Araştırma Makalesi
BibTex RIS Kaynak Göster

Önceden Konumlandırılmış Yer İşaretlerinin Bulunduğu Statik Bir Çevrede Bir Mobil Robotun Farklı Başlangıç Pozisyonları İçin Monte Carlo Lokalizasyon Algoritmasının MATLAB Ortamındaki Performans Analizi

Yıl 2025, Cilt: 4 Sayı: 2, 74 - 92, 29.12.2025
https://doi.org/10.69560/cujast.1778413

Öz

Monte Carlo lokalizasyon (MCL) algoritması, mobil robotların global lokalizasyon problemini çözmek için sıklıkla tercih edilen olasılıksal parçacık filtre tabanlı bir yöntemdir ve genellikle iki boyutlu ızgara (grid) haritalar üzerinde konum tahmini yapmak amacıyla kullanılmaktadır. Ancak, konumları global koordinat ekseninde bilinen ve belirgin özelliklere sahip yer işaretlerinin (landmarkların) bulunduğu ortamlarda, robotun navigasyon uygulamalarının daha verimli şekilde gerçekleştirilebilmesi için MCL algoritmasının landmark tabanlı bilgiyle çalışacak şekilde uyarlanması gerekmektedir. Bu çalışmada, MATLAB® ortamında yer işaretlerinin simetrik olmayan bir düzende konumlandırıldığı özgün bir test ortamı tasarlanmış ve robotun başlangıç pozisyonunun MCL algoritmasının global lokalizasyon performansı üzerindeki etkisi ayrıntılı biçimde incelenmiştir. Bu amaçla, dört farklı başlangıç pozisyonu için bir deney senaryosu oluşturulmuş ve her bir başlangıç durumu için global lokalizasyon deneyleri yürütülmüştür. Deney sonuçlarının daha çabuk elde edilebilmesi için 360˚ tarama yapan 2B algılayıcı ölçümlerinden landmark çıkaran bir algoritma kullanmak yerine, algılayıcının menzili içindeki tüm landmarkları algılayabildiği varsayılarak gürültülü landmark ölçümleri elde edilmiştir. Deneysel sonuçlar, en başarılı lokalizasyon performansının robotun başlangıçta daha belirgin bir bölgede bulunduğu ve en fazla sayıda landmark algıladığı dördüncü durumda elde edildiğini ortaya koymuştur. Bulgular, parçacıkların daha az adımda robotun gerçek konumuna yakınsaması ve konum tahminlerinin doğruluğunun artırılması için başlangıç konumunun hem simetrik olmayan daha belirgin bölgelerde hem de daha fazla landmark algılanabilecek şekilde seçilmesi gerektiğini göstermektedir.

Kaynakça

  • Akai, N. (2023). Reliable Monte Carlo localization for mobile robots. Journal of Field Robotics, 40(3), 595–613.
  • Akbulut, Ö. (2022). Bilimsel araştırmalarda istatistiksel anlamlılığın raporlanmasında güncel yaklaşımlar: Hatalar ve doğrular. International Journal of Eastern Mediterranean Agricultural Research, 5(1), 1–19.
  • Ali, U., Muhammad, W., Irshad, M. J., & Manzoor, S. (2021). Multi-sensor fusion for underwater robot self-localization using PC/BC-DIM neural network. Sensor Review, 41(5), 449–457.
  • Altınpınar, O. V., & Sezer, V. (2023). A novel indoor localization algorithm based on a modified EKF using virtual dynamic point landmarks for 2D grid maps. Robotics and Autonomous Systems, 170, Article 104546.
  • Altınpınar, O. V., & Sezer, V. (2024a). Otonom robotlar için KU-MCL tabanlı yeni bir hibrit konum belirleme algoritması tasarımı ve uygulaması. ITU Computer Science AI and Robotics, 1(1), 6–16.
  • Altınpınar, O. V., Contarlı, E. C., & Sezer, V. (2024b, October). Real-time implementation of MEKF using VDPL localization algorithm by utilizing MATLAB & ROS communication. In 2024 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1–6). IEEE.
  • Altınpınar, O. V., & Sezer, V. (2024c, November). Real-time localization application of MEKF-VDPL algorithm on autonomous wheelchair in a dynamic environment. In 2024 15th National Conference on Electrical and Electronics Engineering (ELECO) (pp. 1–5). IEEE.
  • Altınpınar, O. V. (2025). Otonom mobil robotlarda doğruluk ve hız odaklı lokalizasyon algoritmalarının geliştirilmesi, uygulaması ve karşılaştırmalı analizi (Doktora tezi). İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul, Türkiye.
  • Boyko, N., & Hladun, Y. (2021, September). Histogram filter for robot localization. In 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT) (Vol. 1, pp. 38–43). IEEE.
  • Bukhori, I., & Ismail, Z. H. (2017). Detection of kidnapped robot problem in Monte Carlo localization based on the natural displacement of the robot. International Journal of Advanced Robotic Systems, 14(4), Article 1729881417717469.
  • Chen, X., Vizzo, I., Läbe, T., Behley, J., & Stachniss, C. (2021, May). Range image-based LiDAR localization for autonomous vehicles. In 2021 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5802–5808). IEEE.
  • Dantanarayana, L., Dissanayake, G., Ranasinghe, R., & Furukawa, T. (2015, December). An extended Kalman filter for localisation in occupancy grid maps. In 2015 IEEE 10th International Conference on Industrial and Information Systems (ICIIS) (pp. 419–424). IEEE.
  • Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999, May). Monte Carlo localization for mobile robots. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Vol. 2, pp. 1322–1328). IEEE.
  • Elfring, J., Torta, E., & Van de Molengraft, R. (2021). Particle filters: A hands-on tutorial. Sensors, 21(2), Article 438.
  • Fox, D., Burgard, W., & Thrun, S. (1999). Markov localization for mobile robots in dynamic environments. Journal of Artificial Intelligence Research, 11, 391–427.
  • Gustafsson, F. (2010). Particle filter theory and practice with positioning applications. IEEE Aerospace and Electronic Systems Magazine, 25(7), 53–82.
  • He, S., Song, T., Wang, P., Ding, C., & Wu, X. (2023). An enhanced adaptive Monte Carlo localization for service robots in dynamic and featureless environments. Journal of Intelligent & Robotic Systems, 108(1), Article 6.
  • Kargar, S., Roshan, M., Ghoreishi, S. M., Akhlaghi, A., Kanani, M., Shams-Abadi, A. A., & Ghaffari, M. H. (2020). Extended colostrum feeding for 2 weeks improves growth performance and reduces the susceptibility to diarrhea and pneumonia in neonatal Holstein dairy calves. Journal of Dairy Science, 103(9), 8130–8142.
  • Kim, H. Y. (2015). Statistical notes for clinical researchers: Post-hoc multiple comparisons. Restorative Dentistry & Endodontics, 40(2), 172–176.
  • Köse, H., & Akın, H. L. (2007). The reverse Monte Carlo localization algorithm. Robotics and Autonomous Systems, 55(6), 480–489.
  • Li, G., Meng, J., Xie, Y., Zhang, X., Jiang, L., & Huang, Y. (2019, July). An improved observation model for Monte Carlo localization integrated with reliable reflector prediction. In 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 972–977). IEEE.
  • Meng, Q. H., Sun, Y. C., & Cao, Z. L. (2000). Adaptive extended Kalman filter (AEKF)-based mobile robot localization using sonar. Robotica, 18(5), 459–473.
  • Romano, J., Kromrey, J. D., Coraggio, J., Skowronek, J., & Devine, L. (2006, October). Exploring methods for evaluating group differences on the NSSE and other surveys: Are the t-test and Cohen’s d indices the most appropriate choices? In Annual Meeting of the Southern Association for Institutional Research (Vol. 14).
  • Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1–2), 99–141.
  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT Press.
  • Tian, C., Liu, H., Liu, Z., Li, H., & Wang, Y. (2023). Research on multi-sensor fusion SLAM algorithm based on improved gmapping. IEEE Access, 11, 13690–13703.
  • Yılmaz, A., & Temeltaş, H. (2018, October). An improvement on SA-MCL algorithm: Ellipse based energy grids. In 2018 6th International Conference on Control Engineering & Information Technology (CEIT) (pp. 1–6). IEEE.
  • Yin, H., Xu, X., Lu, S., Chen, X., Xiong, R., Shen, S., & Wang, Y. (2024). A survey on global LiDAR localization: Challenges, advances and open problems. International Journal of Computer Vision, 132(8), 3139–3171.
  • Zuo, C., Xie, D., Wu, L., Tang, X., & Zhang, H. (2025). An improved adaptive Monte Carlo localization algorithm integrated with a virtual motion model. Sensors, 25(8), Article 2471.

Performance Analysis of the Monte Carlo Localization Algorithm in MATLAB for Different Initial Positions of a Mobile Robot in a Static Environment with Pre-positioned Landmarks

Yıl 2025, Cilt: 4 Sayı: 2, 74 - 92, 29.12.2025
https://doi.org/10.69560/cujast.1778413

Öz

Monte Carlo localization (MCL) algorithm is a probabilistic particle filter-based method that is frequently preferred for solving the global localization problem of mobile robots and is generally used for position estimation on two-dimensional grid maps. However, in environments where landmarks with known positions on the global coordinate axis and distinct features exist, it is necessary to adapt the MCL algorithm to work with landmark-based information to enable more efficient navigation applications for the robot. In this study, a unique test environment was designed in MATLAB® where landmarks were placed in a non-symmetric configuration, and the effect of the robot’s initial position on the global localization performance of the MCL algorithm was examined in detail. For this purpose, an experimental scenario was created for four different initial positions, and global localization experiments were conducted for each initial case. To expedite the acquisition of experimental results, instead of employing an algorithm that extracts landmarks from the measurements of a 2D sensor performing 360° scanning, it was assumed that all landmarks within the sensor’s range could be detected, and noisy landmark measurements were thereby obtained. The experimental results have revealed that the best localization performance was achieved in the fourth case, where the robot started in a more distinct region and detected the highest number of landmarks. The findings indicate that, for particles to converge to the robot’s true position in fewer steps and for more accurate position estimations to be obtained, the initial position should be selected in non-symmetric, more distinct regions where a higher number of landmarks can be detected.

Kaynakça

  • Akai, N. (2023). Reliable Monte Carlo localization for mobile robots. Journal of Field Robotics, 40(3), 595–613.
  • Akbulut, Ö. (2022). Bilimsel araştırmalarda istatistiksel anlamlılığın raporlanmasında güncel yaklaşımlar: Hatalar ve doğrular. International Journal of Eastern Mediterranean Agricultural Research, 5(1), 1–19.
  • Ali, U., Muhammad, W., Irshad, M. J., & Manzoor, S. (2021). Multi-sensor fusion for underwater robot self-localization using PC/BC-DIM neural network. Sensor Review, 41(5), 449–457.
  • Altınpınar, O. V., & Sezer, V. (2023). A novel indoor localization algorithm based on a modified EKF using virtual dynamic point landmarks for 2D grid maps. Robotics and Autonomous Systems, 170, Article 104546.
  • Altınpınar, O. V., & Sezer, V. (2024a). Otonom robotlar için KU-MCL tabanlı yeni bir hibrit konum belirleme algoritması tasarımı ve uygulaması. ITU Computer Science AI and Robotics, 1(1), 6–16.
  • Altınpınar, O. V., Contarlı, E. C., & Sezer, V. (2024b, October). Real-time implementation of MEKF using VDPL localization algorithm by utilizing MATLAB & ROS communication. In 2024 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1–6). IEEE.
  • Altınpınar, O. V., & Sezer, V. (2024c, November). Real-time localization application of MEKF-VDPL algorithm on autonomous wheelchair in a dynamic environment. In 2024 15th National Conference on Electrical and Electronics Engineering (ELECO) (pp. 1–5). IEEE.
  • Altınpınar, O. V. (2025). Otonom mobil robotlarda doğruluk ve hız odaklı lokalizasyon algoritmalarının geliştirilmesi, uygulaması ve karşılaştırmalı analizi (Doktora tezi). İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul, Türkiye.
  • Boyko, N., & Hladun, Y. (2021, September). Histogram filter for robot localization. In 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT) (Vol. 1, pp. 38–43). IEEE.
  • Bukhori, I., & Ismail, Z. H. (2017). Detection of kidnapped robot problem in Monte Carlo localization based on the natural displacement of the robot. International Journal of Advanced Robotic Systems, 14(4), Article 1729881417717469.
  • Chen, X., Vizzo, I., Läbe, T., Behley, J., & Stachniss, C. (2021, May). Range image-based LiDAR localization for autonomous vehicles. In 2021 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5802–5808). IEEE.
  • Dantanarayana, L., Dissanayake, G., Ranasinghe, R., & Furukawa, T. (2015, December). An extended Kalman filter for localisation in occupancy grid maps. In 2015 IEEE 10th International Conference on Industrial and Information Systems (ICIIS) (pp. 419–424). IEEE.
  • Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999, May). Monte Carlo localization for mobile robots. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Vol. 2, pp. 1322–1328). IEEE.
  • Elfring, J., Torta, E., & Van de Molengraft, R. (2021). Particle filters: A hands-on tutorial. Sensors, 21(2), Article 438.
  • Fox, D., Burgard, W., & Thrun, S. (1999). Markov localization for mobile robots in dynamic environments. Journal of Artificial Intelligence Research, 11, 391–427.
  • Gustafsson, F. (2010). Particle filter theory and practice with positioning applications. IEEE Aerospace and Electronic Systems Magazine, 25(7), 53–82.
  • He, S., Song, T., Wang, P., Ding, C., & Wu, X. (2023). An enhanced adaptive Monte Carlo localization for service robots in dynamic and featureless environments. Journal of Intelligent & Robotic Systems, 108(1), Article 6.
  • Kargar, S., Roshan, M., Ghoreishi, S. M., Akhlaghi, A., Kanani, M., Shams-Abadi, A. A., & Ghaffari, M. H. (2020). Extended colostrum feeding for 2 weeks improves growth performance and reduces the susceptibility to diarrhea and pneumonia in neonatal Holstein dairy calves. Journal of Dairy Science, 103(9), 8130–8142.
  • Kim, H. Y. (2015). Statistical notes for clinical researchers: Post-hoc multiple comparisons. Restorative Dentistry & Endodontics, 40(2), 172–176.
  • Köse, H., & Akın, H. L. (2007). The reverse Monte Carlo localization algorithm. Robotics and Autonomous Systems, 55(6), 480–489.
  • Li, G., Meng, J., Xie, Y., Zhang, X., Jiang, L., & Huang, Y. (2019, July). An improved observation model for Monte Carlo localization integrated with reliable reflector prediction. In 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 972–977). IEEE.
  • Meng, Q. H., Sun, Y. C., & Cao, Z. L. (2000). Adaptive extended Kalman filter (AEKF)-based mobile robot localization using sonar. Robotica, 18(5), 459–473.
  • Romano, J., Kromrey, J. D., Coraggio, J., Skowronek, J., & Devine, L. (2006, October). Exploring methods for evaluating group differences on the NSSE and other surveys: Are the t-test and Cohen’s d indices the most appropriate choices? In Annual Meeting of the Southern Association for Institutional Research (Vol. 14).
  • Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1–2), 99–141.
  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT Press.
  • Tian, C., Liu, H., Liu, Z., Li, H., & Wang, Y. (2023). Research on multi-sensor fusion SLAM algorithm based on improved gmapping. IEEE Access, 11, 13690–13703.
  • Yılmaz, A., & Temeltaş, H. (2018, October). An improvement on SA-MCL algorithm: Ellipse based energy grids. In 2018 6th International Conference on Control Engineering & Information Technology (CEIT) (pp. 1–6). IEEE.
  • Yin, H., Xu, X., Lu, S., Chen, X., Xiong, R., Shen, S., & Wang, Y. (2024). A survey on global LiDAR localization: Challenges, advances and open problems. International Journal of Computer Vision, 132(8), 3139–3171.
  • Zuo, C., Xie, D., Wu, L., Tang, X., & Zhang, H. (2025). An improved adaptive Monte Carlo localization algorithm integrated with a virtual motion model. Sensors, 25(8), Article 2471.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kontrol Teorisi ve Uygulamaları, Otomotiv Mekatronik ve Otonom Sistemler, Stokastik (Olasılıksal) Süreçler
Bölüm Araştırma Makalesi
Yazarlar

Ozan Altınpınar 0000-0003-1303-6718

Volkan Sezer 0000-0001-9658-2153

Gönderilme Tarihi 5 Eylül 2025
Kabul Tarihi 19 Kasım 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

APA Altınpınar, O., & Sezer, V. (2025). Önceden Konumlandırılmış Yer İşaretlerinin Bulunduğu Statik Bir Çevrede Bir Mobil Robotun Farklı Başlangıç Pozisyonları İçin Monte Carlo Lokalizasyon Algoritmasının MATLAB Ortamındaki Performans Analizi. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi, 4(2), 74-92. https://doi.org/10.69560/cujast.1778413