Araştırma Makalesi
BibTex RIS Kaynak Göster

Observing the Water Quality in the Vicinity of Green Ports Located in the Marmara Sea, Turkey

Yıl 2020, Cilt: 6 Sayı: 1, 1 - 13, 22.05.2020
https://doi.org/10.28979/comufbed.660739

Öz

Detection of biological, physical and chemical parameters is needed for the determination of water quality. Some of these water quality parameters such as turbidity, chlorophyll-a, harmful algae, suspended sediment, submerged habitat and temperature, can be derived directly via the satellite remote sensing facilities, particularly through the ocean color sensors. The competitiveness of satellite remote sensing comes from its capability of extensive geographical range and temporal coverage. Thus, changes and trends in water quality can be monitored and assessed to a greater degree, especially under the dynamic conditions of coastal zones. This study focuses on the water quality parameters in the vicinity of Green Ports of Turkey located in the Marmara Sea. There are 12 certified Green Ports in Turkey, located mostly in the Marmara Sea. Marmara Sea is a semi-enclosed inland sea and a passageway, which connects the Black Sea to the Mediterranean. There are 7 cities surrounding the Marmara Sea, representing the different anthropogenic aspects of civilization: Population, industry and agriculture. These aspects affect the water quality of the coastal zones in the Marmara Sea in different scales. Briefly, the aim of this study is to monitor and assess the impact of the Green Ports in the Marmara Sea region, in terms of water quality parameters detect-ed via the Earth Observation System. Consequently, it is concluded that remote sensing capabilities of the contemporary Earth Observation Systems provide reliable results of water quality parameters when coupled with the field measurements in order to use in further decision-making mechanisms.

Teşekkür

The author would like to thank Assoc. Prof. Dr. Tanzer Satır from Istanbul Technical University, Faculty of Maritime for providing the names of the certified Green Ports in Turkey.

Kaynakça

  • Akgul, B. (2017). Green Port / Eco Port Project-Applications and Procedures in Turkey. IOP Conference Series: Earth and Environmental Science, 95(4). https://doi.org/10.1088/1755-1315/95/4/042063
  • Alparslan, E., Aydöner, C., Tufekci, V., & Tüfekci, H. (2007). Water quality assessment at Ömerli Dam using remote sensing techniques. Environmental Monitoring and Assessment, 135(1–3), 391–398. https://doi.org/10.1007/s10661-007-9658-6
  • Alparslan, E., Coskun, H. G., & Alganci, U. (2009). Water quality determination of Küçükçekmece Lake, Turkey by using multispectral satellite data. TheScientificWorldJournal, 9, 1215–1229. https://doi.org/10.1100/tsw.2009.135
  • Bengil, F., & Mavruk, S. (2018). Bio-optical trends of seas around Turkey: An assessment of the spatial and temporal variability. Oceanologia, 60(4), 488–499. https://doi.org/10.1016/j.oceano.2018.03.004
  • Beşiktepe, Ş. T., Sur, H. I. do., Özsoy, E., Latif, M. A., Oǧuz, T., & Ünlüata, Ü. (1994). The circulation and hydrography of the Marmara Sea. Progress in Oceanography, 34(4), 285–334. https://doi.org/10.1016/0079-6611(94)90018-3
  • Blix, K., Pálffy, K., Tóth, V. R., & Eltoft, T. (2018). Remote sensing of water quality parameters over Lake Balaton by using Sentinel-3 OLCI. Water (Switzerland), 10(10). https://doi.org/10.3390/w10101428
  • Brando, V. E., & Dekker, A. G. (2003). Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Transactions on Geoscience and Remote Sensing, 41(6 PART I), 1378–1387. https://doi.org/10.1109/TGRS.2003.812907
  • Brezonik, P. L., Olmanson, L. G., Finlay, J. C., & Bauer, M. E. (2015). Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sensing of Environment, 157, 199–215. https://doi.org/10.1016/j.rse.2014.04.033
  • Brockmann, C., Roland, Peters, M., Kerstin, Sabine, & Ruescas, A. (2016). Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters.
  • Carvalho, L., Mackay, E. B., Cardoso, A. C., Baattrup-Pedersen, A., Birk, S., Blackstock, K. L., … Solheim, A. L. (2019). Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Science of the Total Environment, 658, 1228–1238. https://doi.org/10.1016/j.scitotenv.2018.12.255
  • Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., & Santoleri, R. (2016). Mediterranean ocean colour chlorophyll trends. PLoS ONE, 11(6), 1–16. https://doi.org/10.1371/journal.pone.0155756
  • ÇŞB - ÇEDİDGM. (2018). Marine Quality Bulletin - Marmara Sea. Retrieved from https://webdosya.csb.gov.tr/db/ced/icerikler/mar-ne-qual-ty-bullet-n-2018_marmara-sea-20180319074908.pdf
  • Del Castillo, C. E., Gilbes, F., Coble, P. G., & Müller-Karger, F. E. (2000). On the dispersal of riverine colored dissolved organic matter over the West Florida Shelf. Limnology and Oceanography, 45(6), 1425–1432. https://doi.org/10.4319/lo.2000.45.6.1425
  • Del Castillo, C. E., & Miller, R. L. (2008). On the use of ocean color remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume. Remote Sensing of Environment, 112(3), 836–844. https://doi.org/10.1016/j.rse.2007.06.015
  • Doerffer, R., & Schiller, H. (2007). The MERIS case 2 water algorithm. International Journal of Remote Sensing, 28(3–4), 517–535. https://doi.org/10.1080/01431160600821127
  • Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M. H., Féménias, P., Frerick, J., … Sciarra, R. (2012). The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sensing of Environment, 120(2012), 37–57. https://doi.org/10.1016/j.rse.2011.07.024
  • Doxaran, D., Froidefond, J.-M., Lavender, S., & Castaing, P. (2002). Spectral signature of highly turbid waters. Remote Sensing of Environment, 81(1), 149–161. https://doi.org/10.1016/s0034-4257(01)00341-8
  • Ekercin, S. (2007). Water quality retrievals from high resolution ikonos multispectral imagery: A case study in Istanbul, Turkey. Water, Air, and Soil Pollution, 183(1–4), 239–251. https://doi.org/10.1007/s11270-007-9373-5
  • Feng, L., Hu, C., Chen, X., & Song, Q. (2014). Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS. Remote Sensing of Environment, 140, 779–788. https://doi.org/10.1016/j.rse.2013.10.002
  • Ferrari, G. M., Hoepffner, N., & Mingazzin, M. (1996). Optical properties of the water in a Deltaic environment: Prospectivetool to analyze satellite data in turbid waters. Remote Sensing of Environment, 58(1), 69–80. https://doi.org/10.1016/0034-4257(96)00058-2
  • Gholizadeh, M., Melesse, A., & Reddi, L. (2016). A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors, 16(8), 1298. https://doi.org/10.3390/s16081298
  • Giardino, C., Bresciani, M., Cazzaniga, I., Schenk, K., Rieger, P., Braga, F., Brando, V. E. (2014). Evaluation of multi-resolution satellite sensors for assessing water quality and bottom depth of Lake Garda. Sensors (Switzerland), 14(12), 24116–24131. https://doi.org/10.3390/s141224116
  • Gitelson, A. A., Dall’Olmo, G., Moses, W., Rundquist, D. C., Barrow, T., Fisher, T. R., Holz, J. (2008). A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sensing of Environment, 112(9), 3582–3593. https://doi.org/10.1016/j.rse.2008.04.015
  • Hadjimitsis, D. G., & Clayton, C. (2009). Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data. Environmental Monitoring and Assessment, 159(1–4), 281–292. https://doi.org/10.1007/s10661-008-0629-3
  • Han, L., & Jordan, K. J. (2005). Estimating and mapping chlorophyll-a concentration in Pensacola Bay, Florida using Landsat ETM + data. International Journal of Remote Sensing, 26(23), 5245–5254. https://doi.org/10.1080/01431160500219182
  • Hellweger, F. L., Schlosser, P., Lall, U., & Weissel, J. K. (2004). Use of satellite imagery for water quality studies in New York Harbor. Estuarine, Coastal and Shelf Science, 61(3), 437–448. https://doi.org/10.1016/j.ecss.2004.06.019
  • Hoogenboom, H. J., Dekker, A. G., & Althuis, I. A. (1998). Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters. Remote Sensing of Environment, 65(3), 333–340. https://doi.org/10.1016/S0034-4257(98)00042-X
  • Koponen, S., Pulliainen, J., Kallio, K., & Hallikainen, M. (2002). Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sensing of Environment, 79(1), 51–59. https://doi.org/10.1016/S0034-4257(01)00238-3
  • Kratzer, S., & Moore, G. (2018). Inherent optical properties of the Baltic Sea in comparison to other seas and oceans. Remote Sensing, 10(3), 418. https://doi.org/10.3390/rs10030418
  • Madsen, J. D., Chambers, P. A., James, W. F., Koch, E. W., & Westlake, D. F. (2001). Modelling Sediment Resuspension, Water Quality and Submersed Aquatic Vegetation. In Hydrobiologia (Vol. 444).
  • Mannino, A., Russ, M. E., & Hooker, S. B. (2008). Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight. Journal of Geophysical Research: Oceans, 113(7), 1–19. https://doi.org/10.1029/2007JC004493
  • Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color. Limnology and Oceanography, 22(4), 709–722. https://doi.org/10.4319/lo.1977.22.4.0709
  • Myint, S. W., & Walker, N. D. (2002). Quantification of surface suspended sediments along a river dominated coast with NOAA AVHRR and Sea WiFS measurements: Louisiana, USA. International Journal of Remote Sensing, 23(16), 3229–3249. https://doi.org/10.1080/01431160110104700
  • Nechad, B., Ruddick, K. G., & Park, Y. (2010). Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment, 114(4), 854–866. https://doi.org/10.1016/j.rse.2009.11.022
  • Oguz, T., & Gilbert, D. (2007). Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960-2000: Evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations. Deep-Sea Research Part I: Oceanographic Research Papers, 54(2), 220–242. https://doi.org/10.1016/j.dsr.2006.09.010
  • Pavlic, B., Cepak, F., Sucic, B., Peckaj, M., & Kandus, B. (2014). Sustainable Port Infrastructure, Practical Implementation of the. Thermal Science, 18(3), 935–948. https://doi.org/10.2289/TSCI1403935P
  • Petus, C., Waterhouse, J., Lewis, S., Vacher, M., Tracey, D., & Devlin, M. (2019). A flood of information: Using Sentinel-3 water colour products to assure continuity in the monitoring of water quality trends in the Great Barrier Reef (Australia). Journal of Environmental Management, 248(July), 109255. https://doi.org/10.1016/j.jenvman.2019.07.026
  • Ritchie, J. C., Zimba, P. V, & Everitt, J. H. (2003). Remote Sensing Techniques to Assess Water Quality / Técnicas de teledetección para evaluar la calidad del agua. Photogrammetric Engineering & Remote Sensing, 69(6), 695–704. https://doi.org/10.14358/PERS.69.6.695
  • Schlichter, D., Kampmann, H., & Conrady, S. (1997). Trophic potential and photoecology of endolithic algae living within coral skeletons. Marine Ecology, 18(4), 299–317. https://doi.org/10.1111/j.1439-0485.1997.tb00444.x
  • Seyhan, E., & Dekker, A. (1986). Application of remote sensing techniques for water quality monitoring. Hydrobiological Bulletin, 20(1–2), 41–50. https://doi.org/10.1007/BF02291149
  • Spencer, R. G. M., Ahad, J. M. E., Baker, A., Cowie, G. L., Ganeshram, R., Upstill-Goddard, R. C., & Uher, G. (2007). The estuarine mixing behaviour of peatland derived dissolved organic carbon and its relationship to chromophoric dissolved organic matter in two North Sea estuaries (U.K.). Estuarine, Coastal and Shelf Science, 74(1–2), 131–144. https://doi.org/10.1016/j.ecss.2007.03.032
  • Stedmon, C. A., Markager, S., Søndergaard, M., Vang, T., Laubel, A., Borch, N. H., & Windelin, A. (2006). Dissolved Organic Matter (DOM) export to a temperate estuary: Seasonal variations and implications of land use. Estuaries and Coasts, 29(3), 388–400. https://doi.org/10.1007/BF02784988
  • Toming, K., Kutser, T., Tuvikene, L., Viik, M., & Nõges, T. (2016). Dissolved organic carbon and its potential predictors in eutrophic lakes. Water Research, 102, 32–40. https://doi.org/10.1016/j.watres.2016.06.012
  • Usali, N., & Ismail, M. H. (2010). Use of Remote Sensing and GIS in Monitoring Water Quality. Journal of Sustainable Development, 3(3). https://doi.org/10.5539/jsd.v3n3p228
  • van der Woerd, H. J., & Wernand, M. R. (2015). True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI. Sensors (Switzerland), 15(10), 25663–25680. https://doi.org/10.3390/s151025663
  • Vignudelli, S., Santinelli, C., Murru, E., Nannicini, L., & Seritti, A. (2004). Distributions of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) in coastal waters of the northern Tyrrhenian Sea (Italy). Estuarine, Coastal and Shelf Science, 60(1), 133–149. https://doi.org/10.1016/j.ecss.2003.11.023
  • Wang, X., Ling, F., Yao, H., Liu, Y., & Xu, S. (2019). Unsupervised Sub-pixel water body mapping with sentinel-3 OLCI image. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030327
  • Wass, P. D., Marks, S. D., Finch, J. W., Leeks, G. J. L., & Ingram, J. K. (1997). Monitoring and preliminary interpretation of in-river turbidity and remote sensed imagery for suspended sediment transport studies in the Humber catchment. Science of the Total Environment, 194–195(96), 263–283. https://doi.org/10.1016/S0048-9697(96)05370-3
  • Werdell, P. J., & Bailey, S. W. (2005). An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sensing of Environment, 98(1), 122–140. https://doi.org/10.1016/j.rse.2005.07.001
  • Yalçın, B., Artüz, M. L., Pavlidou, A., Çubuk, S., & Dassenakis, M. (2017). Nutrient dynamics and eutrophication in the Sea of Marmara: Data from recent oceanographic research. Science of the Total Environment, 601–602, 405–424. https://doi.org/10.1016/j.scitotenv.2017.05.179
  • Yu, Q., Tian, Y. Q., Chen, R. F., Liu, A., Gardner, G. B., & Zhu, W. (2010). Functional linear analysis of in situ hyperspectral data for assessing CDOM in rivers. Photogrammetric Engineering and Remote Sensing, 76(10), 1147–1158. https://doi.org/10.14358/PERS.76.10.1147
  • Zeri, C., Beşiktepe, Ş., Giannakourou, A., Krasakopoulou, E., Tzortziou, M., Tsoliakos, D., … Papathanassiou, E. (2014). Chemical properties and fluorescence of DOM in relation to biodegradation in the interconnected Marmara-North Aegean Seas during August 2008. Journal of Marine Systems, 135, 124–136. https://doi.org/10.1016/j.jmarsys.2013.11.019

Observing the Water Quality in the Vicinity of Green Ports Located in the Marmara Sea, Turkey

Yıl 2020, Cilt: 6 Sayı: 1, 1 - 13, 22.05.2020
https://doi.org/10.28979/comufbed.660739

Öz

Detection of biological, physical and chemical parameters is needed for the determination of water quality. Some of these water quality parameters such as turbidity, chlorophyll-a, harmful algae, suspended sediment, submerged habitat and temperature, can be derived directly via the satellite remote sensing facilities, particularly through the ocean color sensors. The competitiveness of satellite remote sensing comes from its capability of extensive geographical range and temporal coverage. Thus, changes and trends in water quality can be monitored and assessed to a greater degree, especially under the dynamic conditions of coastal zones. This study focuses on the water quality parameters in the vicinity of Green Ports of Turkey located in the Marmara Sea. There are 12 certified Green Ports in Turkey, located mostly in the Marmara Sea. Marmara Sea is a semi-enclosed inland sea and a passageway, which connects the Black Sea to the Mediterranean. There are 7 cities surrounding the Marmara Sea, representing the different anthropogenic aspects of civilization: Population, industry and agriculture. These aspects affect the water quality of the coastal zones in the Marmara Sea in different scales. Briefly, the aim of this study is to monitor and assess the impact of the Green Ports in the Marmara Sea region, in terms of water quality parameters detect-ed via the Earth Observation System. Consequently, it is concluded that remote sensing capabilities of the contemporary Earth Observation Systems provide reliable results of water quality parameters when coupled with the field measurements in order to use in further decision-making mechanisms.

Kaynakça

  • Akgul, B. (2017). Green Port / Eco Port Project-Applications and Procedures in Turkey. IOP Conference Series: Earth and Environmental Science, 95(4). https://doi.org/10.1088/1755-1315/95/4/042063
  • Alparslan, E., Aydöner, C., Tufekci, V., & Tüfekci, H. (2007). Water quality assessment at Ömerli Dam using remote sensing techniques. Environmental Monitoring and Assessment, 135(1–3), 391–398. https://doi.org/10.1007/s10661-007-9658-6
  • Alparslan, E., Coskun, H. G., & Alganci, U. (2009). Water quality determination of Küçükçekmece Lake, Turkey by using multispectral satellite data. TheScientificWorldJournal, 9, 1215–1229. https://doi.org/10.1100/tsw.2009.135
  • Bengil, F., & Mavruk, S. (2018). Bio-optical trends of seas around Turkey: An assessment of the spatial and temporal variability. Oceanologia, 60(4), 488–499. https://doi.org/10.1016/j.oceano.2018.03.004
  • Beşiktepe, Ş. T., Sur, H. I. do., Özsoy, E., Latif, M. A., Oǧuz, T., & Ünlüata, Ü. (1994). The circulation and hydrography of the Marmara Sea. Progress in Oceanography, 34(4), 285–334. https://doi.org/10.1016/0079-6611(94)90018-3
  • Blix, K., Pálffy, K., Tóth, V. R., & Eltoft, T. (2018). Remote sensing of water quality parameters over Lake Balaton by using Sentinel-3 OLCI. Water (Switzerland), 10(10). https://doi.org/10.3390/w10101428
  • Brando, V. E., & Dekker, A. G. (2003). Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Transactions on Geoscience and Remote Sensing, 41(6 PART I), 1378–1387. https://doi.org/10.1109/TGRS.2003.812907
  • Brezonik, P. L., Olmanson, L. G., Finlay, J. C., & Bauer, M. E. (2015). Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sensing of Environment, 157, 199–215. https://doi.org/10.1016/j.rse.2014.04.033
  • Brockmann, C., Roland, Peters, M., Kerstin, Sabine, & Ruescas, A. (2016). Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters.
  • Carvalho, L., Mackay, E. B., Cardoso, A. C., Baattrup-Pedersen, A., Birk, S., Blackstock, K. L., … Solheim, A. L. (2019). Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Science of the Total Environment, 658, 1228–1238. https://doi.org/10.1016/j.scitotenv.2018.12.255
  • Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., & Santoleri, R. (2016). Mediterranean ocean colour chlorophyll trends. PLoS ONE, 11(6), 1–16. https://doi.org/10.1371/journal.pone.0155756
  • ÇŞB - ÇEDİDGM. (2018). Marine Quality Bulletin - Marmara Sea. Retrieved from https://webdosya.csb.gov.tr/db/ced/icerikler/mar-ne-qual-ty-bullet-n-2018_marmara-sea-20180319074908.pdf
  • Del Castillo, C. E., Gilbes, F., Coble, P. G., & Müller-Karger, F. E. (2000). On the dispersal of riverine colored dissolved organic matter over the West Florida Shelf. Limnology and Oceanography, 45(6), 1425–1432. https://doi.org/10.4319/lo.2000.45.6.1425
  • Del Castillo, C. E., & Miller, R. L. (2008). On the use of ocean color remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume. Remote Sensing of Environment, 112(3), 836–844. https://doi.org/10.1016/j.rse.2007.06.015
  • Doerffer, R., & Schiller, H. (2007). The MERIS case 2 water algorithm. International Journal of Remote Sensing, 28(3–4), 517–535. https://doi.org/10.1080/01431160600821127
  • Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M. H., Féménias, P., Frerick, J., … Sciarra, R. (2012). The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sensing of Environment, 120(2012), 37–57. https://doi.org/10.1016/j.rse.2011.07.024
  • Doxaran, D., Froidefond, J.-M., Lavender, S., & Castaing, P. (2002). Spectral signature of highly turbid waters. Remote Sensing of Environment, 81(1), 149–161. https://doi.org/10.1016/s0034-4257(01)00341-8
  • Ekercin, S. (2007). Water quality retrievals from high resolution ikonos multispectral imagery: A case study in Istanbul, Turkey. Water, Air, and Soil Pollution, 183(1–4), 239–251. https://doi.org/10.1007/s11270-007-9373-5
  • Feng, L., Hu, C., Chen, X., & Song, Q. (2014). Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS. Remote Sensing of Environment, 140, 779–788. https://doi.org/10.1016/j.rse.2013.10.002
  • Ferrari, G. M., Hoepffner, N., & Mingazzin, M. (1996). Optical properties of the water in a Deltaic environment: Prospectivetool to analyze satellite data in turbid waters. Remote Sensing of Environment, 58(1), 69–80. https://doi.org/10.1016/0034-4257(96)00058-2
  • Gholizadeh, M., Melesse, A., & Reddi, L. (2016). A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors, 16(8), 1298. https://doi.org/10.3390/s16081298
  • Giardino, C., Bresciani, M., Cazzaniga, I., Schenk, K., Rieger, P., Braga, F., Brando, V. E. (2014). Evaluation of multi-resolution satellite sensors for assessing water quality and bottom depth of Lake Garda. Sensors (Switzerland), 14(12), 24116–24131. https://doi.org/10.3390/s141224116
  • Gitelson, A. A., Dall’Olmo, G., Moses, W., Rundquist, D. C., Barrow, T., Fisher, T. R., Holz, J. (2008). A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sensing of Environment, 112(9), 3582–3593. https://doi.org/10.1016/j.rse.2008.04.015
  • Hadjimitsis, D. G., & Clayton, C. (2009). Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data. Environmental Monitoring and Assessment, 159(1–4), 281–292. https://doi.org/10.1007/s10661-008-0629-3
  • Han, L., & Jordan, K. J. (2005). Estimating and mapping chlorophyll-a concentration in Pensacola Bay, Florida using Landsat ETM + data. International Journal of Remote Sensing, 26(23), 5245–5254. https://doi.org/10.1080/01431160500219182
  • Hellweger, F. L., Schlosser, P., Lall, U., & Weissel, J. K. (2004). Use of satellite imagery for water quality studies in New York Harbor. Estuarine, Coastal and Shelf Science, 61(3), 437–448. https://doi.org/10.1016/j.ecss.2004.06.019
  • Hoogenboom, H. J., Dekker, A. G., & Althuis, I. A. (1998). Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters. Remote Sensing of Environment, 65(3), 333–340. https://doi.org/10.1016/S0034-4257(98)00042-X
  • Koponen, S., Pulliainen, J., Kallio, K., & Hallikainen, M. (2002). Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sensing of Environment, 79(1), 51–59. https://doi.org/10.1016/S0034-4257(01)00238-3
  • Kratzer, S., & Moore, G. (2018). Inherent optical properties of the Baltic Sea in comparison to other seas and oceans. Remote Sensing, 10(3), 418. https://doi.org/10.3390/rs10030418
  • Madsen, J. D., Chambers, P. A., James, W. F., Koch, E. W., & Westlake, D. F. (2001). Modelling Sediment Resuspension, Water Quality and Submersed Aquatic Vegetation. In Hydrobiologia (Vol. 444).
  • Mannino, A., Russ, M. E., & Hooker, S. B. (2008). Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight. Journal of Geophysical Research: Oceans, 113(7), 1–19. https://doi.org/10.1029/2007JC004493
  • Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color. Limnology and Oceanography, 22(4), 709–722. https://doi.org/10.4319/lo.1977.22.4.0709
  • Myint, S. W., & Walker, N. D. (2002). Quantification of surface suspended sediments along a river dominated coast with NOAA AVHRR and Sea WiFS measurements: Louisiana, USA. International Journal of Remote Sensing, 23(16), 3229–3249. https://doi.org/10.1080/01431160110104700
  • Nechad, B., Ruddick, K. G., & Park, Y. (2010). Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment, 114(4), 854–866. https://doi.org/10.1016/j.rse.2009.11.022
  • Oguz, T., & Gilbert, D. (2007). Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960-2000: Evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations. Deep-Sea Research Part I: Oceanographic Research Papers, 54(2), 220–242. https://doi.org/10.1016/j.dsr.2006.09.010
  • Pavlic, B., Cepak, F., Sucic, B., Peckaj, M., & Kandus, B. (2014). Sustainable Port Infrastructure, Practical Implementation of the. Thermal Science, 18(3), 935–948. https://doi.org/10.2289/TSCI1403935P
  • Petus, C., Waterhouse, J., Lewis, S., Vacher, M., Tracey, D., & Devlin, M. (2019). A flood of information: Using Sentinel-3 water colour products to assure continuity in the monitoring of water quality trends in the Great Barrier Reef (Australia). Journal of Environmental Management, 248(July), 109255. https://doi.org/10.1016/j.jenvman.2019.07.026
  • Ritchie, J. C., Zimba, P. V, & Everitt, J. H. (2003). Remote Sensing Techniques to Assess Water Quality / Técnicas de teledetección para evaluar la calidad del agua. Photogrammetric Engineering & Remote Sensing, 69(6), 695–704. https://doi.org/10.14358/PERS.69.6.695
  • Schlichter, D., Kampmann, H., & Conrady, S. (1997). Trophic potential and photoecology of endolithic algae living within coral skeletons. Marine Ecology, 18(4), 299–317. https://doi.org/10.1111/j.1439-0485.1997.tb00444.x
  • Seyhan, E., & Dekker, A. (1986). Application of remote sensing techniques for water quality monitoring. Hydrobiological Bulletin, 20(1–2), 41–50. https://doi.org/10.1007/BF02291149
  • Spencer, R. G. M., Ahad, J. M. E., Baker, A., Cowie, G. L., Ganeshram, R., Upstill-Goddard, R. C., & Uher, G. (2007). The estuarine mixing behaviour of peatland derived dissolved organic carbon and its relationship to chromophoric dissolved organic matter in two North Sea estuaries (U.K.). Estuarine, Coastal and Shelf Science, 74(1–2), 131–144. https://doi.org/10.1016/j.ecss.2007.03.032
  • Stedmon, C. A., Markager, S., Søndergaard, M., Vang, T., Laubel, A., Borch, N. H., & Windelin, A. (2006). Dissolved Organic Matter (DOM) export to a temperate estuary: Seasonal variations and implications of land use. Estuaries and Coasts, 29(3), 388–400. https://doi.org/10.1007/BF02784988
  • Toming, K., Kutser, T., Tuvikene, L., Viik, M., & Nõges, T. (2016). Dissolved organic carbon and its potential predictors in eutrophic lakes. Water Research, 102, 32–40. https://doi.org/10.1016/j.watres.2016.06.012
  • Usali, N., & Ismail, M. H. (2010). Use of Remote Sensing and GIS in Monitoring Water Quality. Journal of Sustainable Development, 3(3). https://doi.org/10.5539/jsd.v3n3p228
  • van der Woerd, H. J., & Wernand, M. R. (2015). True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI. Sensors (Switzerland), 15(10), 25663–25680. https://doi.org/10.3390/s151025663
  • Vignudelli, S., Santinelli, C., Murru, E., Nannicini, L., & Seritti, A. (2004). Distributions of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) in coastal waters of the northern Tyrrhenian Sea (Italy). Estuarine, Coastal and Shelf Science, 60(1), 133–149. https://doi.org/10.1016/j.ecss.2003.11.023
  • Wang, X., Ling, F., Yao, H., Liu, Y., & Xu, S. (2019). Unsupervised Sub-pixel water body mapping with sentinel-3 OLCI image. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030327
  • Wass, P. D., Marks, S. D., Finch, J. W., Leeks, G. J. L., & Ingram, J. K. (1997). Monitoring and preliminary interpretation of in-river turbidity and remote sensed imagery for suspended sediment transport studies in the Humber catchment. Science of the Total Environment, 194–195(96), 263–283. https://doi.org/10.1016/S0048-9697(96)05370-3
  • Werdell, P. J., & Bailey, S. W. (2005). An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sensing of Environment, 98(1), 122–140. https://doi.org/10.1016/j.rse.2005.07.001
  • Yalçın, B., Artüz, M. L., Pavlidou, A., Çubuk, S., & Dassenakis, M. (2017). Nutrient dynamics and eutrophication in the Sea of Marmara: Data from recent oceanographic research. Science of the Total Environment, 601–602, 405–424. https://doi.org/10.1016/j.scitotenv.2017.05.179
  • Yu, Q., Tian, Y. Q., Chen, R. F., Liu, A., Gardner, G. B., & Zhu, W. (2010). Functional linear analysis of in situ hyperspectral data for assessing CDOM in rivers. Photogrammetric Engineering and Remote Sensing, 76(10), 1147–1158. https://doi.org/10.14358/PERS.76.10.1147
  • Zeri, C., Beşiktepe, Ş., Giannakourou, A., Krasakopoulou, E., Tzortziou, M., Tsoliakos, D., … Papathanassiou, E. (2014). Chemical properties and fluorescence of DOM in relation to biodegradation in the interconnected Marmara-North Aegean Seas during August 2008. Journal of Marine Systems, 135, 124–136. https://doi.org/10.1016/j.jmarsys.2013.11.019
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Sevil Deniz Yakan Dündar 0000-0003-2493-680X

Yayımlanma Tarihi 22 Mayıs 2020
Kabul Tarihi 4 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 6 Sayı: 1

Kaynak Göster

APA Yakan Dündar, S. D. (2020). Observing the Water Quality in the Vicinity of Green Ports Located in the Marmara Sea, Turkey. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 1-13. https://doi.org/10.28979/comufbed.660739
AMA Yakan Dündar SD. Observing the Water Quality in the Vicinity of Green Ports Located in the Marmara Sea, Turkey. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Mayıs 2020;6(1):1-13. doi:10.28979/comufbed.660739
Chicago Yakan Dündar, Sevil Deniz. “Observing the Water Quality in the Vicinity of Green Ports Located in the Marmara Sea, Turkey”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, sy. 1 (Mayıs 2020): 1-13. https://doi.org/10.28979/comufbed.660739.
EndNote Yakan Dündar SD (01 Mayıs 2020) Observing the Water Quality in the Vicinity of Green Ports Located in the Marmara Sea, Turkey. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 1 1–13.
IEEE S. D. Yakan Dündar, “Observing the Water Quality in the Vicinity of Green Ports Located in the Marmara Sea, Turkey”, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 6, sy. 1, ss. 1–13, 2020, doi: 10.28979/comufbed.660739.
ISNAD Yakan Dündar, Sevil Deniz. “Observing the Water Quality in the Vicinity of Green Ports Located in the Marmara Sea, Turkey”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/1 (Mayıs 2020), 1-13. https://doi.org/10.28979/comufbed.660739.
JAMA Yakan Dündar SD. Observing the Water Quality in the Vicinity of Green Ports Located in the Marmara Sea, Turkey. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020;6:1–13.
MLA Yakan Dündar, Sevil Deniz. “Observing the Water Quality in the Vicinity of Green Ports Located in the Marmara Sea, Turkey”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 6, sy. 1, 2020, ss. 1-13, doi:10.28979/comufbed.660739.
Vancouver Yakan Dündar SD. Observing the Water Quality in the Vicinity of Green Ports Located in the Marmara Sea, Turkey. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020;6(1):1-13.

 14421         download