultural and woody biomass blends. Transactions of the ASABE, 58(4), 921–930. https://doi.org/10.13031/trans.58.11027
  • Hiloidhari, M., Das, D., & Baruah, D. C. (2014). Bioenergy potential from crop residue biomass in India. Renewable and Sustainable Energy Reviews, 32, 504–512. https://doi.org/10.1016/j.rser.2014.01.025
  • Kaliyan, N., & Vance Morey, R. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33(3), 337–359. https://doi.org/10.1016/j.biombioe.2008.08.005
  • Kirsten, C., Lenz, V., Schröder, H. W., & Repke, J. U. (2016). Hay pellets - The influence of particle size reduction on their physical-mechanical quality and energy demand during production. Fuel Processing Technology, 148, 163–174. https://doi.org/10.1016/j.fuproc.2016.02.013
  • Limousy, L., Jeguirim, M., Dutournié, P., Kraiem, N., Lajili, M., & Said, R. (2013). Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel, 107, 323–329. https://doi.org/10.1016/j.fuel.2012.10.019
  • Mani, S., Tabil, L. G., & Sokhansanj, S. (2006). Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30(7), 648–654. https://doi.org/10.1016/j.biombioe.2005.01.004
  • Niedziółka, I., Szpryngiel, M., Kachel-Jakubowska, M., Kraszkiewicz, A., Zawiślak, K., Sobczak, P., & Nadulski, R. (2015). Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renewable Energy, 76, 312–317. https://doi.org/10.1016/j.renene.2014.11.040
  • Orçun, E. (1979). Özel Bahçe Mimarisi. In Özel Bahçe Mimarisi (Çim Sahaları Tesis ve Bakım Tekniği). Ege Üniversitesi Ziraat Fakültesi Yayınları.
  • Platace, R., Adamovics, A., Ivanovs, S., & Gulbe, I. (2017). Assessment of ash melting temperature of Birch and grass biomass Pellet mixtures. Engineering for Rural Development, 16, 103–107. https://doi.org/10.22616/ERDev2017.16.N018
  • Pradhan, P., Mahajani, S. M., & Arora, A. (2018). Production and utilization of fuel pellets from biomass: A review. Fuel Processing Technology, 181(October), 215–232. https://doi.org/10.1016/j.fuproc.2018.09.021
  • Serrano, C., Monedero, E., Lapuerta, M., & Portero, H. (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 92(3), 699–706. https://doi.org/10.1016/j.fuproc.2010.11.031
  • Theerarattananoon, K., Xu, F., Wilson, J., Ballard, R., Mckinney, L., Staggenborg, S., Vadlani, P., Pei, Z. J., & Wang, D. (2011). Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products, 33(2), 325–332. https://doi.org/10.1016/j.indcrop.2010.11.014
  • Tumuluru, J. S. (2014). Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosystems Engineering, 119, 44–57. https://doi.org/10.1016/j.biosystemseng.2013.11.012
  • Tumuluru, J. S. (2018). Effect of pellet die diameter on density and durability of pellets made from high moisture woody and herbaceous biomass. Carbon Resources Conversion, 1(1), 44–54. https://doi.org/10.1016/j.crcon.2018.06.002
  • Ungureanu, N., Vladut, V., Voicu, G., Dinca, M. N., & Zabava, B. S. (2018). Influence of biomass moisture content on pellet properties - Review. Engineering for Rural Development, 17, 1876–1883. https://doi.org/10.22616/ERDev2018.17.N449
  • Valdés, C. F., Marrugo, G., Chejne, F., Cogollo, K., & Vallejos, D. (2018). Pelletization of Agroindustrial Biomasses from the Tropics as an Energy Resource: Implications of Pellet Quality. Energy and Fuels, 32(11), 11489–11501. https://doi.org/10.1021/acs.energyfuels.8b01673
  • Wongsiriamnuay, T., & Tippayawong, N. (2015). Effect of densification parameters on the properties of maize residue pellets. Biosystems Engineering, 139, 111–120. https://doi.org/10.1016/j.biosystemseng.2015.08.009
  • Yilmaz, H., Topakcı, M., Karayel, D., & Çanakcı, M. (2020). Comparison of the physical properties of cotton and sesame stalk pellets produced at different moisture contents and combustion of the finest pellets. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2020.1850931

The Effects of Die Hole Diameter and Pelletizing Moisture on Production Parameters and Physical Properties of Grass Pellets

Yıl 2021, , 47 - 56, 28.06.2021
https://doi.org/10.33202/comuagri.865091

Öz

In this study, alternative pellet raw material usage possibilities of lawn mowing residues emerging from landscape areas were investigated During pellet production, energy consumption and production capacity were measured. Regarding to pellet physical properties, moisture content (MC), bulk density (BD), particle density (PD), pellet durability index (PDI) and impact resistance (IR) values were determined. For this purpose, 6 mm and 8 mm diameter pellets were obtained at 14% and 17% pelletizing moisture (P6-14, P6-17, P8-14, P8-17). Although the increase in pelleting moisture and pellet diameter increased the production capacity and decreased energy consumption, it negatively affected the pellet physical properties. Increasing the diameter value of pellets with 6 and 8 mm diameter at the same moisture content decreased the pellet physical qualities. PDI and BD values decreased with increasing pellet diameter and pelletizing moisture. The highest PD and BD values were calculated as 1024.11 kg/m3 and 624.07 kg/m3 for P6-14 pellets, and lowest PD and BD values were 787.06 kg/m3 and 479.29 kg/m3 for P8-17 pellets. The highest PDI values obtained with P6-14 pellets as 95.97%, which is below the standard value (≥97.5%). At the end of the study, it was concluded that lawn mowing residues should be pelleted with low moisture pelleting or use as mixture material for biomass sources that are difficult to pelletize.

Kaynakça

  • Adapa, P., Tabil, L., & Schoenau, G. (2009). Compaction characteristics of barley, canola, oat and wheat straw. Biosystems Engineering, 104(3), 335–344. https://doi.org/10.1016/j.biosystemseng.2009.06.022
  • Agar, D. A., Rudolfsson, M., Kalén, G., Campargue, M., Da Silva Perez, D., & Larsson, S. H. (2018). A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Processing Technology, 180(August), 47–55. https://doi.org/10.1016/j.fuproc.2018.08.006
  • Aghayev, E. (2019). Investigation Of Pretreatment Methods To Improve Biogas Yield Of Agricultural Wastes. Hacettepe Üniversitesi,Fen Biilimleri Enstitüsü,Doktora Tezi,Ankara, 186.
  • Amiri, H., Kianmehr, M. H., & Arabhosseini, A. (2019). Effect of particle size, die rotary speed and amount of urea on physical properties of the produced pellet. International Journal of Environmental Science and Technology, 16(4), 2059–2068. https://doi.org/10.1007/s13762-017-1627-1
  • Anonim. (n.d.-a). Anonim a. Retrieved January 5, 2021, from http://www.milagri.it/index.php?option=com_content&view=article&id=70&Itemid=537&lang=en
  • Anonim. (n.d.-b). Anonim b. Retrieved January 5, 2021, from https://www.heatit.ee/en/premium-pellets
  • Anonim. (n.d.-c). Anonim c. Retrieved January 5, 2021, from https://www.lanordica-extraflame.com/en/products/pellet-stoves
  • Anonim. (n.d.-d). Anonim d. Retrieved January 5, 2021, from http://termodinamik.com.ua/files/PELLET STOVE HYBRID.PDF
  • Anonim. (n.d.-e). Anonim e. Retrieved January 5, 2021, from http://www.uniclass.it/wp-content/uploads/2019/01/Manual-AUDAX-LASIAN-STOVE-83119L-01_EN_Sept16.pdf
  • Anonim. (n.d.-f). Anonim f. Retrieved January 5, 2021, from http://www.red365.it/en/p280-erica.html
  • ASAE. (2001). S269.4: In Cubes, Pellets, and Crumbles—Definitions and Methods for Determining Density, Durability, and Moisture Content.
  • ASAE S319.3. (2003). Methods for determining and expressing fineness of feed materials by sieving. 2008, S319.2.
  • ASTM E871-82. (2019). Standard Test Method for Moisture Analysis of Particulate Wood Fuels. In Annual Book of ASTM Standards (Vol. 82, Issue Reapproved 2013). https://doi.org/10.1520/E0871-82R13.2
  • Azócar, L., Hermosilla, N., Gay, A., Rocha, S., Díaz, J., & Jara, P. (2019). Brown pellet production using wheat straw from southern cities in Chile. Fuel, 237(October 2018), 823–832. https://doi.org/10.1016/j.fuel.2018.09.039
  • Biswas, A. K., Yang, W., & Blasiak, W. (2011). Steam pretreatment of Salix to upgrade biomass fuel for wood pellet production. Fuel Processing Technology, 92(9), 1711–1717. https://doi.org/10.1016/j.fuproc.2011.04.017
  • Carroll, J. P., & Finnan, J. (2012). Physical and chemical properties of pellets from energy crops and cereal straws. Biosystems Engineering, 112(2), 151–159. https://doi.org/10.1016/j.biosystemseng.2012.03.012
  • Chandrasekaran, S. R., Hopke, P. K., Hurlbut, A., & Newtown, M. (2013). Characterization of emissions from grass pellet combustion. Energy and Fuels, 27(9), 5298–5306. https://doi.org/10.1021/ef4010169
  • Diken, B. (2017). Çim Peletinin Gazlaştırma Performansının Sapatnması Üzerine Bir ARaştırma. Namık Kemal Üniversitesi.
  • Emami, S., Tabil, L. G., Adapa, P., George, E., Tilay, A., Dalai, A., Drisdelle, M., & Ketabi, L. (2014). Effect of fuel additives on agricultural straw pellet quality. International Journal of Agricultural and Biological Engineering, 7(2), 92–100. https://doi.org/10.3965/j.ijabe.20140702.011
  • EN 15103. (2009). Solid biofuels – Determination of bulk density.
  • EN 15210-1. (2009). Solid biofuels - Determination of mechanical durability of pellets and briquettes - Part 1: Pellets.
  • ENplus. (2015). Pellet Quality Requirements. In ENplus Handbook (Issue August). https://www.enplus-pellets.eu/en-in/resources-en-in/technical-documentation-en-in.html#handbook
  • Filbakk, T., Jirjis, R., Nurmi, J., & Høibø, O. (2011). The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass and Bioenergy, 35(8), 3342–3349. https://doi.org/10.1016/j.biombioe.2010.09.011
  • Garcia-Maraver, A., Rodriguez, M. L., Serrano-Bernardo, F., Diaz, L. F., & Zamorano, M. (2015). Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Processing Technology, 129, 1–7. https://doi.org/10.1016/j.fuproc.2014.08.018
  • Harun, N. Y., & Afzal, M. T. (2015). Chemical and mechanical properties of pellets made from agricultural and woody biomass blends. Transactions of the ASABE, 58(4), 921–930. https://doi.org/10.13031/trans.58.11027
  • Hiloidhari, M., Das, D., & Baruah, D. C. (2014). Bioenergy potential from crop residue biomass in India. Renewable and Sustainable Energy Reviews, 32, 504–512. https://doi.org/10.1016/j.rser.2014.01.025
  • Kaliyan, N., & Vance Morey, R. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33(3), 337–359. https://doi.org/10.1016/j.biombioe.2008.08.005
  • Kirsten, C., Lenz, V., Schröder, H. W., & Repke, J. U. (2016). Hay pellets - The influence of particle size reduction on their physical-mechanical quality and energy demand during production. Fuel Processing Technology, 148, 163–174. https://doi.org/10.1016/j.fuproc.2016.02.013
  • Limousy, L., Jeguirim, M., Dutournié, P., Kraiem, N., Lajili, M., & Said, R. (2013). Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel, 107, 323–329. https://doi.org/10.1016/j.fuel.2012.10.019
  • Mani, S., Tabil, L. G., & Sokhansanj, S. (2006). Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30(7), 648–654. https://doi.org/10.1016/j.biombioe.2005.01.004
  • Niedziółka, I., Szpryngiel, M., Kachel-Jakubowska, M., Kraszkiewicz, A., Zawiślak, K., Sobczak, P., & Nadulski, R. (2015). Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renewable Energy, 76, 312–317. https://doi.org/10.1016/j.renene.2014.11.040
  • Orçun, E. (1979). Özel Bahçe Mimarisi. In Özel Bahçe Mimarisi (Çim Sahaları Tesis ve Bakım Tekniği). Ege Üniversitesi Ziraat Fakültesi Yayınları.
  • Platace, R., Adamovics, A., Ivanovs, S., & Gulbe, I. (2017). Assessment of ash melting temperature of Birch and grass biomass Pellet mixtures. Engineering for Rural Development, 16, 103–107. https://doi.org/10.22616/ERDev2017.16.N018
  • Pradhan, P., Mahajani, S. M., & Arora, A. (2018). Production and utilization of fuel pellets from biomass: A review. Fuel Processing Technology, 181(October), 215–232. https://doi.org/10.1016/j.fuproc.2018.09.021
  • Serrano, C., Monedero, E., Lapuerta, M., & Portero, H. (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 92(3), 699–706. https://doi.org/10.1016/j.fuproc.2010.11.031
  • Theerarattananoon, K., Xu, F., Wilson, J., Ballard, R., Mckinney, L., Staggenborg, S., Vadlani, P., Pei, Z. J., & Wang, D. (2011). Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products, 33(2), 325–332. https://doi.org/10.1016/j.indcrop.2010.11.014
  • Tumuluru, J. S. (2014). Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosystems Engineering, 119, 44–57. https://doi.org/10.1016/j.biosystemseng.2013.11.012
  • Tumuluru, J. S. (2018). Effect of pellet die diameter on density and durability of pellets made from high moisture woody and herbaceous biomass. Carbon Resources Conversion, 1(1), 44–54. https://doi.org/10.1016/j.crcon.2018.06.002
  • Ungureanu, N., Vladut, V., Voicu, G., Dinca, M. N., & Zabava, B. S. (2018). Influence of biomass moisture content on pellet properties - Review. Engineering for Rural Development, 17, 1876–1883. https://doi.org/10.22616/ERDev2018.17.N449
  • Valdés, C. F., Marrugo, G., Chejne, F., Cogollo, K., & Vallejos, D. (2018). Pelletization of Agroindustrial Biomasses from the Tropics as an Energy Resource: Implications of Pellet Quality. Energy and Fuels, 32(11), 11489–11501. https://doi.org/10.1021/acs.energyfuels.8b01673
  • Wongsiriamnuay, T., & Tippayawong, N. (2015). Effect of densification parameters on the properties of maize residue pellets. Biosystems Engineering, 139, 111–120. https://doi.org/10.1016/j.biosystemseng.2015.08.009
  • Yilmaz, H., Topakcı, M., Karayel, D., & Çanakcı, M. (2020). Comparison of the physical properties of cotton and sesame stalk pellets produced at different moisture contents and combustion of the finest pellets. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2020.1850931
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Hasan Yılmaz 0000-0003-3791-6437

Mehmet Topakcı 0000-0002-5049-9511

Murad Çanakcı 0000-0002-1985-8387

Davut Karayel 0000-0002-6789-2459

Yayımlanma Tarihi 28 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yılmaz, H., Topakcı, M., Çanakcı, M., Karayel, D. (2021). Çim Peleti Üretiminde Kalıp Delik Çapı ve Nem İçeriğinin Üretim Parametreleri ve Pelet Fiziksel Özelliklerine Etkisi. ÇOMÜ Ziraat Fakültesi Dergisi, 9(1), 47-56. https://doi.org/10.33202/comuagri.865091