Yıl 2019,
Cilt: 2 Sayı: 1, 58 - 60, 30.10.2019
Hasan Şahin
,
İsmet Yıldız
,
Ümran Menek
Kaynakça
-
[1] S. K. Chatterjea, On starlike functions, J. Pure Math., 1(1981), 23-26.
-
[2] V. S. Kiryakova, M. Saigo, S. Owa, Distortion and characterization teorems for starlike and convex functions related to generalized fractional calculus, Publ. Res. Inst. Math.
Sci., 1012(1997), 25-46.
-
[3] T. Sekine, On new generalized classes of analytic functions with negative coefficients, Report Res. Inst. Sci. Tec. Nihon Univ., 35(1987), 1-26.
-
[4] T. Sekine, S. Owa, New problems of coefficients inequalities, Publ. Res. Inst.Math. Sci., 1012(1997), 164-176.
-
[5] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.
-
[6] H. M. Srivasta, S. Owa, S. K. Chatterjea, A note on certainleclass of starlike functions, Rend. Sem. Mat. Univ. Padova, 77(1987), 115-124.
On the Conversion of Convex Functions to Certain within the Unit Disk
Yıl 2019,
Cilt: 2 Sayı: 1, 58 - 60, 30.10.2019
Hasan Şahin
,
İsmet Yıldız
,
Ümran Menek
Öz
A function $g(z)$ is said to be univalent in a domain $D$ if it provides a one-to-one mapping onto its image, $g(D)$. Geometrically , this means that the representation of the image domain can be visualized as a suitable set of points in the complex plane. We are mainly interested in univalent functions that are also regular (analytic, holomorphik) in U . Without lost of generality we assume $D$ to be unit disk $U=\left\{ z:\left\vert z\right\vert <1\right\} $. One of the most important events in the history of complex analysis is Riemann's mapping theorem, that any simply connected domain in the complex plane $% %TCIMACRO{\U{2102} }% %BeginExpansion \mathbb{C} %EndExpansion $ which is not the whole complex plane, can be mapped by any analytic function univalently on the unit disk $U$. The investigation of analytic functions which are univalent in a simply connected region with more than one boundary point can be confined to the investigation of analytic functions which are univalent in $U$. The theory of univalent functions owes the modern development the amazing Riemann mapping theorem. In 1916, Bieberbach proved that for every $g(z)=z+\sum_{n=2}^{\infty }a_{n}z^{n}$ in class $S$ , $\left\vert a_{2}\right\vert \leq 2$ with equality only for the rotation of Koebe function $k(z)=\frac{z}{(1-z)^{2}}$ . We give an example of this univalent function with negative coefficients of order $\frac{1}{4}$ and we try to explain $B_{\frac{1}{4}}\left( 1,\frac{\pi }{3},-1\right) $ with convex functions.
Kaynakça
-
[1] S. K. Chatterjea, On starlike functions, J. Pure Math., 1(1981), 23-26.
-
[2] V. S. Kiryakova, M. Saigo, S. Owa, Distortion and characterization teorems for starlike and convex functions related to generalized fractional calculus, Publ. Res. Inst. Math.
Sci., 1012(1997), 25-46.
-
[3] T. Sekine, On new generalized classes of analytic functions with negative coefficients, Report Res. Inst. Sci. Tec. Nihon Univ., 35(1987), 1-26.
-
[4] T. Sekine, S. Owa, New problems of coefficients inequalities, Publ. Res. Inst.Math. Sci., 1012(1997), 164-176.
-
[5] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.
-
[6] H. M. Srivasta, S. Owa, S. K. Chatterjea, A note on certainleclass of starlike functions, Rend. Sem. Mat. Univ. Padova, 77(1987), 115-124.